Skip to main content

Elements of Blackbodies Design

  • Chapter
  • First Online:
Blackbody Radiometry

Abstract

Some thermophysical and optical aspects of designing blackbodies are considered in this chapter. A general set of characteristics and parameters of blackbodies are derived from the typical requirements contained in the corresponding technical documentation. The most frequently used classification systems for blackbodies are examined. The issues discussed in this chapter include the techniques of blackbody heating, cooling, and isothermalization for fixed-point and various types of variable-temperature blackbodies and methods of improving the radiation characteristics of blackbody radiators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Not to be confused with Kanthal that is the trademark (also owned by Sandvik AB) for a family of iron-chromium-aluminum (FeCrAl) alloys.

  2. 2.

    We consider pyrolytic graphite (see below) as a form of graphite.

  3. 3.

    Now, Thermo Gauge Instruments, Inc. (https://thermogauge.com/).

References

  1. A. Abdulkadir, R.C. Birkebak, Effects of large pyramidal surface roughness on spectral directional emittance. Warme-Und Stoffubertragung 10, 23–32 (1977)

    ADS  Google Scholar 

  2. V.V. Bacherikov, L.V. Vlasov, N.A. Morozov et al., High-temperature radiators for standards in energy photometry. Meas. Tech. 26, 988–992 (1983)

    Google Scholar 

  3. C.R. Barber, T.J. Quinn, E.B. Power et al., A full-radiator lamp designed to replace the tungsten strip lamp as a pyrometric standard. Nature 202, 686 (1964)

    ADS  Google Scholar 

  4. M. Battuello, V. Chimenti, G. Machin, et al. A comparison of the primary standard zinc point blackbody cavities of NPL and CEM with IMGC, in Proc. TEMPMEKO 2001, 8th Int. Symp. on Temperature and Thermal Measurements in Industry and Science, vol. 2, eds. by Fellmuth, B., Seidel, J., Scholz, G., pp. 857–862 (VDE Verlag GmbH, Berlin, 2002)

    Google Scholar 

  5. H.D. Baehr, K. Stephan, Heat and Mass Transfer, 3rd edn. (Springer, Berlin, 2011)

    MATH  Google Scholar 

  6. J. Bauer, J. Mehrten, J. Young et al., MODIS on board calibrator blackbody performance. Proc. SPIE 3439, 269–276 (1998)

    ADS  Google Scholar 

  7. R.E. Bedford, C.K. Ma, Emissivities of diffuse cavities: isothermal and nonisothermal cones and cylinders. J. Opt. Soc. Am. 64, 339–349 (1974)

    ADS  Google Scholar 

  8. R.E. Bedford, C.K. Ma, Emissivities of diffuse cavities, II: isothermal and nonisothermal cylindro-cones. J. Opt. Soc. Am. 65, 565–572 (1975)

    ADS  Google Scholar 

  9. R.E. Bedford, C.K. Ma, Emissivities of diffuse cavities, III: isothermal and nonisothermal double cones. Opt. Soc. Am. 66, 724–730 (1976)

    ADS  Google Scholar 

  10. R.E. Bedford, C.K. Ma, Effective emissivities of diffuse, isothermal cavities with regular polygonal cross section: mathematical formulation, in Proc. TEMPMEKO 2001, 8th Int. Symp. on Temperature and Thermal Measurements in Industry and Science, vol. 1, ed. by B. Fellmuth, J. Seidel, G. Scholz (VDE Verlag GmbH, Berlin, 2002), pp. 239–244

    Google Scholar 

  11. R.E. Bedford, C.K. Ma, Effective emissivities of diffuse, isothermal cavities with regular polygonal cross section: computational details and results, in Proc. TEMPMEKO 2001, 8th Int. Symp. on Temperature and Thermal Measurements in Industry and Science, vol. 1, ed. by B. Fellmuth, J. Seidel, G. Scholz (VDE Verlag GmbH, Berlin, 2002), pp. 245–251

    Google Scholar 

  12. F.E. Bliss, S. Davis, B. Stein, Isothermal cavity, blackbody radiation source. Appl. Opt. 9, 2023–2027 (1970)

    ADS  Google Scholar 

  13. P. Bloembergen, R.E. Bedford, C.K. Ma, A study of the effects of non-isothermal source conditions on the transfer of radiance temperatures in the temperature-wavelength domain from 180 to 30 000 µm K. Measurement 10, 157–164 (1992)

    ADS  Google Scholar 

  14. S. Boles, I. Pušnik, D.M. Lochlainn et al., Development and characterisation of a bath-based vertical blackbody cavity calibration source for the range −30 °C to 150 °C. Measurement 106, 121–127 (2017)

    ADS  Google Scholar 

  15. H. Buckley, On the radiation from the inside of a circular cylinder. Phil. Mag. Series 7. 4, 753–762 (1927)

    Google Scholar 

  16. H. Buckley, On the radiation from the inside of a circular cylinder—Part II. Phil. Mag. Series 7. 6, 447–457 (1928)

    Google Scholar 

  17. A. Burdakin, B. Khlevnoy, M. Samoylov et al., Melting points of gallium and of binary eutectics with gallium realized in small cells. Metrologia 45, 75–82 (2008)

    ADS  Google Scholar 

  18. A. Burdakin, B. Khlevnoy, M. Samoylov et al., Development of gallium and gallium-based small-size eutectic melting fixed points for calibration procedures on autonomous platforms. Int. J. Thermophys. 30, 20–35 (2009)

    ADS  Google Scholar 

  19. A. Burdakin, B. Khlevnoy, V. Krutikov, et al. Upcoming space experiments for developing space-borne low-temperature fixed-point blackbody, in Proc. NEWRAD 2014, ed. by S. Park, P. Kärhä, E. Ikonen, (2014), pp. 57–58, https://newrad2014.aalto.fi/Newrad2014_Proceedings.pdf. Accessed 10 Feb 2020

  20. F. Cabannes, L. VuTien, A zirconia near-blackbody radiation source, 2500 K in air. Int. J. Thermophys. 16, 277–287 (1995)

    ADS  Google Scholar 

  21. M.J. Caola, Radiation from a nonisothermal spherical cavity: an exact solution. Appl. Opt. 40, 3232–3234 (2001)

    ADS  Google Scholar 

  22. D. Cárdenas-García, E. Méndez-Lango, Use of radiometrically calibrated flat-plate calibrators in calibration of radiation thermometers. Int. J. Thermophys. 36, 1775–1783 (2015)

    ADS  Google Scholar 

  23. R. Carvell, E. Usadi, N. Fox et al., Innovative black body for on-board calibration. Proc. SPIE 5234, 411–422 (2004)

    ADS  Google Scholar 

  24. CCT, Mise en pratique for the definition of the kelvin in the SI. SI Brochure, 9th ed. Appendix 2 (2019), https://www.bipm.org/utils/en/pdf/si-mep/SI-App2-kelvin.pdf. Accessed 10 Feb 2020

  25. K. Chahine, M. Ballico, J. Reizes et al., Optimization of a graphite tube blackbody heater for a Thermogage furnace. Int. J. Thermophys. 29, 386–394 (2008)

    ADS  Google Scholar 

  26. X. Che, Z. Xie, Development of ReFaST pyrometer for measuring surface temperature with unknown emissivity: methodology, implementation, and validation. IEEE Trans. Instrum. Meas. 66, 1845–1855 (2017)

    Google Scholar 

  27. S.M. Chernin, High-temperature miniature blackbody radiation sources. Appl. Opt. 36, 1580–1591 (1997)

    ADS  Google Scholar 

  28. B. Chu, H.C. McEvoy, J.W. Andrews, The NPL reference sources of blackbody radiation. Meas. Sci. Technol. 5, 12–19 (1994)

    ADS  Google Scholar 

  29. S. Clausen, Spectral emissivity of surface blackbody calibrators. Int. J. Thermophys. 28, 2145–2154 (2007)

    ADS  Google Scholar 

  30. P. Coates, D. Lowe, The Fundamentals of Radiation Thermometers (CRC Press, Boca Raton, FL, 2017)

    Google Scholar 

  31. I.E. Cottington, Platinum and the standard of light. A selective review of proposals which led to an international unit of luminous intensity. Platinum Metal Rev. 30, 84–95 (1986)

    Google Scholar 

  32. E.J. Davies, Conduction and Induction Heating (Peter Peregrinus Ltd., London, 1990)

    Google Scholar 

  33. L.F. Daw, The emissivity of a groove. Brit. J. Appl. Phys. 5, 182–187 (1954)

    ADS  Google Scholar 

  34. J. De Lucas, J.J. Segovia, Measurement and analysis of the temperature gradient of blackbody cavities, for use in radiation thermometry. Int. J. Thermophys. 39, 57 (2018)

    ADS  Google Scholar 

  35. S.R. De Groot, P. Mazur, Non-Equilibrium Thermodynamics (Dover, New York, 1984)

    MATH  Google Scholar 

  36. Y.V. Deshmukh, Industrial Heating. Principles, Techniques, Materials, Applications, and Design (CRC Press, Boca Raton, FL, 2005)

    Google Scholar 

  37. A. Diril, H. Nasibov, S. Uğur, UME radiation thermometer calibration facilities below the freezing point of silver (961.78 °C), in Temperature: Its Measurement and Control in Science and Industry, vol. 7, ed. by D.C. Ripple (Am. Inst. Phys., New York, 2003), pp 663–668

    Google Scholar 

  38. M.D. Drury, K.P. Perry, T. Land, Pyrometers for surface temperature measurement. J. Iron St. Inst. 169, 245–250 (1951)

    Google Scholar 

  39. A. Faghri, Heat pipes and thermosyphons, in Handbook of Thermal Science and Engineering, ed. by F.A. Kulacki (Springer, Cham, Switzerland, 2018), pp. 2163–2211

    Google Scholar 

  40. Q. Fang, W. Fang, Y. Wang et al., New shape of blackbody cavity: conical generatrix with an inclined bottom. Opt. Eng. 51, 086401 (2012)

    ADS  Google Scholar 

  41. W. Fei, Z. Jing, L. Bin, et al. Finite-element analysis of emissivity in cylindrical blackbody cavity sensor. in Int. Conf. on Internet Computing and Information Services, (Hong Kong, 2011), pp. 453–454. https://doi.org/10.1109/ICICIS.2011.118

  42. D.K. Finfrock, Thermoelectric Thermal Reference Sources (TTRS) for calibration of infrared detectors and systems. Proc. SPIE 4093, 435–444 (2000)

    ADS  Google Scholar 

  43. D.K. Finfrock, Calibration of starring infrared systems using Thermoelectric Thermal Reference Sources. Proc. SPIE 4772, 86–94 (2002)

    ADS  Google Scholar 

  44. D.K. Finfrock, W.L. Kolander, Third generation infrared system calibration using dual band thermoelectric thermal reference sources and test systems to calibrate uncooled IRFPAs. Proc. SPIE 6940, 69400V (2008)

    ADS  Google Scholar 

  45. J. Fischer, M. de Podesta, K.D. Hill et al., Present estimates of the differences between thermodynamic temperatures and the ITS-90. Int. J. Thermophys. 32, 12–25 (2011)

    ADS  Google Scholar 

  46. M.A. Folkman, P.J. Jarecke, L.A. Darnton, Enhancements to the radiometric calibration facility for the Clouds and the Earth’s Radiant Energy System instruments. Proc. SPIE 1493, 255–266 (1991)

    ADS  Google Scholar 

  47. J.B. Fowler, A third generation water bath based blackbody source. J. Res. Natl. Inst. Stand. Technol. 100, 591–599 (1995)

    Google Scholar 

  48. J.B. Fowler, An oil-bath-based 293 K to 473 K blackbody source. J. Res. Natl. Inst. Stand. Technol. 101, 629–637 (1996)

    ADS  Google Scholar 

  49. J. Geist, J.B. Fowler, A Water Bath Blackbody for the 5 to 60 °C Temperature Range: Performance Goal, Design Concept, and Test Results. Technical Note 1228. (Natl. Bureau of Standards, U.S. Department of Commerce, Washington, DC, 1986)

    Google Scholar 

  50. P.J. Gero, J.A. Dykema, J.G. Anderson et al., A blackbody design for SI-traceable radiometry for Earth observation. J. Atm. Oceanic Technol. 25, 2046–2054 (2008)

    ADS  Google Scholar 

  51. H.J. Goldsmid, Thermoelectric Refrigeration (Springer, New York, 1964)

    Google Scholar 

  52. H.J. Goldsmid, Introduction to Thermoelectricity, 2nd edn. (Springer, Berlin, 2016)

    Google Scholar 

  53. J. Gröbner, Operation and investigation of a tilted bottom cavity for pyrgeometer characterizations. Appl. Opt. 47, 4441–4447 (2008)

    ADS  Google Scholar 

  54. M. Groll, G. Neuer, A new graphite cavity radiator as blackbody for high temperatures, in Temperature: Its Measurement and Control in Science and Industry, vol. 4, part I, ed. by H.H. Plumb (Instrument Society of America, Washington, DC, 1972), pp. 449–454

    Google Scholar 

  55. S. Gu, G. Fu, Q. Zhang, 3500 K high frequency induction heating blackbody sources. in AIAA/ASME 4th Joint Thermophysics and Heat Transfer Conference. Paper AIAA-86–1282, (Boston, MA, 1986). https://doi.org/10.2514/4.1986-1282

  56. S. Gu, G. Fu, Q. Zhang, 3500-K high-frequency induction-heated blackbody source. J. Thermophys. 3, 83–85 (1989)

    ADS  Google Scholar 

  57. S. Guanghui, G. Kuiming, Development of the radiation characteristics of a compound-cavity blackbody. Proc. SPIE 1311, 420–427 (1990)

    Google Scholar 

  58. B. Guenther, W. Barnes, E. Knight et al., MODIS calibration: a brief review of the strategy for the at-launch calibration approach. J. Atm. Oceanic Technol. 13, 274–285 (1996)

    ADS  Google Scholar 

  59. B. Gutschwager, H. Driescher, J. Herrmann et al., Characterization of the 300K and 700K calibration sources for space application with the Bepicolombo mission to Mercury. Int. J. Thermophys. 32, 1429–1439 (2011)

    ADS  Google Scholar 

  60. X. Hao, H. McEvoy, G. Machin et al., A comparison of the In, Sn, Zn and Al fixed points by radiation thermometry between NIM and NPL and verification of the NPL blackbody reference sources from 156 °C to 1000 °C. Meas. Sci. Technol. 24, 075004 (2013)

    ADS  Google Scholar 

  61. J. Hartmann, J. Hollandt, B. Khlevnoy, et al. Blackbody and other calibration sources. in Radiometric Temperature Measurements. I. Fundamentals,  eds. by Z.M. Zhang, B.K. Tsai, G. Machin (Acad. Press, Amsterdam, 2010), pp. 241–294

    Google Scholar 

  62. S. Hatzl, M. Kirschner, V. Lippig et al., Direct measurements of infrared normal spectral emissivity of solid materials for high-temperature applications. Int. J. Thermophys. 34, 2089–2101 (2013)

    ADS  Google Scholar 

  63. C.L. Hepplewhite, R.E.J. Watkins, F. Row et al., HIRDLS instrument radiometric calibration black body targets. Proc. SPIE 5152, 223–230 (2003)

    ADS  Google Scholar 

  64. I. Hishikari, T. Ide, Precision practical blackbody furnaces by a 3-zone temperature control method. in Temperature. Its Measurement and Control in Science and Industry, vol. V, part I, ed. by J.F. Schooley, (Amer. Inst. Physics, New York, 1982), pp. 551–558

    Google Scholar 

  65. J. Hollandt, J. Seidel, R. Klein et al., Primary sources for use in radiometry, in Optical Radiometry, ed. by A.C. Parr, R.U. Datla, J.L. Gardner (Acad. Press, Amsterdam, 2005), pp. 213–290

    Google Scholar 

  66. J. Hollandt, R. Friedrich, B. Gutschwager, et al. High-accuracy radiation thermometry at the National Metrology Institute of Germany, the PTB. High Temp.-High Pres. 35/36, 379–415 (2003/2004)

    Google Scholar 

  67. C.T. Hua, R. Peyturaux, Réalisation d’un corps noir a haute témperature par chauffage haute fréquence. Nouv. Rev. D’Optique Appliquée 3, 31–36 (1972)

    ADS  Google Scholar 

  68. J. Ishii, M. Kobayashi, F. Sakuma, Effective emissivities of black-body cavities with grooved cylinders. Metrologia 35, 175–180 (1998)

    ADS  Google Scholar 

  69. P.J. Jarecke, M.A. Folkman, T.R. Hedman et al., Clouds and the Earth’s radiant energy system (CERES): long-wave calibration plan and radiometric test model (RTM) calibration results. Metrologia 30, 223–230 (1993)

    ADS  Google Scholar 

  70. A.R. Karoli, J.R. Hickey, R.E. Nelson, An absolute calibration source for laboratory and satellite infrared spectrometers. Appl. Opt. 6, 1183–1188 (1967)

    ADS  Google Scholar 

  71. B.B. Khlevnoy, M.L. Samoylov, I.A. Grigoryeva et al., Development of high-temperature blackbodies and furnaces for radiation thermometry. Int. J. Thermophys. 32, 1686–1696 (2011)

    ADS  Google Scholar 

  72. B. Khlevnoy, I. Grigoryeva, K. Anhalt et al., Development of large-area high-temperature fixed-point blackbodies for photometry and radiometry. Metrologia 55, S43–S51 (2018)

    Google Scholar 

  73. V.B. Khromchenko, S.N. Mekhontsev, L.M. Hanssen, Design and evaluation of large-aperture gallium fixed-point blackbody. Int. J. Thermophys. 30, 9–19 (2009)

    ADS  Google Scholar 

  74. G. Kirchhoff, Ueber das Verhältnis zwischen dem Emissionsvermögen und dem Absorptionsvermogen der Körper für Wärme und Licht. Ann. Phys. 109, 275–301 (1860)

    Google Scholar 

  75. J. Kloepfer, C. Taylor, V. Murgai, Characterization of the VIIRS blackbody emittance. Conference on Characterization and Radiometric Calibration for Remote Sensing, Utah State University, Space Dynamics Laboratory (2013), https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=1011&context=calcon. Accessed 10 Feb 2020

  76. H.Y. Ko, B.J. Wen, S.F. Tsa, et al. A high-emissivity blackbody with large aperture for radiometric calibration at low-temperature. Int. J. Thermophys. 30, 98–104 (2009)

    Google Scholar 

  77. H.J. Kostkowski, D.E. Erminy, A.T. Hattenburg, High-accuracy spectral radiance calibration of tungsten-strip lamps. in Precision Radiometry. Advances in Geophysics, vol. 14, ed. by A.J. Drummond (Acad. Press, New York, 1970), pp. 111–127

    Google Scholar 

  78. B.P. Kozyrev, Yu.K. Gornostaev, Standard multichamber high-temperature radiation sources. J. Appl. Spectrosc. 7, 541–545 (1967)

    ADS  Google Scholar 

  79. J.C. Krapez, C. Belanger, P. Cielo, A double-wedge reflector for emissivity enhanced pyrometry. Meas. Sci. Technol. 1, 857–864 (1990)

    ADS  Google Scholar 

  80. J.C. Krapez, P. Cielo, M. Lamontagne, Reflective-cavity temperature sensing for process control, in Temperature. Its Measurement and Control in Science and Industry, vol. 6, part 2, ed. by J.F. Schooley (Am. Inst. Physics, New York, 1992), pp. 877–882

    Google Scholar 

  81. V.N. Krutikov, V.I. Sapritsky, B.B. Khlevnoy et al., The Global Earth Observation System of Systems (GEOSS) and metrological support for measuring radiometric properties of objects of observations. Metrologia 43, 94–97 (2006)

    Google Scholar 

  82. G. Kuiming, Z. Wei, X. Zhi et al., Development of an extended blackbody source for the calibration of infrared systems (II). Proc. SPIE 940, 131–136 (1988)

    ADS  Google Scholar 

  83. G.T. Lalos, R.J. Corruccini, H.P. Broida, Design and construction of a blackbody and its use in the calibration of a grating spectroradiometer. Rev. Sci. Instrum. 29, 505–509 (1958)

    ADS  Google Scholar 

  84. K.C. Lapworth, T.J. Quinn, L.A. Allnutt, A black-body source of radiation covering a wavelength range from the ultraviolet to the infrared. J. Phys. E: Sci. Instrum. 3, 116–120 (1970)

    ADS  Google Scholar 

  85. H. Lee, Thermal Design. Heat Sinks, Thermoelectrics, Heat Pipes, Compact Heat Exchangers, and Solar Cells (Wiley, Hoboken, NJ, 2010)

    Google Scholar 

  86. H. Lee, Thermoelectrics Design and Materials (Wiley, Chichester, UK, 2017)

    Google Scholar 

  87. S.-Y. Lee, G.-H. Kim, Y.-S. Lee et al., Thermal performance analysis of vacuum variable-temperature blackbody system. Infrared Phys. Technol. 64, 97–102 (2014)

    ADS  Google Scholar 

  88. D.H. Lowe, A.D.W. Todd, R. Van den Bossche et al., The equilibrium liquidus temperatures of rhenium-carbon, platinum-carbon and cobalt-carbon eutectic alloys. Metrologia 54, 390–398 (2017)

    ADS  Google Scholar 

  89. D. Lowe, L. Wright, C. Liller, Improving fixed-point cell realization by modifying furnace heater shape. in Proceedings of the 19th Int. Congress of Metrology, 24002 (2019), https://cfmetrologie.edpsciences.org/articles/metrology/pdf/2019/01/metrology_cim2019_24002.pdf. Accessed 8 Feb 2020

  90. O. Lummer, E. Pringsheim, Die Strahlung eines “schwarzen” Körpers zwischen 100 und 1300° C. Ann. D. Phys. 299, 395–410 (1897)

    ADS  Google Scholar 

  91. O. Lummer, E. Pringsheim, Die strahlungstheoretische Temperaturskala und ihre Verwirklichung bis 2300° abs. Verh. D. Physik. Ges. 5, 3–13 (1903)

    Google Scholar 

  92. S. Lupi, Fundamentals of Electroheat. Electrical Technologies for Process Heating (Springer, Cham, Switzerland, 2017)

    Google Scholar 

  93. G. Machin, The kelvin redefined. Meas. Sci. Technol. 29, 022001 (2018)

    ADS  Google Scholar 

  94. G. Machin, B. Chu, A transportable gallium melting point blackbody for radiation thermometry calibration. Meas. Sci. Technol. 9, 1653–1656 (1998)

    ADS  Google Scholar 

  95. G. Machin, R. Simpson, Tympanic thermometer performance validation by use of a body-temperature fixed point blackbody. Proc. SPIE 5073, 51–56 (2003)

    ADS  Google Scholar 

  96. G. Machin, K. Anhalt, P. Bloembergen, et al. MeP-K Relative Primary Radiometric Thermometry (2017), https://www.bipm.org/utils/en/pdf/si-mep/MeP-K-2018_Relative_Primary_Radiometry.pdf. Accessed 10 Feb 2020

  97. W.R. McCluney, Introduction to Radiometry and Photometry, 2nd edn. (Artech House, Boston, MA, 2014)

    Google Scholar 

  98. S.N. Mekhontsev, V.I. Sapritsky, A.V. Prokhorov et al., Modeling, design, and characterization of medium background blackbodies for full aperture calibration of spaceborne infrared systems and imagers. SPIE 3553, 247–258 (1998)

    ADS  Google Scholar 

  99. S.N. Mekhontsev, V.B. Khromchenko, L.M. Hanssen, NIST radiance temperature and infrared spectral radiance scales at near-ambient temperatures. Int. J. Thermophys. 29, 1026–1040 (2008)

    ADS  Google Scholar 

  100. N. Melzack, E. Jones, D.M. Peters et al., Variable temperature blackbodies via variable conductance: thermal design, modelling and testing. Int. J. Thermophys. 38, 30 (2017)

    ADS  Google Scholar 

  101. C.E. Mendenhall, On the emissive power of wedge-shaped cavities and their use in temperature measurements. Astrophys. J. 33, 91–97 (1911)

    Google Scholar 

  102. U. Mester, P. Winter, New blackbody calibration source for low temperatures from −20 °C to +350 °C. Proc SPIE 4360, 372–380 (2001)

    ADS  Google Scholar 

  103. A.J. Metzler, J.R. Branstetter, Fast response, blackbody furnace for temperatures up to 3000 °K. Rev. Sci. Instrum 34, 1216–1218 (1963)

    ADS  Google Scholar 

  104. A. Miklavec, I. Pušnik, V. Batagelj et al., Calibration of thermal imagers by evaluation of the entire field-of-view. Int. J. Thermophys. 32, 2600–2609 (2011)

    ADS  Google Scholar 

  105. A. Miklavec, I. Pušnik, V. Batagelj et al., A large aperture blackbody bath for calibration of thermal imagers. Meas. Sci. Technol. 24, 025001 (2013)

    ADS  Google Scholar 

  106. S. Moaveni, Finite Element Analysis: Theory and Applications with ANSYS, 2nd edn. (Prentice Hall, Upper Saddle River, NJ, 2003)

    Google Scholar 

  107. C. Monte, J. Hollandt, The measurement of directional spectral emissivity in the temperature range from 80 °C to 400 °C at the Physikalisch-Technische Bundesanstalt. High Temp. High Press. 39, 151–164 (2010)

    Google Scholar 

  108. C. Monte, B. Gutschwager, S. Morozova et al., Radiation thermometry and emissivity measurements under vacuum at the PTB. Int. J. Thermophys. 30, 203–219 (2009)

    ADS  Google Scholar 

  109. S. Morozova, N. Parfentiev, B.E. Lisiansky et al., Vacuum Variable Temperature Blackbody VLTBB100. Int. J. Thermophys. 29, 341–351 (2008)

    ADS  Google Scholar 

  110. K. Motzfeldt, High Temperature Experiments in Chemistry and Materials Science (Wiley, Chichester, UK, 2013)

    Google Scholar 

  111. R.B. Mulford, N.S. Collins, M.S. Farnsworth et al., Total hemispherical apparent radiative properties of the infinite V-groove with specular reflection. Int. J. Heat and Mass Transfer 124, 168–176 (2018)

    Google Scholar 

  112. T. Nagasaka, M. Suzuki, Silicon carbide infrared cavity radiator. Appl. Opt. 16, 2358–2359 (1977)

    ADS  Google Scholar 

  113. T.J. Nightingale, J. Crawford, A radiometric calibration system for the ISAMS remote sounding instrument. Metrologia 28, 233–237 (1991)

    ADS  Google Scholar 

  114. P.W. Nugent, J.A. Shaw, Large-area blackbody emissivity variation with observation angle. Proc. SPIE 7300, 73000Y (2009)

    ADS  Google Scholar 

  115. S.A. Ogarev, M.L. Samoylov, N.A. Parfentyev et al., Low-temperature blackbodies for IR calibrations in a medium-background environment. Int. J. Thermophys. 30, 77–97 (2009)

    ADS  Google Scholar 

  116. S.A. Ogarev, S.P. Morozova, A.A. Katysheva et al., Blackbody radiation sources for the IR spectral range. AIP Conf. Proc. 1552, 654–659 (2013)

    ADS  Google Scholar 

  117. OIML R 147, Standard blackbody radiators for the temperature range from −50 °C to 2500 °C. Calibration and verification procedures. International Recommendation (OIML 2016), https://www.oiml.org/en/files/pdf_r/r147-e16.pdf. Accessed 10 Feb 2020

  118. F. Olschewski, C. Rolf, P. Steffens et al., In-flight blackbody calibration sources for the GLORIA interferometer. Proc. SPIE 8511, 85110I (2012)

    Google Scholar 

  119. F. Olschewski, A. Ebersoldt, F. Friedl-Vallon et al., The in-flight blackbody calibration system for the GLORIA interferometer on board an airborne research platform. Atmos. Meas. Tech. 6, 3067–3082 (2013)

    Google Scholar 

  120. F. Olschewski, C. Monte, A. Adibekyan et al., A large-area blackbody for in-flight calibration of an infrared interferometer deployed on board a long-duration balloon for stratospheric research. Atmos. Meas. Tech. 11, 4757–4762 (2018)

    Google Scholar 

  121. A. Ono, Evaluation of the effective emissivity of reference sources for the radiometric emissivity measurements. Int. J. Thermophys. 7, 443–453 (1986)

    ADS  Google Scholar 

  122. A. Ono, Methods for reducing emissivity effects, in Theory and Practice of Radiation Thermometry, ed. by D.P. DeWitt, G.D. Nutter (Wiley, New York, 1988), pp. 565–623

    Google Scholar 

  123. D.P. Osterman, S. Collins, J. Ferguson et al., CIRiS: compact infrared radiometer in space. Proc. SPIE 9978, 99780E (2016)

    Google Scholar 

  124. S.-J. Pang, Y.-P. Wen, A low-temperature large-area blackbody radiant source with heat pipe. Infrared Phys. 28, 203–214 (1988)

    ADS  Google Scholar 

  125. C.J. Parga, C. Journeau, A. Tokuhiro, Development of metal-carbon eutectic cells for application as high temperature reference points in nuclear reactor severe accident tests: results on the Fe-C, Co-C, Ti-C and Ru-C alloys’ melting/freezing transformation temperature under electromagnetic induction heating. High Temp.–High Press. 41, 423–448 (2012)

    Google Scholar 

  126. C.-W. Park, Y.S. Yoo, B.-H. Kim et al., Construction and characterization of a large aperture blackbody for infrared radiometer calibration. Int. J. Thermophys. 32, 1622–1632 (2011)

    ADS  Google Scholar 

  127. G. Pensl, F. Ciobanu, T. Frank, et al. SiC material properties. Int. J. High Speed Electron. Syst. 15, 705–745 (2005)

    Google Scholar 

  128. H.O. Pierson, Handbook of Refractory Carbides and NitridesProperties, Characteristics, Processing and Applications. (Noyes Publ., Westwood, NJ, 1996)

    Google Scholar 

  129. H. Preston-Thomas, The International Temperature Scale of 1990 (ITS-90). Metrologia 27, 3–10 (1990)

    ADS  Google Scholar 

  130. A.V. Prokhorov, S.N. Mekhontsev, L.M. Hanssen, Emissivity modeling of thermal radiation sources with concentric grooves. High Temp.–High Press. 35/36, 199–207 (2003/2004)

    Google Scholar 

  131. A.V. Prokhorov, L.M. Hanssen, S.N. Mekhontsev, Radiation properties of IR calibrators with V-grooved surfaces. Proc. SPIE 6205, 620505 (2006)

    Google Scholar 

  132. J. Psarouthakis, Apparent thermal emissivity from surfaces with multiple V-shaped grooves. AIAA J 1, 1879–1882 (1963)

    ADS  Google Scholar 

  133. T.J. Quinn, C.R. Barber, A lamp as a reproducible source of near black-body radiation for precise pyrometry up to 2700 °C. Metrologia 3, 19–23 (1967)

    ADS  Google Scholar 

  134. T.J. Quinn, J.E. Martin, A radiometric determination of the Stefan-Boltzmann constant and thermodynamic temperatures between −40 °C and +100 °C. Phil. Trans. Roy. Soc. London A316, 85–189 (1985)

    ADS  Google Scholar 

  135. T.J. Quinn, J.E. Martin, A black-body cavity for total radiation thermometry. Metrologia 23, 111–114 (1986/87)

    Google Scholar 

  136. T.J. Quinn, J.E. Martin, Blackbody source in the −50 to +200°C range for the calibration of radiometers and radiation thermometers. Appl. Opt. 30, 4486–4488 (1991)

    ADS  Google Scholar 

  137. T.J. Quinn, J.E. Martin, Cryogenic radiometry, prospects for further improvements in accuracy. Metrologia 28, 155–161 (1991)

    ADS  Google Scholar 

  138. T.J. Quinn, J.E. Martin, Total radiation measurements of thermodynamic temperature. Metrologia 33, 375–381 (1996)

    ADS  Google Scholar 

  139. D.A. Reay, P.A. Kew, R.J. McGlen, Heat Pipes. Theory, Design and Applications, 6th ed. (Elsevier, Amsterdam, 2014)

    Google Scholar 

  140. V. Rudnev, D. Loveless, R.L. Cook, Handbook of Induction Heating, 2nd edn. (CRC Press, Boca Raton, FL, 2017)

    Google Scholar 

  141. C.L. Sanders, Thermodynamic considerations in realizing the primary standard of light. Metrologia 3, 119–129 (1967)

    ADS  Google Scholar 

  142. C.L. Sanders, O.C. Jones, Problem of realizing the primary standard of light. J. Opt. Soc. Am. 52, 731–746 (1962)

    ADS  Google Scholar 

  143. V.I. Sapritsky, B. Khlevnoi, B. Khromchenko, et al. High-temperature blackbody sources for precision radiometry. Proc. SPIE. 2815, 2–10 (1996)

    Google Scholar 

  144. V.I. Sapritsky, B.B. Khlevnoy, V.B. Khromchenko et al., Precision blackbody sources for radiometric standards. Appl. Opt. 36, 5403–5408 (1997)

    ADS  Google Scholar 

  145. V.I. Sapritsky, S.N. Mekhontsev, A.V. Prokhorov et al., Precision large area low and medium temperature blackbody sources. Proc. SPIE 3437, 434–445 (1998)

    ADS  Google Scholar 

  146. V.I. Sapritsky, B.B. Khlevnoy, V.B. Khromchenko et al., Blackbody sources for the range 100 K to 3500 K for precision measurements in radiometry and radiation thermometry. AIP Conf. Proc. 684, 619–624 (2003)

    ADS  Google Scholar 

  147. V.I. Sapritsky, B.B. Khlevnoy, S.A. Ogarev et al. New high-temperature variable-temperature and fixed-point blackbodies for precision measurements in radiation thermometry and radiometry. MĀPAN—J. Metrol. Soc. India. 20, 193–204 (2005)

    Google Scholar 

  148. V.I. Sapritsky, B.B. Khlevnoy, S.A. Ogarev et al., Variable and fixed-point blackbody sources developed at VNIIOFI for precision measurements in radiometry and thermometry within 100 K…3500 K temperature range. Proc. SPIE 6297, 629710 (2006)

    Google Scholar 

  149. V.I. Sapritsky, A.A. Burdakin, B.B. Khlevnoy et al., Metrological support for climatic time series of satellite radiometric data. J. Appl. Remote Sens. 3, 033506 (2009)

    Google Scholar 

  150. V.I. Sapritsky, V.N. Krutikov, V.S. Ivanov et al., Current activity of Russia in measurement assurance of Earth optical observations. Metrologia 49, S9–S16 (2012)

    Google Scholar 

  151. SBIR, Vantablack®-S Infinity Series Infrared Blackbody Sources (Santa Barbara Infrared, Inc. Santa Barbara, CA, 2017), https://www.sbir.com/datasheets/319-001-988_NC.pdf. Accessed 11 Feb 2020

  152. S. Scheiding, H. Driescher, I. Walter et al., Compact blackbody calibration sources for in-flight calibration of spaceborne infrared instruments. Proc. SPIE 10563, 105635P (2017)

    Google Scholar 

  153. J. Schreiber, T. Blumenstock, H. Fischer, Effects of the self-emission of an IR Fourier-transform spectrometer on measured absorption spectra. Appl. Opt. 35, 6203–6209 (1996)

    ADS  Google Scholar 

  154. J. Schreiber, T. Blumenstock, F. Hase, Application of a radiometric calibration method to lunar Fourier transform IR spectra by using a liquid-nitrogen-cooled high-emissivity blackbody. Appl. Opt. 36, 8168–8172 (1997)

    ADS  Google Scholar 

  155. P.E. Schumacher, A high-temperature circular-aperture blackbody radiation source. in ed. by S. Katzoff, Symposium on Thermal Radiation of Solids. NASA SP-55 (Air Force ML-TDR-64–159), (NASA, Washington, DC, 1965), pp. 233–240

    Google Scholar 

  156. SDL, HAES15—High Accuracy Extended Source (Space Dynamics Laboratory, Utah State University Research Foundation, North Logan, UT, 2014), https://www.sdl.usu.edu/downloads/haes15.pdf. Accessed 11 Feb 2020

  157. M. Seifert, K. Anhalt, C. Baltruschat, S. Bonss, B. Brenner, Precise temperature calibration for laser heat treatment. J. Sens. Sens. Syst. 3, 47–54 (2014)

    Google Scholar 

  158. R. Siegel, J.R. Howell, Thermal Radiation Heat Transfer, 4th edn. (Taylor & Francis, New York, 2002)

    Google Scholar 

  159. F.S. Simmons, A.G. DeBell, Q.S. Anderson, A 2000 °C slit-aperture blackbody source. Rev. Sci. Instrum. 32, 1265–1266 (1961)

    ADS  Google Scholar 

  160. R.C. Simpson, H.C. McEvoy, G. Machin et al., In-field-of-view thermal image calibration system for medical thermography applications. Int. J. Thermophys. 29, 1123–1130 (2008)

    ADS  Google Scholar 

  161. E.M. Sparrow, V.K. Jonsson, Absorption and emission characteristics of diffuse spherical enclosures. J. Heat Transfer 84, 188–189 (1962)

    Google Scholar 

  162. E.M. Sparrow, S.H. Lin, Absorption of thermal radiation in a V-groove cavity. Int. J. Heat Mass Transfer 5, 1111–1115 (1962)

    Google Scholar 

  163. R. Stair, R.G. Johnston, E.W. Halbach, Standard of spectral radiance for the region of 0.25 to 2.6 microns. J. Res. NBS. 64A, 291–296 (1960)

    Google Scholar 

  164. E. Theocharous, N.P. Fox, V.I. Sapritsky et al., Absolute measurements of black-body emitted radiance. Metrologia 35, 549–554 (1998)

    ADS  Google Scholar 

  165. Y. Té, P. Jeseck, C. Camy-Peyret et al., High emissivity blackbody for radiometric calibration near ambient temperature. Metrologia 40, 24–30 (2003)

    ADS  Google Scholar 

  166. E.W. Treuenfels, Emissivity of isothermal cavities. J. Opt. Soc. Amer. 53, 1162–1173 (1963)

    ADS  Google Scholar 

  167. E. Usadi, S. Bruce, N. Fox, et al. A novel black body for on-board calibration. Calcon 2004 CD-ROM (2004)

    Google Scholar 

  168. E. Usadi, Reflecting cavity blackbodies for radiometry. Metrologia 43, S1–S5 (2006)

    ADS  Google Scholar 

  169. Virial, PyramidA. Monte Carlo Modeling of Pyramid Array Radiation Characteristics. Manual (Virial International, LLC, Gaithersburg, MD, 2018), https://www.virial.com/zip/PyramidA_Manual.zip. Accessed 10 Feb 2020

  170. J.H. Walker, R.D. Saunders, A.T. Hattenburg, The NBS scale of spectral radiance. Metrologia 24, 79–88 (1987)

    ADS  Google Scholar 

  171. J.H. Walker, R.D. Saunders, J.K. Jackson et al., The NBS scale of spectral irradiance. J. Res. Natl. Inst. Stand. Technol. 93, 7–20 (1988)

    Google Scholar 

  172. J. Wang, Z. Yuan, X. Hao et al., A −30 °C to 80 °C stirred-liquid-bath-based blackbody source. Int. J. Thermophys. 36, 1766–1774 (2015)

    ADS  Google Scholar 

  173. Z. Wei, G. Kuiming, X. Zhi, Development of an extended blackbody source for the calibration of infrared systems (I). Proc. SPIE 940, 125–130 (1988)

    ADS  Google Scholar 

  174. Z. Wei, X. Zhi, G. Kuiming, Precise calculation of the integrated emissivity of a multiple-celled large-area blackbody source. Proc. SPIE 1311, 428–436 (1990)

    Google Scholar 

  175. W. Wien, O. Lummer, Methode zur Prüfung des Strahlungsgesetzes absolut schwarzer Körper. Ann. Phys. 292, 451–456 (1895)

    Google Scholar 

  176. B. Wilthan, L.M. Hanssen, S. Mekhontsev, Measurements of infrared spectral directional emittance at NIST—a status update, AIP Conf. Proc. 1552, 746–751 (2013)

    Google Scholar 

  177. E.J. Wollack, R.E. Kinzer Jr., S.A. Rinehart, A cryogenic infrared calibration target. Rev. Sci. Instrum. 85, 044707 (2014)

    ADS  Google Scholar 

  178. E.R. Woolliams, K. Anhalt, M. Ballico et al., Thermodynamic temperature assignment to the point of inflection of the melting curve of high-temperature fixed points. Phil. Trans. R. Soc. 374, 20150044 (2016)

    ADS  Google Scholar 

  179. A.G. Worthing, The true temperature scale of tungsten and its emissive powers at incandescent temperatures. Phys. Rev. X, 377–394 (1917)

    Google Scholar 

  180. S.G. Wu, C. Zhong, M. Zheng, et al. An anti-frosting blackbody cavity below 0 °C. in Proceedings of the 2015 Int. Conf. on Mechanics and Mechanical Engineering (MME2015) (Chengdu, China, 2015). https://doi.org/10.1142/9789813145603_0079

  181. H.Y. Yamada, A high-temperature blackbody radiation source. Appl. Opt. 6, 357–358 (1967)

    ADS  Google Scholar 

  182. Yoon, H. W., Allen, D. W., Gibson, et al. Thermodynamic-temperature determinations of the Ag and Au freezing temperatures using a detector-based radiation thermometer. Appl. Opt. 46, 2870–2880 (2007)

    Google Scholar 

  183. H. Yoon, P. Saunders, G. Machin et al. Guide to the realization of the ITS-90. Radiation thermometry (Consultative committee for thermometry under the auspices of the International Committee for Weights and Measures, 2018), https://www.bipm.org/utils/common/pdf/ITS-90/Guide_ITS-90_6_RadiationThermometry_2018.pdf. Accessed 10 Feb 2020

  184. H. Zhang, J. Dai, Evaluation on effective emissivity of a surface with homocentric V-grooves by Monte-Carlo method. in Proceedings Asia Simulation Conf./6th Int. Conf. on System Simulation and Sci. Computing, vol. 1, (Int. Acad. Publishers/World Publ. Corp., Beijing, 2005), pp. 124–128

    Google Scholar 

  185. H. Zhang, J.M. Dai, X.G. Sun, Research on a radiant source for infrared image calibration. J. Phys. Conf. Series. 48, 1053–1057 (2006)

    Google Scholar 

  186. H. Zhang, J. Dai, A novel radiant source for infrared calibration by using a grooved surface. Chin. Opt. Let. 4, 306–308 (2006)

    ADS  Google Scholar 

  187. J. Zhang, Calibration facilities for industrial radiation thermometers at SIPAI, in Temperature. Its Measurement and Control in Science and Industry, vol. 6, part 2, ed. by J.F. Schooley (Am. Inst. Phys., New York, 1992), pp. 781–784

    Google Scholar 

  188. Z. Zhimin, A method for calculating the effective emissivity of a groove structure. Proc. SPIE 810, 270–277 (1987)

    ADS  Google Scholar 

  189. Y. Zhu, H. Ma, R. Wang et al., −50 to + 150 °C heat pipe blackbody sources for radiation thermometer calibration. in Temperature. Its Measurement and Control in Science and Industry, vol. 5, part 1, ed. by J.F. Schooley (Am. Inst. Phys., New York, 1982), pp. 559–564

    Google Scholar 

  190. R.B. Zipin, The apparent thermal radiation properties of an isothermal V-groove with specularly reflecting walls. J. Res. NBS 70C, 275–280 (1966)

    Google Scholar 

  191. A.V. Zuev, V.A. Chistyakov, V.A. Rozhkov, A cylindrical model of an absolutely black body of lanthanum chromite. Meas. Tech. 53, 70–73 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Sapritsky .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sapritsky, V., Prokhorov, A. (2020). Elements of Blackbodies Design. In: Blackbody Radiometry. Springer Series in Measurement Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-57789-6_5

Download citation

Publish with us

Policies and ethics