Skip to main content

Contact Measurements of Blackbody Temperatures

  • Chapter
  • First Online:
Blackbody Radiometry

Abstract

The chapter is devoted to measuring the temperature of blackbodies using contact thermometers with traceability to the International Temperature Scale of 1990 (ITS-90). The main types of contact temperature sensors (platinum resistance thermometers, thermistors, and thermocouples) applicable to measuring the blackbody temperature are reviewed. Some sources of systematic errors in contact temperature measurements of blackbodies are discussed. The techniques for measuring the temperature distributions over the radiating surfaces of blackbodies by means of movable and fixed contact thermometers are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Let us recall that VIM [60] defines measurement standard as “realization of the definition of a given quantity, with stated quantity value and associated measurement uncertainty, used as a reference.”

  2. 2.

    Korea Research Institute of Standards and Science, the NMI of South Korea.

  3. 3.

    National Physical Laboratory, the NMI of the United Kingdom.

  4. 4.

    Proportional-Integral-Derivative (see, e.g. [103]).

  5. 5.

    Physikalisch-Meteorologisches Observatorium Davos/World Radiation Center

References

  1. ASTM, Manual on the Use of Thermocouples in Temperature Measurement. ASTM manual series: MNL 12, 4th edn. (ASTM International, 1993)

    Google Scholar 

  2. ASTM E1137/E1137M-08, Standard Specification for Industrial Platinum Resistance Thermometers (ASTM International, West Conshohocken, PA, 2008)

    Google Scholar 

  3. ASTM E230/E230M-12, Standard Specification and Temperature-Electromotive Force (emf) Tables for Standardized Thermocouples (ASTM International, West Conshohocken, PA, 2012)

    Google Scholar 

  4. ASTM E2877-12ε1, Standard Guide for Digital Contact Thermometers (ASTM International, West Conshohocken, PA, 2012)

    Google Scholar 

  5. ASTM E879-20, Standard Specification for Thermistor Sensors for General Purpose and Laboratory Temperature Measurements (ASTM International, West Conshohocken, PA, 2020)

    Google Scholar 

  6. M.J. Ballico, Thermal modelling, in Handbook of Temperature Measurement, Vol. 1. Temperature and Humidity Measurement, ed. by R.E. Bentley (Springer, 1998), pp. 185–201

    Google Scholar 

  7. R.E. Bentley (ed.), Handbook of Temperature Measurement. Vol. 1: Temperature and Humidity Measurement (Springer, Singapore, 1998)

    Google Scholar 

  8. R.E. Bentley (ed.), Handbook of Temperature Measurement. Vol. 2: Resistance and Liquid-in-Glass Thermometry (Springer, Singapore, 1998)

    Google Scholar 

  9. R.E. Bentley (ed.), Handbook of Temperature Measurement. Vol. 3: The Theory and Practice of Thermoelectric Thermometry (Springer, Singapore, 1998)

    Google Scholar 

  10. F. Bernhard (Heraus.), Handbuch der Technischen Temperaturmessung. 2. Auflage—in German. Handbook of Technical Temperature Measurement, ed. by F. Bernhard, 2nd edn. (Springer, Berlin, 2014)

    Google Scholar 

  11. F.A. Best, H. E. Revercomb, Knuteson, et al. The Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) on-board blackbody calibration system. Proc. SPIE 5655, 77–88 (2005)

    Google Scholar 

  12. BIPM, Techniques for Approximating the International Temperature Scale of 1990. Reprinting of the 1990 first ed. Organisation intergouvernementale de la Convention du Mètre, Sèvres, France (1997), https://www.bipm.org/utils/common/pdf/ITS-90/ITS-90-Techniques-for-Approximating.pdf. Accessed 17 Feb 2020

  13. BIPM, Guide to the Realization of the ITS-90. Platinum Resistance Thermometry (2018), https://www.bipm.org/utils/common/pdf/ITS-90/Guide_ITS-90_5_SPRT_2018.pdf. Accessed 17 Feb 2020

  14. W.R. Blevin, W.J. Brown, A precise measurement of the Stefan-Boltzmann constant. Metrologia 7, 15–29 (1971)

    ADS  Google Scholar 

  15. G.W. Burns, D.C. Ripple, M. Battuello, Platinum versus palladium thermocouples: an emf—temperature reference function for the range 0 °C to 1500 °C. Metrologia 35, 761–780 (1998)

    ADS  Google Scholar 

  16. R. Carvell, E. Usadi, N. Fox et al., Innovative black body for on-board calibration. Proc. SPIE 5234, 411–422 (2004)

    ADS  Google Scholar 

  17. P. Castro, G. Machin, M.A. Villamañan et al., Calculation of the temperature drop for high-temperature fixed points for different furnace conditions. Int. J. Thermophys. 32, 1773–1785 (2011)

    ADS  Google Scholar 

  18. P. Castro, G. Machin, P. Bloembergen et al., Thermodynamic temperatures of high-temperature fixed points: uncertainties due to temperature drop and emissivity. Int. J. Thermophys. 35, 1341–1352 (2014)

    ADS  Google Scholar 

  19. D. Cárdenas-García, E. Méndez-Lango, Blackbody for metrological control of ear thermometers. AIP Conf. Proc. 1552, 976–980 (2013). https://doi.org/10.1063/1.4821415

    Article  ADS  Google Scholar 

  20. CCT, Mise en pratique for the definition of the kelvin in the SI. SI Brochure, 9th edn. Appendix 2 (2019), https://www.bipm.org/utils/en/pdf/si-mep/SI-App2-kelvin.pdf. Accessed 1 Feb 2020

  21. K. Chahine, M. Ballico, J. Reizes et al., Temperature profile measurement of a graphite tube furnace using optical fibre and platinum thermocouples, in Proceedings of 6th Biennial Conference of Metrology Society of Australia, October 19–21, 2005 (Australian National University, Canberra, 2005), pp. 19–21, https://opus.lib.uts.edu.au/bitstream/10453/7262/1/2005002546.pdf. Accessed 25 Mar 2019

  22. K. Chahine, M. Ballico, J. Reizes et al., Optimization of a graphite tube blackbody heater for a Thermogage furnace. Int. J. Thermophys. 29, 386–394 (2008)

    ADS  Google Scholar 

  23. T. Chaowasakoo, T.H. Ng, J. Songninluck et al., Indium solder as a thermal interface material using fluxless bonding technology, in 25th Annual IEEE Semiconductor Thermal Measurement and Management Symposium (San Jose, CA, 2009). https://doi.org/10.1109/stherm.2009.4810761

  24. C. Chen, Evaluation of resistance-temperature calibration equations for NTC thermistors. Measurement 42, 1103–1111 (2009)

    ADS  Google Scholar 

  25. B. Chu, G. Machin, The upgraded NPL blackbody calibration facility, in The 7th International Symposium on Temperature and Thermal Measurements in Industry and Science (Tempmeko’99), ed. by J.F. Dubbeldam, M.J. de Groot, vol. 2 (NMi Van Swinden Laboratorium, Delft, Netherlands, 1999), pp. 543–548

    Google Scholar 

  26. B. Chu, H.C. McEvoy, J.W. Andrews, The NPL reference sources of blackbody radiation. Meas. Sci. Technol. 5, 12–19 (1994)

    ADS  Google Scholar 

  27. J. Connolly, Resistance thermometer measurement, in Handbook of Temperature Measurement, vol. 2. Resistance and Liquid-in-Glass Thermometry, ed. by R.E. Bently (Springer, Singapore, 1998), pp. 55–81

    Google Scholar 

  28. C.J. Donlon, T. Nightingale, L. Fiedler et al., The calibration and intercalibration of sea-going infrared radiometer systems using a low cost blackbody cavity. J. Atm. Oceanic Technol. 16, 1183–1197 (1999)

    ADS  Google Scholar 

  29. C.J. Donlon, W. Wimmer, I. Robinson et al., A second-generation blackbody system for the calibration and verification of seagoing infrared radiometers. J. Atm. Oceanic Technol. 31, 1104–1127 (2014)

    ADS  Google Scholar 

  30. C.J. Donlon, P.J. Minnett, N. Fox et al., Strategies for the laboratory and field deployment of ship-borne fiducial reference thermal infrared radiometers in support of satellite-derived sea surface temperature climate data records, in Optical Radiometry for Ocean Climate Measurements, ed. by G. Zibordi, C.J. Donlon, A.C. Parr (Acad. Press, Amsterdam, Netherlands, 2014), pp. 557–603

    Google Scholar 

  31. F. Edler, Y.G. Kim, G. Machin et al., Guide on Secondary Thermometry. Specialized Fixed Points above 0 °C. (BIPM, 2018), https://www.bipm.org/utils/common/pdf/ITS-90/Specialized-FPs-above-0C.pdf. Accessed 19 Feb 2020

  32. J. Felba, Thermally conductive adhesives in electronics, in Advanced Adhesives in Electronics. Materials, Properties and Applications, ed. by M.O. Alam, C. Bailey (Woodhead Publishing, Oxford, UK, 2011), pp. 15–52

    Google Scholar 

  33. S.L. Firebaugh, K.F. Jensen, M.A. Schmidt, Investigation of high-temperature degradation of platinum thin films with an in situ resistance measurement apparatus. J. Microelectromech. Syst. 7, 128–135 (1998)

    Google Scholar 

  34. J. Fischer, Developments in infrared radiation thermometry, in TEMPMEKO ‘99. The 7th International Symposium on Temperature and Thermal Measurements in Industry and Science, ed. by J.F. Dubbeldam, M.J. de Groot, vol. 1 (NMi Van Swinden Laboratorium, Delft, Netherlands, 1999), pp. 27–34

    Google Scholar 

  35. J. Fischer, J. Seidel, B. Wende, The double-heatpipe black body: a radiance and irradiance standard for accurate infrared calibrations in remote sensing. Metrologia 35, 441–445 (1998)

    ADS  Google Scholar 

  36. J. Fischer, M. de Podesta, Hill et al., Present estimates of the differences between thermodynamic temperatures and the ITS-90. Int. J. Thermophys. 32, 12–25 (2011)

    Google Scholar 

  37. J.B. Forgione, D.H. Kemp, P.S. Grant et al., Modernization of blackbody temperature control for the Enhanced MODIS Airborne Simulator (eMAS), in IEEE Aerospace Conference (Big Sky, MT, 2018). https://doi.org/10.1109/AERO.2018.8396368

  38. J.B. Fowler, A Third generation water bath based blackbody source. J. Res. Natl. Inst. Stand. Technol. 100, 591–599 (1995)

    Google Scholar 

  39. J.B. Fowler, An oil-bath-based 293 K to 473 K blackbody source. J. Res. Natl. Inst. Stand. Technol. 101, 629–637 (1996)

    ADS  Google Scholar 

  40. J. Geist, J.B. Fowler, A water bath blackbody for the 5 to 60 °C temperature range: performance goal, design concept, and test results. NBS Technical Note 1228 (Natl. Bureau of Standards, U.S. Department of Commerce, 1986)

    Google Scholar 

  41. J. Gröbner, Operation and investigation of a tilted bottom cavity for pyrgeometer characterizations. Appl. Opt. 47, 4441–4447 (2008)

    ADS  Google Scholar 

  42. B. Gutschwager, E. Theocharous, C. Monte et al., Comparison of the radiation temperature scales of the PTB and the NPL in the temperature range from −57 °C to 50 °C. Meas. Sci. Technol. 24, 065002 (2013)

    ADS  Google Scholar 

  43. L. Hanssen, V. Khromchenko, S. Mekhontsev, Validation of NIST’s low temperature infrared spectral radiance scale, in Presentation on CALCON Conference. Logan, UT (2017), https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=1281&context=calcon. Accessed 19 Feb 2019

  44. J. Hartmann, J. Fischer, Radiator standards for accurate IR calibrations in remote sensing based on heatpipe blackbodies. Proc. SPIE 3821, 395–403 (1999)

    ADS  Google Scholar 

  45. J. Hartmann, D. Taubert, J. Fischer, Characterization of the double-heatpipe blackbody LABB for use at temperatures below 500 °C, in The 7th International Symposium on Temperature and Thermal Measurements in Industry and Science (Tempmeko’99), ed. by J.F. Dubbeldam, M.J. de Groot, vol. 2 (NMi Van Swinden Laboratorium, Delft, Netherlands, 1999), pp. 511–516

    Google Scholar 

  46. J. Hartmann, J. Hollandt, B. Khlevnoy et al., Blackbody and other calibration sources, in Radiometric Temperature Measurements. I. Fundamentals, ed. by Z.M. Zhang, B.K. Tsai, G. Machin (Academic Press, Amsterdam, Netherlands, 2010), pp. 241–294

    Google Scholar 

  47. J. Hartmann, F. Bernhard, Strahlungstemperaturmessung, in Handbuch der Technischen Temperaturmessung, 2nd edn., ed. by F. Bernhard (Springer, Berlin, 2014), pp. 1161–1393

    Google Scholar 

  48. C.B. Herron, S.L. Steely, R.P. Young, Arnold Engineering Development Center low-background blackbody calibration. Technical Report AEDC-TR-93-17, AD-A273 671 (AEDC, US Air Force, 1993)

    Google Scholar 

  49. K.D. Hill, D.J. Woods, Characterizing the NRC blackbody sources for radiation thermometry from 150 °C to 962 °C. Int. J. Thermophys. 30, 105–123 (2009)

    ADS  Google Scholar 

  50. J. Hollandt, J. Seidel, R. Klein et al., Primary sources for use in radiometry, in Optical Radiometry, ed. by A.C. Parr, R.U. Datla, J.L. Gardner (Academic Press, Amsterdam, 2005), pp. 213–290

    Google Scholar 

  51. J.P. Holman, Heat Transfer, 10th edn. (McGraw-Hill, Boston, MA, 2010)

    Google Scholar 

  52. C. Horrigan, Calibration enclosures, in Handbook of Temperature Measurement, vol. 2. Resistance and Liquid-in-Glass Thermometry, ed. by R.E. Bently (Springer, Singapore, 1998), pp. 145–160

    Google Scholar 

  53. IEC 60539-1, Edition 3.0. Directly heated negative temperature coefficient thermistors—Part 1: Generic specification. International Standard (International Electrotechnical Commission, Geneva, 2016)

    Google Scholar 

  54. IEC 60539-2, Edition 2.0. Directly heated negative temperature coefficient thermistors—Part 2: Sectional specification—surface mount negative temperature coefficient thermistors. International Standard (International Electrotechnical Commission, Geneva, 2019)

    Google Scholar 

  55. IEC 60584-1, Edition 3.0 2013-08. International Standard. Thermocouples—Part 1: EMF specifications and tolerances (International Electrotechnical Commission, 2013)

    Google Scholar 

  56. IEC 60751, Edition 2.0. International Standard. Industrial platinum resistance thermometers and platinum temperature sensors. (International Electrotechnical Commission, 2008)

    Google Scholar 

  57. F.P. Incropera, D.P. DeWitt, T.L. Bergman et al., Fundamentals of Heat and Mass Transfer, 6th edn. (Wiley, Hoboken, NJ, 2007)

    Google Scholar 

  58. V.S. Ivanov, B.E. Lisiansky, S.P. Morozova et al., Medium-background radiometric facility for calibration of sources or sensors. Metrologia 37, 599–602 (2000)

    ADS  Google Scholar 

  59. K.B. Jarratt, Calibration of an AEDC low-temperature blackbody standard at NIST. Technical Report AEDC-TR-91-9, AD-A245 071 (AEDC, US Air Force, 1992)

    Google Scholar 

  60. JCGM 200:2012, International Vocabulary of Metrology—Basic and General Concepts and Associated Terms (VIM), 3rd edn. 2008 Version with Minor Corrections (BIPM Joint Committee for Guides in Metrology, Paris, 2012)

    Google Scholar 

  61. P. Jimeno-Largo, Y. Yamada, P. Bloembergen et al., Numerical analysis of the temperature drop across the cavity bottom of high-temperature fixed points for radiation thermometry, in TEMPMEKO 2004, Proceedings of 9th International Symposium on Temperature and Thermal Measurements in Industry and Science, ed. by D. Zvizdić, vol. 1 (LPM/FSB, Zagreb, Croatia, 2005), pp. 335–340

    Google Scholar 

  62. T.M. Jung, A.C. Carter, D.R. Sears et al., LBIR fluid bath blackbody for cryogenic vacuum calibrations. Presentation in 2015 CALCON Technical Meeting, Utah State University, Space Dynamics Lab., Logan, UT (2015). https://digitalcommons.usu.edu/cgi/viewcontent.cgi?referer=https://www.google.com/&httpsredir=1&article=1186&context=calcon. Accessed 19 Feb. 2020

    Google Scholar 

  63. T.W. Kerlin, M. Johnson, Practical Thermocouple Thermometry, 2nd edn. (ISA—International Society of Automation, Research Triangle Park, NC, 2012)

    Google Scholar 

  64. H.-Y. Ko, B.-J. Wen, S.-F. Tsa et al., A high-emissivity blackbody with large aperture for radiometric calibration at low-temperature. Int. J. Thermophys. 30, 98–104 (2009)

    ADS  Google Scholar 

  65. K.G. Kreider, F. DiMeo, Platinum/palladium thin-film thermocouples for temperature measurements on silicon wafers. Sens. Actuators A 69, 46–52 (1998)

    Google Scholar 

  66. M. Kutz (ed.), Heat-Transfer Calculation (McGraw-Hill, New York, 2006)

    Google Scholar 

  67. B.G. Lipták (ed.), Temperature Measurement (CRC Press, New York, 1993)

    Google Scholar 

  68. M. Litorja, B.K. Tsai, Preliminary results in the characterization of a NIST variable temperature blackbody, in Proceedings of 9th International Symposium on Temperature and Thermal Measurements in Industry and Science (TEMPMEKO 2004), ed. by D. Zvizdić, vol. 2 (LPM/FSB, Zagreb, Croatia, 2005), pp. 963–968

    Google Scholar 

  69. H.R. Little, J. Hiatt, K.A. Lienemann, Low Temperature Infrared Source Calibration and Traceability at Arnold Engineering Development Center (AEDC). Proc. SPIE 0416, 136–144 (1983)

    ADS  Google Scholar 

  70. G. Machin, The kelvin redefined. Meas. Sci. Technol. 29, 022001 (2018)

    ADS  Google Scholar 

  71. G. Machin, R. Simpson, M. Broussely, Calibration and validation of thermal imagers. Quant. InfraRed Thermogr. J. 6, 133–147 (2009). https://doi.org/10.3166/qirt.6.133-147

    Article  Google Scholar 

  72. C.V. Madhusudana, Thermal Contact Conductance, 2nd edn. (Springer, Cham, Switzerland, 2014)

    Google Scholar 

  73. L.C. Martin, J.D. Wrbanek, G.C. Fralick, Thin Film Sensors for Surface Measurements. NASA TM-2001-211149 (NASA Glenn Research Center, 2001)

    Google Scholar 

  74. M. Matus, Temperature measurement in dimensional metrology – Why the Steinhart-Hart equation works so well, in Proceedings of MacroScale 2011 Conference “Recent developments in traceable dimensional measurements” (Bern-Wabern, Switzerland, 04–06, October, 2011), https://oar.ptb.de/files/download/56d6a9edab9f3f76468b4643. Accessed 19 Feb 2020

  75. L. Michalski, K. Eckersdorf, J. Kucharski, J. McGhee, Temperature Measurement, 2nd edn. (Wiley, Chichester, UK, 2001)

    Google Scholar 

  76. W.J. Minkowycz, E.M. Sparrow, J.Y. Murthy (eds.), Handbook of Numerical Heat Transfer, 2nd edn. (Wiley, Hoboken, NJ, 2006)

    Google Scholar 

  77. C. Monte, B. Gutschwager, S.P. Morozova et al., Radiation thermometry and emissivity measurements under vacuum at the PTB. Int. J. Thermophys. 30, 203–219 (2009)

    ADS  Google Scholar 

  78. S.P. Morozova, N.A. Parfentiev, Lisiansky et al., Vacuum variable medium temperature blackbody. Int. J. Thermophys. 31, 1809–1820 (2010)

    Google Scholar 

  79. S.P. Morozova, B.E. Lisyanskiy, A.A. Stakharny et al., Low-temperature blackbodies for temperature range from −60 °C to 90 °C. Int. J. Thermophys. 32, 2544–2559 (2011)

    ADS  Google Scholar 

  80. J.V. Nicholas, D.R. White, Traceable Temperatures: An Introduction to Temperature Measurement and Calibration, 2nd edn. (Wiley, Chichester, UK, 2001)

    Google Scholar 

  81. M. Noorma, S. Mekhontsev, V. Khromchenko et al., Water heat pipe blackbody as a reference spectral radiance source between 50 °C and 250 °C. Proc. SPIE 6205, 620502 (2006)

    Google Scholar 

  82. S.A. Ogarev, M.L. Samoylov, N.A. Parfentyev et al., Low-temperature blackbodies for IR calibrations in a medium-background environment. Int. J. Thermophys. 30, 77–97 (2009)

    ADS  Google Scholar 

  83. S.A. Ogarev, S.P. Morozova, A.A. Katysheva et al., Blackbody radiation sources for the IR spectral range. AIP Conf. Proc. 1552, 654–659 (2013)

    ADS  Google Scholar 

  84. C.-W. Park, Y.S. Yoo, B.-H. Kim et al., Construction and characterization of a large aperture blackbody for infrared radiometer calibration. Int. J. Thermophys. 32, 1622–1631 (2011)

    ADS  Google Scholar 

  85. J.V. Pearce, V. Montag, D. Lowe et al., Melting temperature of high-temperature fixed points for thermocouple calibrations. Int. J. Thermophys. 32, 463–470 (2011)

    ADS  Google Scholar 

  86. D.D. Pollock, Thermocouples: Theory and Properties (CRC Press, Boca Raton, FL, 1991)

    Google Scholar 

  87. R. Prasher, Thermal interface materials: historical perspective, status, and future directions. Proc. IEEE 94, 1571–1586 (2006)

    Google Scholar 

  88. R. Prasher, C.-P. Chiu, Thermal interface materials, in Materials for Advanced Packaging, ed. by D. Lu, C.P. Wong (Springer, Cham, Switzerland, 2017)

    Google Scholar 

  89. H. Preston-Thomas, The international temperature scale of 1990 (ITS-90). Metrologia 27, 3–10 (1990)

    ADS  Google Scholar 

  90. C.A. Pullins, T.E. Diller, Adaptation of the in-cavity calibration method for high temperature heat flux sensors. Int. J. Heat and Mass Transfer 54, 3369–3380 (2011)

    Google Scholar 

  91. T.J. Quinn, Temperature, 2nd edn. (Academic Press, London, 1990)

    Google Scholar 

  92. B. Ramachandran, C.O. Justice, M.J. Abrams (eds.), Land Remote Sensing and Global Environmental Change. NASA’s Earth Observing System and the Science of ASTER and MODIS (Springer, New York, 2011)

    Google Scholar 

  93. D.C. Ripple, G.W. Burns, Standard Reference Material 1749: Au/Pt Thermocouple Thermometer. NIST Special Publication 260–134 (NIST, U. S. Department of Commerce, 2002)

    Google Scholar 

  94. R. Rusby, The Beginner’s Guide to Temperature Measurement. Measurement Good Practice Guide No. 127 (NPL, Teddington, UK, 2012)

    Google Scholar 

  95. J.S. Steinhart, S.R. Hart, Calibration curves for thermistors. Deep Sea Research and Oceanographic Abstracts 15, 497–503 (1968)

    ADS  Google Scholar 

  96. M. Stock, J. Fischer, Friedrich et al., The double-heatpipe black body: a high-accuracy standard source of spectral irradiance for measurements of T-T90. Metrologia 32, 441–444 (1995/96)

    Google Scholar 

  97. M. Stock J. Fischer, R. Friedrich et al., Measurement of T-T90 in the range from 660 °C to 962 °C by absolute spectral radiometry employing a cryogenic radiometer and a double heatpipe black body, in Proceedings of TEMPMEKO ‘96, 6th International Symposium on Temperature and Thermal Measurements in Industry and Science, ed. by P. Marcarino (Levrotto & Bella, Torino, 1996), pp. 19–24

    Google Scholar 

  98. Surrey NanoSystems: Vantablack (Surrey NanoSystems Ltd, Newhaven, UK, 2016), https://www.surreynanosystems.com/assets/media/vantablack-vb-a4-data-brochure-2016-009-download.pdf. Accessed 19 Feb 2020

  99. I.M. Tougas, M. Amani, O.J. Gregory, Metallic and ceramic thin film thermocouples for gas turbine engines. Sensors 13, 15324–15347 (2013)

    Google Scholar 

  100. M.A. Vadivelu, C.R. Kumar, G.M. Joshi, Polymer composites for thermal management: a review. Compos. Interfaces (2016). https://doi.org/10.1080/09276440.2016.1176853

    Article  Google Scholar 

  101. M.S. Van Dusen, Platinum-resistance thermometry at low temperatures. J. Am. Chem. Soc. 47, 326–332 (1925)

    Google Scholar 

  102. J. Wang, Z. Yuan, X. Hao et al., A −30 °C to 80 °C stirred-liquid-bath-based blackbody source. Int. J. Thermophys. 36, 1766–1774 (2015)

    ADS  Google Scholar 

  103. T. Wescott, PID Without a PhD (2016), http://www.wescottdesign.com/articles/pid/pidWithoutAPhd.pdf. Accessed 19 Feb 2020

  104. D.R. White, M. Ballico, D. del Campo et al., Uncertainties in the realization of the SPRT sub-ranges of the ITS-90. Int. J. Thermophys. 28, 1868–1881 (2007)

    ADS  Google Scholar 

  105. D.R. White, K. Hill, D. del Campo et al., Guide on Secondary Thermometry. Thermistor Thermometry (BIPM, 2014). http://www.bipm.org/utils/common/pdf/ITS-90/Guide-SecTh-Thermistor-Thermometry.pdf. Accessed 2 Feb 2020

  106. X. Yang, C. Liang, T. Ma et al., A review on thermally conductive polymeric composites: classification, measurement, model and equations, mechanism and fabrication methods. Adv. Compos. Hybrid Mater. 1, 207–230 (2018)

    Google Scholar 

  107. C. Yinghang, L. Yaping, L. Yongqian et al., A medium temperature radiation calibration facility using a new design of heatpipe blackbody as a standard source. Meas. Sci. Technol. 12, 491–494 (2001)

    ADS  Google Scholar 

  108. G. Zeng, S. McDonald, K. Nogita, Development of high-temperature solders: review. Microelectron. Reliab. 52, 1306–1322 (2012)

    Google Scholar 

  109. X. Zhang, C. Hongseok, A. Datta et al., Design, fabrication and characterization of metal embedded thin film thermocouples with various film thicknesses and junction sizes. J. Micromech. Microeng. 16, 900–905 (2006)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Sapritsky .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sapritsky, V., Prokhorov, A. (2020). Contact Measurements of Blackbody Temperatures. In: Blackbody Radiometry. Springer Series in Measurement Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-57789-6_7

Download citation

Publish with us

Policies and ethics