Skip to main content

Wetlands: Challenges and Possibilities

  • Chapter
  • First Online:
Perspectives for Biodiversity and Ecosystems

Part of the book series: Environmental Challenges and Solutions ((ECAS))

  • 844 Accesses

Abstract

This contribution deals with recent challenges and prospective developments of mires, bogs, fens and swamps, and of standing and running waters. We ask the question how it might be possible to reduce the anthropogenic pressure to relating habitats and characteristic biodiversity in a long-term perspective.

The most important threats for wetland habitats are pollution, e.g. by use of pesticides, waste of nutrients, metal, and pharmaceuticals, natural system modification, i.e. modification of flow and geomorphology by settlements, establishment of industries, drainings, building of dams, barrages and hydroelectric power stations, biological resource use, e.g. fishery and hunting, invasive and other problematic species, genes and diseases, and the influence of aquaculture and agriculture, partially over long distance.

Various solutions for the management of wetlands with respect to environmental conditions and natural processes have been published and are currently applied. These are e.g. dismantling of dams or disclaimer of new dams and barrages, regulation of water withdrawal for human use, incentives for the reduction of the use of pesticides, fertilizers and other groups of chemicals, establishment of buffer zones, enlargement and establishment of new nature reserves, and many more. However, the influence of moderate use of relating habitats e.g. by domestic grazing or removal of trees should be monitored with a focus on the hydrologic conditions and species conservation of endemic, rare and threatened biota.

We hypothesize that the effectiveness of restoration and protection measures might seriously increase if the focus is widened and especially border and transition zones between agricultural land, industrial area or settlement and wetland are included in monitoring and nature conservation programmes.

The reduction of a short-term profit at local scales caused by regulations can result in increasing long-term profit at larger spatial scales because self-regulated biodiversity and food webs may lead to higher output of ecosystem services, e.g. products of fishing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albert JS, Val P, Hoorn C (2018) The changing course of the Amazon River in the Neogene: center stage for Neotropical diversification. Neotropical Ichthyology 16(3):e180033. https://doi.org/10.1590/1982-0224-20180033

    Article  Google Scholar 

  • Allan JD (1995) Stream ecology. Structure and function of running waters. Chapman & Hall, London

    Book  Google Scholar 

  • Andersen R, Farrell C, Graf M, Muller F, Calvar E, Frankard P, Caporn S, Anderson P (2017) An overview of the progress and challenges of peatland restoration in Western Europe. Restor Ecol 25(2):271–282

    Article  Google Scholar 

  • Bundesamt für Naturschutz (ed) (1997) Biodiversität und tourismus. Springer, Berlin

    Google Scholar 

  • Davies CE, Moss D, Hill MO (2004) EUNIS habitat classification revised. European Topic Centre on Nature Protection and Biodiversity, Paris

    Google Scholar 

  • Dellapenna JW, Gupta J (2013) The evolution of water law through 4,000 years. Villanova Public Law and Legal Theory Working Paper Series 2013-3014

    Google Scholar 

  • Dixon RK, Solomon AM, Brown S, Houghton RA, Trexier MC, Wisnewski J (1994) Carbon pools and flux of global forest ecosystems. Science 263(5144):185–190

    Article  CAS  Google Scholar 

  • EU (2013) Natura 2000 Interpretation Manual of European Union Habitats, Ed. European Commission, DG Environment. 144p, Brussels

    Google Scholar 

  • European Commission (2004) Water for the peatbog. https://ec.europa.eu/regional_policy/en/projects/denmark/water-for-the-peatbog. Accessed 10/2019

  • FEOW (2019) Freshwater ecoregions of the world http://feow.org/maps/biodiversity. Accessed 10/2019

  • Fiedler PL, Kareiva PM (eds) (1998) Conservation biology: for the coming decade (2nd edn), pp 209–210. ISBN 978-0412096617

  • Frankard P (2004) Bilan de 12 années de gestion conservatoire des tourbières hautes dans la réserve naturelle domaniale des Hautes-Fagnes (Est de la Belgique). An evaluation of 12 years of conservation policies in the peatlands of the Hautes-Fagnes natural reserve (East Belgian). La conservation des tourbières, vol 79/4, pp 269–276

    Google Scholar 

  • Groombridge B, Jenkins MD (2002) World atlas of biodiversity. Earth’s living resources in the 21st century. UNEP World Conservation Monitoring Centre, London

    Google Scholar 

  • Grundling P (2014) Genesis and hydrological function of an African mire: understanding the role of peatlands in providing ecosystem services in semi-arid climates. PhD thesis Waterloo, ON, Canada

    Google Scholar 

  • Grunewald K, Bastian O (eds) (2012) Ökosystemdienstleistungen - Konzept, Methoden und Fallbeispiele. Springer, Berlin

    Google Scholar 

  • Höper H (2007) Freisetzung von Treibhausgasen aus deutschen Mooren. Telma 37:85–116; Hannover

    Google Scholar 

  • IUCN (2019) The IUCN Red List of Threatened Species. Version 2019-3.(https://www.iucnredlist.org; accessed. 10/12/2019-10/4/2020)

  • Janssen JAM, Rodwell JS, Criado G, Gubbay S, Hynes T, Nieto A, Sanders N, Landucci F, Loidi J, Ssymank A, Thvanainen T, Valderrabano M, Acosta A, Arronsson M, Arts G, Attorre F, Bijlsma R-J, Bioret F, Bita-Nicolae C, Biurrun I, Calix M, Capelo J, Carni A, Chytry M, Dengler J, Dimopoulos P, Essl F, Gardfjell H, Gigante D, Giusso del Galdo G, Hajek M, Jansen F, Jansen J, Kapfer J, Mickolajcak A, Molina JA, Molnar Z, Paternoster D, Pierik A, Poulin B, Renaux B, Schaminée JHJ, Sumberova K, Toivonen H, Tonteri T, Tsiripidis I, Tzonev R, Valachovic M, with contributions from Aarrestad PA, Agrillo E, Alegro E, Alonso I, Argagnon O, Armiraglio S, Assini S, Aunina L, Averis ABG, Averis AM, Bagella S, Barina Z, Barron S, Bell S, Bendiksen E, Bergmeier E, Bölöni J, Brandrud TE, Brophy J, Buffa G, Campos JA, Casella L, Christodoulou CH, Corbett P, Couvreur J-M, Crowle A, Dahlgreen J, Keersmaeker DE, Delescaille L-M, Denys L, Saeger DE, Delarze R, Devany F, De Vries S, Diack I, Dimitrov M, Eide W, Espirito Santo D, Fagaras M, Fievet V, Finck P, Fitzpatrick U, Fotiadis G, Framstad E, Frankard PH, Giancola C, Gussev CH, Hall R, Hamill B, Heinze S, Hennekens S, Hobohm C, Ivanov P, Jacobson A, Janauer G, Janisová M, Jefferson RG, Jones P, Juvan N, Kacki Z, Kallimanis A, Kazoglou Y, Keith D, Keulen K, Király G, Kirby K, Koci M, Kontula T, Leibak E, Leyssen A, Lotman S, Lyngstad A, Mäemets H, Mainstone C, Mäkelä K, Marceno M, Martin JR, Matevski V, Mesterhazy A, Milanovic D, Millaku F, Miller R, Millet J, Mjelde M, Moen A, Nygaard B, Öien D-I, O’Neill F, Paal J, Packet J, Paelinck D, Panitsa M, Perrin P, Pezzi G, Provoost S, Rasomavicius V, Raths U, Rees S, Riecken U, Roosaluste E, Rove I, Rexmann J, Rodriguez JP, Rusakova V, Rusina S, Schuiling R, Sciandrello S, Sell I, Sibik J, Simkin J, Skvorc Z, Soray D, Stesevik D, Strand GH, Stupar V, Thomaes A, Trajanovska S, Van Braekel A, Van Landuyt W, Vanderkerkhove K, Vandevoorde B, Varga A, Velkovski N, Venanzoni R, Verté P, Viciani D, Vrahnakis M, Von Wachenfeldt E, Weeda E, Wibail L, Willner W, Xystrakis F (2016) Red list of European habitats. Part 2. Terrestrial and freshwater habitats. European Commission, Publications Office of the European Union, Luxembourg

    Google Scholar 

  • Joosten H, Tapio-Biström ML, Tol S (eds) (2012) Peatlands – guidance for climate change mitigation through conservation, rehabilitation and sustainable use. Published by the Food and Agriculture Organization of the United Nations and Wetlands International Mitigation of Climate Change in Agriculture (MICCA)

    Google Scholar 

  • Kayranli B, Scholz M, Mustafa A et al (2010) Carbon storage and fluxes within freshwater wetlands: a critical review. Wetlands 30:111–124. https://doi.org/10.1007/s13157-009-0003-4

    Article  Google Scholar 

  • Klee O (1985) Angewandte Hydrobiologie. Trinkwasser, Abwasser, Gewässerschutz. Georg Thieme Verlag, Stuttgart

    Google Scholar 

  • Lemmer M, Graf M (2016) Wie erfolgreich verläuft die Renaturierung abgebauter Hochmoore? Sphagnum-Vorkommen auf 19 wiedervernässten Flächen in Niedersachsen. TELMA - Berichte der Deutschen Gesellschaft für Moor- und Torfkunde 46:109–124

    Google Scholar 

  • Leppäkoski E, Gollasch S, Olenin S (eds) (2002) Invasive aquatic species of Europe. Distribution, impacts and management. Kluwer Academic, Dordrecht

    Google Scholar 

  • Lindsay R (2016) Global impacts of El Niño and La Niña. Climate.cov. https://www.climate.gov/news-features/featured-images/global-impacts-el-ni%C3%B1o-and-la-ni%C3%B1a

  • Lowe-McConnell R (2009) Fisheries and cichlid evolution in the African Great Lakes: progress and problems. Fr Rev 2(2):131–151. https://doi.org/10.1608/frj-2.2.2

    Article  Google Scholar 

  • Maltby E, Acreman MC (2011) Ecosystem services of wetlands: pathfinder for a new paradigm. Hydrol Sci J 56(8):1341–1359. https://doi.org/10.1080/02626667.2011.631014

    Article  Google Scholar 

  • Moss B (2008) Water pollution by agriculture. Philos Trans R Soc Lond B 363:659–666

    Article  CAS  Google Scholar 

  • Raabe P, Kleinebecker T, Knorr K, Hölzel N, Gramann G (2018) Vermehrung und Ansiedlung von Bulttorfmoosen in der Hochmoorrenaturierung – erste Ergebnisse eines Pilotprojekts im Landkreis Vechta (Niedersachsen). Propagation and establishment of hummock peat mosses in bog restoration – first results of a pilot study in Vechta, Lower Saxony. TELMA - Berichte der Deutschen Gesellschaft für Moor- und Torfkunde 48:71–80

    Google Scholar 

  • Ramsar Sites Information Service (2019). https://rsis.ramsar.org/, July 15, 2019

  • Rapetti F, Tomei PE, Vittorini S (1986) Aspetti Climatici Del Lago Di Massaciuccoli in Rapporto alla Presenza die Entita Vegetali Di Rilev Anza Fitogeogrfica. Atti Soc Tosc Sci Nal Mem A 93:221–233

    Google Scholar 

  • Scheffer M, Carpenter S, Foley JA, Folke C, Walker B (2001) Catastrophic shifts in ecosystems. Nature 413:591–596

    Article  CAS  Google Scholar 

  • Semlitsch RD, Bodie JR (2003) Biological criteria for buffer zones around wetlands and riparian habitats for amphibians and reptiles. Conserv Biol 17(5):1219–1228. https://doi.org/10.1046/j.1523-1739.2003.02177.x

    Article  Google Scholar 

  • Siegel DI (1988) Evaluating cumulative effects of disturbance on the hydrologic function of bogs, fens, and mires. Environ Manag 12:621. https://doi.org/10.1007/BF01867540

    Article  Google Scholar 

  • Sturtevant WC, Cattelino JR (2004) Florida Seminole and Miccosukee. Handbook of North American Indians (Southeast) 14:429–449. http://www.sscnet.ucla.edu/anthro/faculty/jcattelino/FloridaSeminoleandMiccosukee.pdf

  • The Global Wetland Outlook - Status and Trends (2018) The Ramsar Convention Secretariat, Gland. https://www.global-wetland-outlook.ramsar.org/

  • Tomei PE (1982) Le zone umide della Toscana: stato attuale delle conoscenze geobotaniche e prospettive di salvaguardia. Atti Soc Tosc Sco Nat Mem Ser B 89:345–361

    Google Scholar 

  • van Rijssel JC, Witte F (2013) Adaptive responses in resurgent Lake Victoria cichlids over the past 30 years. Evol Ecol 27(2):253–267. https://doi.org/10.1007/s10682-012-9596-9

    Article  Google Scholar 

  • Vörösmarty CJ, McIntyre PB, Gessner MO, Dudgeon D, Proussevitch A, Green P, Glidden S, Bunn SE, Sullivan CA, Liermann CR, Davies PM (2010) Global threats to human water security and river biodiversity. Nature 468:334. https://doi.org/10.1038/nature09549

    Article  CAS  Google Scholar 

  • Wichmann S, Wichtmann W (2011) Paludikultur: Standortgerechte Bewirtschaftung wiedervernässter Moore. TELMA 2011 (Beiheft 4):215–234

    Google Scholar 

  • Wisner B, Blaikie P, Cannon T, Davis I (2004) At risk – natural hazards, people’s vulnerability and disasters. Routledge, Wiltshire

    Google Scholar 

  • Ziegler R, Groenfeld D (eds) (2017) Global water ethics: towards a global ethics charter. Routledge, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Lindner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lindner, M., Hobohm, C. (2021). Wetlands: Challenges and Possibilities. In: Hobohm, C. (eds) Perspectives for Biodiversity and Ecosystems. Environmental Challenges and Solutions. Springer, Cham. https://doi.org/10.1007/978-3-030-57710-0_13

Download citation

Publish with us

Policies and ethics