Skip to main content

Development and Future of Grassland Ecosystems: Do We Need a Paradigm Shift?

  • Chapter
  • First Online:
Perspectives for Biodiversity and Ecosystems

Abstract

Grassland is the largest terrestrial biome on Earth. It provides important goods and services such as animal fodder (e.g. hay), animal products (e.g. meat, milk and leather), but also ecosystem services such as the contribution to climate regulation, and landscape aesthetics. Last but not least it harbours a rich biodiversity.

Grassland ecosystems are declining in quantity and diversity due to expansion of cropland, urban areas, tree plantations, use of mineral fertilisers and pesticides, suppression of natural fires, overgrazing, undergrazing, intensification of use and cessation of use. Decisions made at regional scales are frequently not strong enough to promote sustainable grassland utilisation and protection of habitats and biodiversity, neither at regional nor at continental to global scales.

We focus on examples from different regions on Earth, the Brazilian Cerrado, Kazakh steppe, and semi-natural grasslands in Europe, and assess environmental conditions including human influences resulting in efficient nature conservation measures. We selected these examples because of their different geographical position and history of use. The examples face very different environmental conditions and evolutionary histories. However, they have in common that the biomass regularly is reduced by grazing, mowing, drought or fire. Without reduction of biomass the biodiversity of many grassland habitats is decreasing and the habitat is replaced by the growth of woody plants and forest.

With this contribution we want to advocate the discussion about a paradigm shift. For many ecosystems the classic assumption of optimal nature protection is to promote wilderness and natural processes, and human influence should be reduced or totally excluded. However, meanwhile many examples show that human influence under certain conditions and depending on the intensity can support nature conservation and biodiversity sustainability. Furthermore, usage means trade, exchange of money and therefore upvaluation of the system compared with a habitat that is not used, and, thus, has no economic value for the people.

We discuss the question how intense human influence should be for grassland conservation by focusing on the first and main goal of the Convention on Biological Diversity, i.e. survival of all biota on Earth and stopping the loss of biodiversity. Therefore, if human activities support this goal anthropo-zoogenic influence may be wellcome. In the case of many grassland habitats moderate human influence might promote both the protection and survival of biodiversity and economic aspects that can be translated in payments, i.e. human values.

The examples show that the policy at national or supranational scales most probably will decide about the fate of grasslands outside and inside of national parks and other nature reserves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdulina SA (1999) Checklist of vascular plants of Kazakhstan. Ministry of Science, Almaty

    Google Scholar 

  • Abreu RCR, Hoffmann WA, Vasconcelos HL, Pilon NA, Rossato DR, Durigan G (2017) The biodiversity cost of carbon sequestration in tropical savanna. Sci Adv 3:e1701284

    Article  Google Scholar 

  • Archer D (2010) The global carbon cycle. Princeton University Press, Princeton

    Book  Google Scholar 

  • Bar-On YM, Phillips R, Milo R (2018) The biomass distribution on Earth. PNAS 115(25):6506–6511. https://doi.org/10.1073/pnas.1711842115

    Article  CAS  Google Scholar 

  • BMU & BfN [Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit & Bundesamt für Naturschutz] (Hrsg.) (2010) Naturbewusstsein in Deutschland 2009. Berlin und Bonn

    Google Scholar 

  • Boeker P (1957) Basenversorgung und Humusgehalte von Böden der Pflanzengesellschaften des Grünlandes. Decheniana Beih 4:1–101

    Google Scholar 

  • Bonanomi J, Tortato FR, Santos R, Penha JM, Bueno A S, Peres CA (2019) Protecting forests at the expense of native grasslands: Land-use policy encourages open-habitat loss in the Brazilian Cerrado biome. Perspectives in Ecology and Conservation. 17:26-31

    Google Scholar 

  • Bond-Lamberty B, Thomson A (2010) Temperature-associated increases in the global soil respiration record. Nature 464(7288):579–582

    Article  CAS  Google Scholar 

  • Bosshard A (1999) Renaturierung artenreicher Wiesen auf nährstoffreichen Böden. Dissertationes Botanicae 303, 194 pp

    Google Scholar 

  • Brady E (2003) Aesthetics of the natural environment. Edeinburgh University Press, Edinburgh

    Book  Google Scholar 

  • Briani DC, Palma ART, Vieira EM, Henriques RPB (2004) Post-fire succession of small mammals in the Cerrado of Central Brazil. Biodivers Conserv 13(5):1023–1037

    Article  Google Scholar 

  • Bruchmann I, Hobohm C (2010) Halting the loss of biodiversity: Endemic vascular plants in grassland of Europe. Grassland Sci 15:776–778

    Google Scholar 

  • Buchgraber K, Gindl G (2009) Zeitgemäße Grünlandbewirtschaftung. 2. Aufl. 2004 (Nachdruck 2009). Graz. 192 S

    Google Scholar 

  • Bundesamt für Naturschutz (2014) Grünland-Report. Alles im Grünen Bereich? https://www.bfn.de/fileadmin/MDB/documents/presse/2014/PK_Gruenlandpapier_30.06.2014_final_layout_barrierefrei.pdf

  • Damasceno G, Souza L, Pivello VR, Gorgone-Barbosa E, Giroldo PZ, Fidelis A (2018) Impact of invasive grasses on Cerrado under natural regeneration. Biol Invasions 20:3621–3629. https://doi.org/10.1007/s10530-018-1800-6

    Article  Google Scholar 

  • Durigan G, de Siqueira MF, Franco GADC (2007) Threats to the Cerrado remnants of the state of Sao Paulo, Brazil. Sci Agric 64:355–363

    Article  Google Scholar 

  • DWD (2002) Weltklima: Die CD des Deutschen Wetterdienstes mit Klimadaten von 1400 Orten aus 200 Ländern weltweit. Offenbach

    Google Scholar 

  • Dziewulska A (1990) The spatial differentiation of grasslands in Europe. In: Breymeyer AI (ed) Managed grasslands: regional studies, Ecosystems of the world, vol 17A, pp 1–13

    Google Scholar 

  • Ellenberg H (1996) Vegetation Mitteleuropas mit den Alpen. 5. Aufl. Stuttgart. 1096 S

    Google Scholar 

  • Ellenberg H, Mueller-Dombois D (1967) Tentative physiognomic-ecological classification of plant formations of the Earth. Berichte des Geobotanischen Institutes der Eidg. Techn. Hochschule, Stiftung Rübel 37:21–55

    Google Scholar 

  • Essl F, Dullinger S, Plutzar C, Willner W, Rabitsch W (2011) Imprints of glacial history and current environment on correlations between endemic plant and invertebrate species richness. J Biogeogr 38:604–614

    Article  Google Scholar 

  • European Environment Agency (2012) Protected areas in Europe - an overview. EEA Reports 5/2012, 130p

    Google Scholar 

  • European Environment Agency (2017) Landscapes in transition: an account of 25 years of land cover change in Europe. EEA Report 10/2017, 84p

    Google Scholar 

  • Faber-Langendoen D, Josse C (2010) World grasslands and biodiversity patterns. NatureServe, Arlington

    Google Scholar 

  • FAO (ed) (2018) World livestock: transforming the livestock sector through the sustainable development goals, Rome

    Google Scholar 

  • Fidelis A, Alvarado ST, Barradas ACS, Pivello VR (2018) The year 2017: megafires and management in the cerrado. Fire 2018(1):49. https://doi.org/10.3390/fire1030049

    Article  Google Scholar 

  • Finck P, Heinze S, Raths U, Riecken U, Ssymank A (2017) Rote Liste der gefährdeten Biotoptypen Deutschlands. Dritte fortgeschriebene Fassung 2017. Natursch Biol Vielf 156, 637 S

    Google Scholar 

  • Gibson DJ (2009) Grasses and grassland ecology. Oxford University Press, Oxford

    Google Scholar 

  • Gruber N, Sarmiento JL (2002) Large-scale biogeochemical/physical interactions in elemental cycles. In: Robinson AR, JJ MC, Rothschild BJ (eds) The sea: biological-physical interactions in the oceans, vol 12. Wiley, New York, pp 337–399

    Google Scholar 

  • Gruber N, Gloor M, Mikaloff Fletcher SE, Doney SC, Dutkiewicz S, Follows MJ, Gerber M, Jacobson AR, Joos F, Lindsay K, Menemenlis D, Mouchet A, Müller SA, Sarmiento JL & Takanashi T 2009. Oceanic sources, sinks, and transport of atmospheric CO2. Global Biogeochem Cycles 23 (GB1005). doi:https://doi.org/10.1029/2008GB003349

  • Grund K, Weiß C (2011) Wiesen und Weiden Europas – schwindender Schatz. Euronatur 1:12–15

    Google Scholar 

  • Heinrich W (1992) Thüringen und Hessen: Geschichte, Botanik und Geschichte der Botanik - ein Grußwort zur Magerrasentagung in Marburg 1991. Botanik u. Naturschutz Hessen, Beih. 4 “Magerrasenschutz”: 14–18

    Google Scholar 

  • Hejcman M, Hejcmanová P, Pavlů V, Beneš J (2013) Origin and history of grasslands in Central Europe – a review. Grass Forage Sci 68(3):345–363

    Article  Google Scholar 

  • Henwood WD (2010) Toward a strategy for the conservation and protection of the world’s temperate grasslands. Great Plains Res 20:121–134

    Google Scholar 

  • Heptner VG, Sludskij AA (1992) Mlekopitajuščie Sovetskogo Soiuza. Moskva: Vysšaia Škola [Mammals of the Soviet Union. Volume II, Part 2. Carnivora (Hyaenas and Cats)]. Smithsonian Institution and the National Science Foundation, Washington, DC, pp 95–202

    Google Scholar 

  • Hirata M, Ogawa R, Gebremedhin BG, Takenaka K (2018) The recent decrease in the number of livestock and its cause for the farmers in the Ethiopian highlands - from the cases in Kilite Awlaelo district in Eastern zone of Tigray region. J Arid Land Stud 28:1–15

    Google Scholar 

  • Hobohm C (ed) (2014) Endemism in vascular plants. In: Werger MJA (ed) Plant and Vegetation 9. Springer, Dordrecht

    Google Scholar 

  • Hobohm C, Bruchmann I (2009) Endemische Gefäßpflanzen und ihre Habitate in Europa - Plädoyer für den besonderen Schutz des Graslandes. Berichte der RTG 21:142–161

    Google Scholar 

  • James SR, Dennell RW, Gilbert AS, Lewis HT, Gowlett JAJ, Lynch TF, McGrew WC, Peters CR, Pope GG, Stahl AB, James SR (1989) Hominid use of fire in the lower and middle Pleistocene: a review of the evidence. Curr Anthropol 3(1):1–26

    Article  Google Scholar 

  • Janišová M, Mucina L, Da Silva Júnior MC, Durigan G, Pavan Sabino G, José Paruelo J, Rosario Acosta AT, Hédl R, Peet RK, Guarino R (2016) Cerrado, Caatinga, Gran Chaco and Mata Atlântica: South American flagships of biodiversity. IAVS Bulletin 2016/3, 8–23. doi:https://doi.org/10.21570/BUL-201609-1

  • Janssen JAM, Rodwell JS, Criado G, Gubbay S, Hynes T, Nieto A, Sanders N, Landucci F, Loidi J, Ssymank A, Thvanainen T, Valderrabano M, Acosta A, Arronsson M, Arts G, Attorre F, Bijlsma R-J, Bioret F, Bita-Nicolae C, Biurrun I, Calix M, Capelo J, Carni A, Chytry M, Dengler J, Dimopoulos P, Essl F, Gardfjell H, Gigante D, Giusso del Galdo G, Hajek M, Jansen F, Jansen J, Kapfer J, Mickolajcak A, Molina JA, Molnar Z, Paternoster D, Pierik A, Poulin B, Renaux B, Schaminée JHJ, Sumberova K, Toivonen H, Tonteri T, Tsiripidis I, Tzonev R, Valachovic M, with contributions from Aarrestad PA, Agrillo E, Alegro E, Alonso I, Argagnon O, Armiraglio S, Assini S, Aunina L, Averis ABG, Averis AM, Bagella S, Barina Z, Barron S, Bell S, Bendiksen E, Bergmeier E, Bölöni J, Brandrud TE, Brophy J, Buffa G, Campos JA, Casella L, Christodoulou CH, Corbett P, Couvreur J-M, Crowle A, Dahlgreen J, Keersmaeker DE, Delescaille L-M, Denys L, Saeger DE, Delarze R, Devany F, De Vries S, Diack I, Dimitrov M, Eide W, Espirito Santo D, Fagaras M, Fievet V, Finck P, Fitzpatrick U, Fotiadis G, Framstad E, Frankard PH, Giancola C, Gussev CH, Hall R, Hamill B, Heinze S, Hennekens S, Hobohm C, Ivanov P, Jacobson A, Janauer G, Janisová M, Jefferson RG, Jones P, Juvan N, Kacki Z, Kallimanis A, Kazoglou Y, Keith D, Keulen K, Király G, Kirby K, Koci M, Kontula T, Leibak E, Leyssen A, Lotman S, Lyngstad A, Mäemets H, Mainstone C, Mäkelä K, Marceno M, Martin JR, Matevski V, Mesterhazy A, Milanovic D, Millaku F, Miller R, Millet J, Mjelde M, Moen A, Nygaard B, Öien D-I, O’Neill F, Paal J, Packet J, Paelinck D, Panitsa M, Perrin P, Pezzi G, Provoost S, Rasomavicius V, Raths U, Rees S, Riecken U, Roosaluste E, Rove I, Rexmann J, Rodriguez JP, Rusakova V, Rusina S, Schuiling R, Sciandrello S, Sell I, Sibik J, Simkin J, Skvorc Z, Soray D, Stesevik D, Strand GH, Stupar V, Thomaes A, Trajanovska S, Van Braekel A, Van Landuyt W, Vanderkerkhove K, Vandevoorde B, Varga A, Velkovski N, Venanzoni R, Verté P, Viciani D, Vrahnakis M, Von Wachenfeldt E, Weeda E, Wibail L, Willner W, Xystrakis F (2016) Red list of European habitats. Part 2. Terrestrial and freshwater habitats. European Commission, Publications Office of the European Union, Luxembourg

    Google Scholar 

  • Jongepierová I, Prach K, Fajmon K, Malaníková E, Malenovský I, Spitzer L (2019) Restoration of species-rich grasslands in the White Carpathian Mts. In: Jongepierová I, Pešout P, Prach K (eds) Ecological restoration in the Czech Republic II. Praha: Nature Conservation Agency of the Czech Republic, pp 76–80

    Google Scholar 

  • Klapp E (1954) Wiesen und Weiden. Behandlung, Verbesserung und Nutzung von Grünlandflächen. 2. Aufl. Berlin, Hamburg, 519 S

    Google Scholar 

  • Kulshreshtha S, Undi M, Zhang J, Ghorbani M, Wittenberg K, Stewart A, Salvano E, Kebreab E, Ominski K (2015) Challenges and opportunities in estimating the value of goods and services in temperate grasslands – a case study of prairie grasslands in Manitoba, Canada, Chapter 6. In: Pilipavičius V (ed) Agroecology. InTech Open Access Publisher, Rijeka, pp 147–169. https://doi.org/10.5772/59899

    Chapter  Google Scholar 

  • Lal R (2008) Sequestration of atmospheric CO2 in global carbon pools. Energy Environ Sci 1:86–100

    Article  CAS  Google Scholar 

  • Laycock WA (1979) Perspectives in Grassland ecology. Springer, New York

    Google Scholar 

  • Lepsch IF (2016) Cerrado: soils from the. In: Lal R (ed) Encyclopedia of soil science, 3rd edn. CRC Press, Boca Raton, FL. https://doi.org/10.1081/E-ESS3-120053880

    Chapter  Google Scholar 

  • Mendonça RC, Felfili JM, Walter BMT, Silva Júnior MC, Rezende AV, Filgueiras TS, Nogueira PE, Fagg CW (2008) Flora vascular do Bioma Cerrado: checklist com 12,356 espécies. In: Sano SM, Almeida SP (eds) Cerrado: ecologia e flora. Embrapa Cerrados, Planaltina, pp 422–442

    Google Scholar 

  • Milton K (2002) Loving nature: towards an ecology of emotion. Routledge, London

    Google Scholar 

  • Mittermeier RA, Gil PR, Hoffman M, Pilgrim J, Brooks T, Mittermeier CG, Lamoreux J, da Fonseca GAB (2005) Hotspots revisited: earth’s biologically richest and most endangered terrestrial ecoregions. Conservation International

    Google Scholar 

  • Oliveira SP, Marquis RJ (eds) (2002) The Cerrados of Brazil: ecology and natural history of a neotropical savanna. Columbia University Press, New York

    Google Scholar 

  • Olson JS, Watts JA, Allison LJ (1983) Carbon in live vegetation of major world ecosystems. Report ORNL-5862. Oak Ridge National Laboratory, Tennessee

    Google Scholar 

  • Parsons G (2008) Aesthetics and nature. Continuum International Publishing, London

    Book  Google Scholar 

  • Pärtel M, Bruun HH, Sammul M (2005) Biodiversity in temperate European grasslands: origin and conservation. Grassland Sci Europe 10:1–14

    Google Scholar 

  • Poschlod P (2015) Geschichte der Kulturlandschaft. Ulmer, Stuttgart

    Google Scholar 

  • Rachkovskaya EI, Bragina TM (2012) Steppes of Kazakhstan: diversity and present state. Plant Veg 6:103–148

    Article  Google Scholar 

  • Ratter JA, Ribeiro JF, Bridgewater S (1997) The Brazilian Cerrado vegetation and threats to its biodiversity. Ann Bot 80:223–230

    Article  Google Scholar 

  • Reheul D, De Vliegher A, Bommelé L, Carlier L (2007) The comparison between temporary and permanent grassland. Grassland Sci Europe 12:1–13

    Google Scholar 

  • Robinson S, Finke P, Hamann B (2000) The impacts of de-collectivation on Kazakh pastoralists: case studies from Kazakhstan, Mongolia and the People’s Republic of China. J Central Asian Stud 4(2):2–34

    Google Scholar 

  • Ruprecht E (2012) Cessation of traditional management reduces the diversity of steppe-like grasslands in Romania through litter accumulation. Plant Veg 6:197–208

    Article  Google Scholar 

  • Sano EE, Rosa R, Brito JLS, Ferreira LG (2010) Land cover mapping of the tropical savanna region in Brazil. Environ Monit Assess 166:113–124. https://doi.org/10.1007/s10661-009-0988-4

    Article  Google Scholar 

  • Schimper AFW (1898) Pflanzen-Geographie auf physiologischer Grundlage. Fisher, Jena

    Google Scholar 

  • Smelansky IE, Tishkov AA (2012) The steppe biome in Russia: ecosystem services, conservation status, and actual challenges. Plant Veg 6:45–101

    Article  Google Scholar 

  • Stebler FG (1898) Die besten Streuepflanzen. Schweiz. Wiesenpflanzenwerk IV. Teil. Wyss, Bern

    Google Scholar 

  • Thornton PK (2010) Livestock production: recent trends, future prospects. Philos Trans R Soc B 365:2853–2867

    Article  Google Scholar 

  • Unger-Hamilton R (1985) Microscopic striations on flint sickle-blades as an indication of plant cultivation: preliminary results. World Archaeol 17(1):121–126

    Article  Google Scholar 

  • Válka Alves RJ, Janišová M (2016) Survival of endemic species in megadiverse campos rupestres and on oceanic islands in Brazil. IAVS Bulletin 2016/3, 14–17. doi https://doi.org/10.21570/BUL-201609-1

  • von Haaren C, Saathoff W, Bodenschatz T, Lange M (2010) Der Einfluss veränderter landnutzungen auf klimawandel und biodiversität. Naturschutz und biologische vielfalt 94, Bonn-Bad Godesberg

    Google Scholar 

  • Walter H (1990) Vegetation und Klimazonen, 6th edn. Ulmer, Stuttgart

    Google Scholar 

  • White RP, Murray S, Rohweder M (2000) Pilot analysis of global ecosystems: Grassland ecosystems. International Food Policy Research Institute and World Resources Institute, International Food Policy Research Institute and World Resources Institute, Washington, DC

    Google Scholar 

  • Wilson JB, Peet RK, Dengler J, Pärtel M (2012) Plant species richness: the world records. J Veg Sci 23:796–802

    Article  Google Scholar 

  • Zalta EN, Nodelmann U, Allen C, Anderson RL (eds) (2016) The Stanford encyclopedia of philosophy: environmental aesthetics. Standford University, Stanford

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Hobohm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hobohm, C., Janišová, M., Vahle, HC. (2021). Development and Future of Grassland Ecosystems: Do We Need a Paradigm Shift?. In: Hobohm, C. (eds) Perspectives for Biodiversity and Ecosystems. Environmental Challenges and Solutions. Springer, Cham. https://doi.org/10.1007/978-3-030-57710-0_14

Download citation

Publish with us

Policies and ethics