Skip to main content

Environmental Implications of Regional Geology and Coal Mining in the Appalachians

  • Chapter
  • First Online:
Appalachia's Coal-Mined Landscapes

Abstract

The history of the Appalachian Mountains commenced with breakup of a supercontinent in the Late Precambrian era, followed by passive-margin development in the Cambrian through Middle Ordovician. Collision with island arcs in the Late Ordovician and Devonian was followed by collision with Africa at the end of the Paleozoic, resulting in building of the Appalachian Mountains. Sandstones vary in composition from feldspathic to lithic to quartzose, reflecting changes in source-area compositions during evolution of the Appalachian Orogenic Belt. Coal seams of Pennsylvanian and Permian age are interspersed within sandstones and finer-grained sedimentary rocks that respond to surface weathering dependent on their composition. Feldspathic and lithic sandstones are prone to weathering via dissolution and hydrolysis of feldspar and chlorite schist-mica, respectively, whereas quartzose sandstones are durable when exposed to surface weathering. Durable sandstones are favored for mined-land fill and water conveyance structures. Physical properties of mine soils derived from rock-type mixtures are more favorable for plants than soils from pure sandstones or shales; while pre-weathered oxidized strata produce lower mine-soil rock content and more acidic conditions. The abundance of pyrite vs. neutralizers like carbonates and feldspars is related to differences in rock depositional environments and influences mine-soil chemistry and water quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The Pocahontas and Dunkard Basins are not depositional basins but resulted from gentle folding after deposition of the sediments. Thus, they are termed structural basins.

References

  • Aitken JF, Flint SS (1995) The application of high-resolution sequence stratigraphy to fluvial systems: a case study from the upper carboniferous breathitt group, eastern Kentucky, USA. Sedimentology 42:3–30

    Article  Google Scholar 

  • Aleinikoff JN, Zartman RE, Walter M, Rankin DW, Lyttle PT, Burton WC (1995) U-Pb ages of metarhyolites of the Catoctin and Mount Rogers formations, central and southern Appalachians: evidence for two pulses of Iapetan rifting. Am J Sci 295:428–454

    Article  CAS  Google Scholar 

  • Angel P, Davis V, Burger J, Graves D, Zipper C (2005) The Appalachian regional reforestation initiative. US Office of Surface Mining, Appalachian Regional Reforestation Initiative, Forest Reclamation Advisory Number, p 1

    Google Scholar 

  • Archer AW, Greb SF (1995) An Amazon-scale drainage system in the early Pennsylvanian of central North America. J Geol 103:611–628

    Article  Google Scholar 

  • Badger RL, Sinha AK (1988) Age and Sr isotope signature of the Catoctin volcanic province: implications for subcrustal mantle evolution. Geology 16:692–695

    Article  CAS  Google Scholar 

  • Baxby M, Patience RL, Bartle KD (1994) The origin and diagenesis of sedimentary organic nitrogen. J Petrol Geol 17:211–230

    Article  CAS  Google Scholar 

  • Blake BM, Beuthin J (2008) Deciphering the mid-carboniferous eustatic event in the central Appalachian foreland basin, southern West Virginia, USA. In: Fielding CR, Frank TD, Isbell JL (eds) Resolving the late Paleozoic ice age in time and space. Geol Soc Am Spec. Pap vol 441, pp 249–260

    Google Scholar 

  • Bodek RJ (2006) Sequence stratigraphic architecture of early Pennsylvanian, coal-bearing strata of the Cumberland block: a case study from Dickenson, County, Virginia. MS Thesis, Virginia Tech Blacksburg, p 55

    Google Scholar 

  • Bream BR, Hatcher RD Jr (2002) Southern Appalachian terranes amended: timing of accretion and delimiting provenance from detrital zircon and Nd isotopic data. Geol Soc Am Abstr Program 34:41

    Google Scholar 

  • Castle JW (2001) Appalachian basin stratigraphic response to convergent-margin structural evolution. Basin Res 13:397–418

    Article  Google Scholar 

  • Cecil CB (1990) Paleoclimate controls on stratigraphic repetition of chemical and siliciclastic rocks. Geology 18:533–536

    Article  Google Scholar 

  • Cecil CB, Dulong FT, Cobb JC, Supardi (1993) Allogenic and autogenic controls on sedimentation in the central Sumatra basin as an analogue for Pennsylvanian coal-bearing strata in the Appalachian basin. Geol Soc Am Spec Pap 286:3–22

    Google Scholar 

  • Cecil CB, Dulong FT, West RD, Stamm R, Wardlaw B, Edgar NT (2004) Climate controls on the stratigraphy of a middle Pennsylvanian cyclothem in North America. In: Cecil CB, Edgar NT (eds) Climate controls on stratigraphy. SEPM (Society for Sedimentary Geology) Spec Pub 77:151–180

    Google Scholar 

  • Cecil CB, Stanton RW, Neuzil SG, Dulong FT, Ruppert LF, Pierce BJ (1985) Paleoclimate controls on late Paleozoic sedimentation and peat formation in the central Appalachian basin. Int J Coal Geol 5:195–230

    Article  Google Scholar 

  • Chesnut DR, Jr. (1988) Stratigraphic Analysis of the Carboniferous Rocks of the Central Appalachian Basin. Ph.D. dissertation, University of Kentucky Lexington p 297

    Google Scholar 

  • Chesnut DR, Jr. (1994) Eustatic and tectonic control of deposition of the Lower and middle Pennsylvanian strata of the central Appalachian basin. In: Dennison JM, Ettensohn FR (eds) Tectonic and eustatic controls on sedimentary cycles. SEPM Concepts in Sedimentology and Paleontology 4:51–64

    Google Scholar 

  • Chesnut DR Jr (1996) Geologic framework for the coal-bearing rocks of the central Appalachian basin. Int J Coal Geol 31:55–66

    Article  CAS  Google Scholar 

  • Churnet HG (1996) Depositional environments of Lower Pennsylvanian coal-bearing siliciclastics of southeastern Tennessee, northwestern Georgia, and northeastern Alabama, USA. Int J Coal Geol 31:21–54

    Article  CAS  Google Scholar 

  • Clark EV, Daniels WL, Zipper CE, Eriksson KA (2018a) Mineralogical influences on water quality from weathering of surface coal mine spoils. Applied Geochem 91:97–106

    Article  CAS  Google Scholar 

  • Clark EV, Zipper CE, Daniels WL, Keefe MJ (2018b) Appalachian coal mine spoil elemental release patterns and depletion. Appl Geochem 98:109–120

    Article  CAS  Google Scholar 

  • Clark EV, Zipper CE, Soucek DJ, Daniels WL (2021) Contaminants in Appalachian water resources generated by non-acid-forming coal-mining materials. Chapter 9 in: Zipper CE, Skousen JG (eds) Appalachia’s coal-mined landscapes. Springer

    Google Scholar 

  • Coler DJ, Wortman GL, Samson SD, Hibbard JP, Stern R (2000) U-Pb geochronologic, Nd isotopic, and geochemical evidence for the correlation of the Chopawamsic and Milton Terranes, Piedmont Zone. South Appalachian Orogen J Geol 108:363–380

    CAS  Google Scholar 

  • Colton GW (1970) The Appalachian basin—its depositional sequences and their geologic relationships. In: Pettijohn FJ, Reed JC (eds) Fisher PW. Central and Southern. Interscience Publishers New York, Studies of Appalachian Geology, pp 5–47

    Google Scholar 

  • Cook FA, Albaugh DS, Brown LD, Kaufman S, Oliver JE, Hatcher RD Jr (1979) Thin skinned tectonics in the crystalline southern Appalachians: COCORP seismic-reflection profiling of the blue ridge and piedmont. Geology 7:563–567

    Article  Google Scholar 

  • Daniels WL, Amos DF (1985) Generating productive topsoil substitutes from hard rock overburden in the southern Appalachians. Environ Geochem Health 7:8–15

    Article  CAS  PubMed  Google Scholar 

  • Daniels WL, Zipper CE (2018) Creation and management of productive mine soils. Virginia Cooperative Extension, Pub. #460–121, Virginia Tech, Blacksburg, VA. https://www.pubs.ext.vt.edu/460/460-121/460-121.html

  • Daniels WL, Zipper CE, Orndorff ZW, Skousen J, Barton CD, McDonald LM, Beck MA (2016) Predicting total dissolved solids release from central Appalachian coal mine spoils. Environ Pollut 216:371–379

    Article  CAS  PubMed  Google Scholar 

  • Davis MW, Ehrlich R (1974) Late Paleozoic crustal composition and dynamics in the southeastern United States. In: Briggs G (ed) Carboniferous of the Southeastern United States. Geol Soc Am Spec Pap 148:171–185

    Google Scholar 

  • Englund KJ (1979) The mississippian and Pennsylvanian (Carboniferous) systems in the United States—Virginia. Geol Soc Am Spec Pap 1110-C:1–21

    Google Scholar 

  • Englund KJ, Thomas RE (1990) Late Paleozoic depositional trends in the central Appalachian basin. US Geol Surv Bull 1839-F, p. 1–19.

    Google Scholar 

  • Eriksson KA, Campbell IH, Palin JM, Allen CM, Bock B (2004) Evidence for multiple recycling in Neoproterozoic through Pennsylvanian sandstones of the central Appalachian basin. J Geol 112:261–276

    Article  CAS  Google Scholar 

  • Ettensohn FR (2004) Modeling the nature and development of major Paleozoic clastic wedges in the Appalachian basin, USA. J Geodyn 37:657–681

    Article  Google Scholar 

  • Fanning DS, Fanning MCB (1989) Soil morphology, genesis and classification. Wiley, New York, pp 69–79

    Google Scholar 

  • Fedorko N, Skema V (2013) A review of the stratigraphy and stratigraphic nomenclature of the Dunkard Group in West Virginia and Pennsylvania, USA. Int J Coal Geol 119:2–20

    Article  CAS  Google Scholar 

  • Ferm JC (1974) Carboniferous environmental models in eastern United States and their significance. In: Briggs G (ed) Carboniferous of the Southeastern United States. Geol Soc Am Spec 148:79–95

    Google Scholar 

  • Ferm JC, Horne JC (1979) Carboniferous depositional environments in the Appalachian region. Dept Geol, Univ, South Carolina, Columbia, vi, p 760

    Google Scholar 

  • Finkelman RB (1998) Trace and minor elements in coal. Pp. 593–607 (Chapter 28) In: Engel SH, Macko SA (eds) Organic geochemistry principles and applications. Plenum Press, New York

    Google Scholar 

  • Flanick M, Bradford I, Dailey J, Cole R (2005) Petrography and provenance of middle Pennsylvanian Allegheny Formation and Conemaugh Group sandstones of the Alleghanian foreland basin, Southwestern Pennsylvania. Geol Soc Am Abstr Program 37:15

    Google Scholar 

  • Geidel G, Caruccio FT (2000) Geochemical factors affecting coal mine drainage quality. In: Barnhisel RI et al (ed) Reclamation of drastically disturbed lands. Agronomy 41. American society of agronomy, Madison, WI. pp 105–130

    Google Scholar 

  • Graham SA, Dickinson WR, Ingersoll RV (1975) Himalayan-Bengal model for flysch dispersal in Appalachian-Ouachita System. Geol Soc Am Bull 86:273–286

    Article  Google Scholar 

  • Greb SF, Chesnut DR Jr (1996) Lower and lower middle Pennsylvanian fluvial to estuarine deposition, central Appalachian basin: effects of eustasy, tectonics, and climate. Geol Soc Am Bull 108:303–317

    Article  Google Scholar 

  • Greb SF, Chesnut DR, Jr., Eble CF (2004) Temporal changes in coal-bearing depositional sequences (lower and middle Pennsylvanian) of the central Appalachian basin, USA. In: Pashin JC, Gastaldo RA (eds) Sequence stratigraphy, Paleoclimate, and tectonics of coal-bearing strata. AAPG Studies in Geology 51:89–120

    Google Scholar 

  • Greb SF, Martino RL (2005) Fluvial-estuarine transitions in fluvial-dominated successions: examples from the lower Pennsylvanian of the central Appalachian Basin. In: Blum M, Marriott SB, LeClair S (eds) Fluvial sedimentology VII. Int Assoc Sedtol Spec Publ 35:425–452

    Google Scholar 

  • Greb SF, Pashin JC, Martino RM, Eble CF (2008) Appalachian sedimentary cycles during the Pennsylvanian: changing influences of sea level, climate, and tectonics. In: Fielding CF, Frank TD, Isbell JL (eds) Resolving the late Paleozoic Gondwanan ice age in time and space. Geol Soc Am Spec Pub 441:235–248

    Google Scholar 

  • Grimm RP, Eriksson KA, Carbaugh J (2013) Orogenic controls on the temporal and spatial distribution of longitudinal and transverse alluvial facies belts in an early Pennsylvanian foreland basin, Virginia, USA. Basin Res 25:450–470

    Article  Google Scholar 

  • Haering KC, Daniels WL, Galbraith JC (2004) Appalachian mine soil morphology and properties: effects of weathering and mining method. Soil Sci Soc 68:1315–1325. https://doi.org/10.2136/sssaj2004.1315

    Article  CAS  Google Scholar 

  • Hatcher RD Jr (1972) Development model for the southern Appalachians. Geol Soc Am Bull 83:2735–2760

    Article  Google Scholar 

  • Hatcher RD, Jr. (1989) Tectonic synthesis of the U.S. Appalachian. In: Hatcher RD, Jr, Thomas WA, Viele GW (eds) The Appalachian-Ouachita Orogen in the United States. The geology of North America. Geol Soc Am Boulder Colorado F-2:511–535

    Google Scholar 

  • Hatcher RD, Jr. (2002) Alleghanian (Appalachian) orogeny, a product of zipper tectonics: rotational, transpressive continent–continent collision and closing of ancient oceans along irregular margins. In: Martínez Catalán JR, Hatcher RD, Jr, Arenas, R, Díaz García F (eds) Variscan-Appalachian dynamics: The building of the late Paleozoic basement. Geol Soc Am Spec Pap 364:199–208

    Google Scholar 

  • Hobday DK, Horne JC (1977) Tidally influenced barrier island and estuarine sedimentation in upper Carboniferous of southern West-Virginia. Sed Geol 18:97–122

    Article  Google Scholar 

  • Horton JW, Jr., Drake AA, Jr., Rankin DW (1989) Tectonostratigraphic terranes and their Paleozoic boundaries in the central and southern Appalachians. In: Dallmeyer RD (ed) Terranes in the circum-atlantic Paleozoic Orogens. Geol Soc Am Spec Pap 230:213–246

    Google Scholar 

  • Houseknecht DW (1980) Comparative anatomy of a Pottsville lithic arenite and quartz arenite of the Pocahontas Basin, southern West-Virginia - petrogenetic, depositional, and stratigraphic implications. J Sed Pet 50:3–20

    Article  CAS  Google Scholar 

  • Korus JT, Kvale EP, Eriksson KA, Joeckel RM (2008) Compound paleovalley fills in the lower Pennsylvanian new river formation, West Virginia, USA. Sediment Geol 208:15–26

    Article  Google Scholar 

  • Kosanke RM, Cecil CB (1996) Late Pennsylvanian climate changes and palynomorph extinctions. Review of Palaeobot Palynol 90:113–140

    Article  Google Scholar 

  • Kruse Daniels N, LaBar J, McDonald LM (2021) Acid mine drainage in Appalachia: Sources, legacy, and treatment. Chapter 8 In: Zipper CE, Skousen JG (eds) Appalachia’s coal-mined landscapes. Springer

    Google Scholar 

  • Lebold JG, Kammer TW (2006) Gradient analysis of faunal distributions associated with rapid transgression and low accommodation space in a late Pennsylvanian marine embayment: Biofacies of the Ames member (Glenshaw Formation (Conemaugh Group) in the northern Appalachian Basin, USA. Paleogeog Paleoclim Paleoecol 231:291–314

    Article  Google Scholar 

  • Martino RL (2004) Sequence stratigraphy of the glenshaw formation (Middle-late Pennsylvanian) in the central Appalachian basin. In Pashin JC, Gastaldo RA (eds) Coal-bearing strata: sequence stratigraphy, Paleoclimate, and Tectonics of coal-bearing strata. AAPG studies in geology 51:1–28

    Google Scholar 

  • Milici RC (2004) Assessment of Appalachian basin oil and gas resources: carboniferous coal-bed gas total petroleum system. U.S. geological survey open-file report 2004–1272, p 59

    Google Scholar 

  • Miller JMG (1994) The Neoproterozoic Konnarock Formation, southwest Virginia, USA: glaciolacustrine facies in a continental rift. In: Deynoux M, Miller JMG, Domack EW, Eyles N, Fairchild IJ, Young GM (eds) Earth’s Glacial Record. Cambridge University Press, New York, pp 47–59

    Chapter  Google Scholar 

  • Mitra G (1988) 3-dimensional geometry and kinematic evolution of the Pine mountain Thrust system, Southern Appalachians. Geol Soc Am Bull 100:72–95

    Article  Google Scholar 

  • Montanez IP, Cecil CB (2013) Paleoenvironmental clues archived in non-marine pennsylvanian-lower permian limestones of the central Appalachian basin. Int J Coal Geol 119:41–55

    Article  CAS  Google Scholar 

  • Mussman WJ, Read JF (1986) Sedimentology and development of a passive-to-convergent margin unconformity: middle Ordovician Knox unconformity, Virginia Appalachians. Geol Soc Am Bull 97:282–295

    Article  Google Scholar 

  • Neuzil SG (2000) Summary report on the coal resources, coal production, and coal quality of the Allegheny group No. 5 Block, and the Pottsville Group Stockton and Coalburg, Winifrede/Hazard, Williamson/Amburgy, Campbell Creek/Upper Elkhorn No. 3, and Upper Elkhorn Nos. 1 and 2/Powellton Coal Zones, Central Appalachian Basin Coal Region. U.S. Geol Surv Prof Pap 1625–c:128

    Google Scholar 

  • Orndorff Z, Daniels WL, Zipper C, Eick M, Beck M (2015) A column evaluation of Appalachian coal mine spoils’ temporal leaching behavior. Environ Pollut 204:39–47

    Article  CAS  PubMed  Google Scholar 

  • Osberg PH, Tull JF, Robinson P, Hon R, Butler JR (1989) The acadian orogen. In: Hatcher RD, Jr, Thomas WA, Viele GW (eds) The Appalachian-Ouachita orogen in the United States. The geology of North America. Geol Soc Am Boulder Colorado F2:179–232

    Google Scholar 

  • Palmer CA, Oman CL, Park AJ, Luppens JA (2015) The U.S. geological survey coal quality (COALQUAL) database version 3.0: U.S. Geological survey data series 975, p 43

    Google Scholar 

  • Rankin DW (1993) The volcanogenic Mount Rogers Formation and the overlying Konnarock Formation: two late Paleozoic units in southwest Virginia. US Geol Surv Bull. 2029, 26 p.

    Google Scholar 

  • Read JF (1989a) Evolution of Cambro-Ordovician passive margin, U. S. Appalachians. The geology of North America. Geol Soc Am Boulder Colorado F2:42–57

    Google Scholar 

  • Read JF (1989b) Controls on the evolution of the Cambro-Ordovician passive margin, U.S. Appalachians. In: Crevello PD, Read JF, Wilson JL, Sarg JF (eds) Controls on carbonate platform and basin development: SEPM special publication 44:146–165

    Google Scholar 

  • Read JF, Eriksson KA (2016) Paleozoic sedimentary successions of the Valley and ridge and plateau of Virginia. Geology of Virginia. Virginia Museum of Natural History. In: Bailey CM, Sherwood WC, Eaton LS, Powars DS (eds) The Geology of Virginia. Virginia Museum Nat Hist Spec. Pub. 18: 17–54.

    Google Scholar 

  • Reed JS, Spotila JA, Eriksson KA, Bodnar RJ (2005) Burial and exhumation history of Pennsylvanian strata, central Appalachian basin: an integrated study. Basin Res 17:259–268

    Article  Google Scholar 

  • Rice CL, Survey KG (1984) Sandstone units of the Lee Formation and related strata in eastern Kentucky. US G.P.O, Washington DC iv, p 53

    Google Scholar 

  • Rice CL, Schwietering JF (1988) Fluvial deposition in the central Appalachians during the early Pennsylvanian> US Geol Surv Bull 1839-B: 1–9.

    Google Scholar 

  • Ruppert LF, Trippi MH, Slucher ER (2014) Correlation Chart of Pennsylvanian Rocks in Alabama, Tennessee, Kentucky, Virginia, West Virginia, Ohio, Maryland, and Pennsylvania Showing Approximate Position of Coal Beds, Coal Zones, and Key Stratigraphic Units. Chapter D-2. In: Ruppert LF, Ryder RT (eds.) Coal and Petroleum Resources in the Appalachian Basin: Distribution, Geologic Framework, and Geochemical Character. US Geological Survey Professional Paper 1708.

    Google Scholar 

  • Schneider JW, Lucas SJ, Barrick JE (2013) The Early Permian age of the Dunkard Group, Appalachian Basin, USA, based on spiloblattinid insect biostratigraphy. Int J Coal Geol 119:8–92

    Article  CAS  Google Scholar 

  • Schweinfurth, S.P., (2009) An introduction to coal quality. In: Pierce BS, Dennen KO (eds.) The National Coal Resource Assessment Overview: U.S. Geological Survey Professional Paper 1625–F, Chapter C, 16 p

    Google Scholar 

  • Scotese C (2003) A continental drift flipbook. J Geol 112:729–741

    Article  Google Scholar 

  • Secor DT, Snoke AW, Dallmeyer RD (1986) Character of the Alleghanian Orogeny in the southern Appalachians. Geol Soc Am Bull 97:1345–1353

    Article  Google Scholar 

  • Simpson EL, Eriksson KA (1990) Early Cambrian progradational and transgressive sedimentation patterns in Virginia: an example of the early history of a passive margin: J Sed Pet 60:84–100

    Google Scholar 

  • Skousen JG, Daniels WL, Zipper CE (2021) Soils on Appalachian coal-mined lands. Chapter 4 in: Zipper CE, Skousen JG (eds) Appalachia's Coal-Mined Landscapes. Springer

    Google Scholar 

  • Skousen J, Renton J, Brown H, Evans P, Leavitt B, Brady K, Cohen L, Ziemkiewicz P (1997) Neutralization potential of overburden samples containing siderite. J Environ Qual 36(3):673–681

    Article  Google Scholar 

  • Skousen JG, Zipper CE (2021) Coal mining and reclamation in Appalachia. Chapter 3 in: Zipper CE, Skousen JG (eds) Appalachia's Coal-Mined Landscapes. Springer

    Google Scholar 

  • Sobek AS, Skousen JG, Fisher SE, Jr. (2000) Chemical and physical properties of overburdens and minesoils. In: R.I. Barnhisel et al. (ed.) Reclamation of drastically disturbed lands. Agronomy 41. American Society of Agronomy, Madison, WI. p. 77–104

    Google Scholar 

  • Tabor NJ, Montanez IP (2002) Shifts in late Paleozoic atmospheric circulation over western Pangea: insights from pedogenic mineral δ18O compositions. Geology 30:1127–1130

    Google Scholar 

  • Trippi MH, Ruppert LF, Attanasi ED, Milici RC, Freeman PA (2014) Appalachian basin bituminous coal; Sulfur content and potential sulfur dioxide emissions of coal mined for electrical power generation. In: Ruppert LF, Ryder RT (eds) Coal and petroleum resources in the Appalachian basin; Distribution, geologic framework, and geochemical character: U.S. Geological Survey Professional Paper 1708, 68 p.

    Google Scholar 

  • USDA-NRCS, (2014) Keys to Soil Taxonomy, 12th edn. USDA-Natural Resources Conservation Service, Washington, DC

    Google Scholar 

  • Van Der Voo R (1983) A plate tectonics model for the Paleozoic assembly of Pangea based on paleomagnetic data. In: Hatcher RD, Jr, Williams H, Zietz I (eds) Contributions to the Tectonics and Geophysics of Mountain Chains. Geol Soc Am Mem 158: 19–24.

    Google Scholar 

  • Wehr F, Glover L III (1985) Stratigraphy and tectonics of the Virginia-North Carolina Blue Ridge: evolution of a late Proterozoic-early Paleozoic hinge zone. Geol Soc Am Bull 96:285–295

    Article  Google Scholar 

  • Wizevich MC (1991) Sedimentology and Regional Implications of Fluvial Quartzose Sandstones of the Lee Formation, Central Appalachian Basin. Ph.D. Dissertation, Virginia Tech, Blacksburg, Virginia, p 237

    Google Scholar 

  • Wizevich MC (1992) Sedimentology of Pennsylvanian quartzose sandstones of the Lee Formation, central Appalachian basin: fluvial interpretation based on lateral profile analysis. Sediment Geol 78:1–47

    Article  Google Scholar 

  • Woodward NB (ed) (1985) Valley and Ridge Thrust Belt: balanced structural sections Pennsylvania to Alabama. Studies in Geology #12, University of Tennessee, Knoxville.

    Google Scholar 

  • Wortman GL, Samson SD, Hibbard JP (2000) Precise U-Pb zircon constraints on the earliest magmatic history of the Carolina terrane. J Geol 108:321–338

    Article  CAS  PubMed  Google Scholar 

  • Wyrick GW, Borchers JW (1981) Hydrologic effects of stress-relief fracturing in an Appalachian valley. US Geol Surv Water Supply Paper 2177.

    Google Scholar 

Download references

Acknowledgements

Figures 3 through 6 were drawn by Kathryn Haering and Fig. 2 was drawn by Jody Booze-Daniels; these figures are based on reference materials cited by the figure captions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth A. Eriksson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Eriksson, K.A., Daniels, W.L. (2021). Environmental Implications of Regional Geology and Coal Mining in the Appalachians. In: Zipper, C.E., Skousen, J. (eds) Appalachia's Coal-Mined Landscapes. Springer, Cham. https://doi.org/10.1007/978-3-030-57780-3_2

Download citation

Publish with us

Policies and ethics