Skip to main content

Cardiovascular Disease in Women: Focus on Lipid Management

  • Chapter
  • First Online:
Therapeutic Lipidology

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 1094 Accesses

Abstract

Despite dramatic declines in total cardiovascular disease (CVD) mortality among women in the USA, CVD remains the #1 killer of women, causing almost one out of three female deaths in 2016. Hypercholesterolemia is causal in the development of coronary atherosclerosis and incident atherosclerotic cardiovascular disease (ASCVD) events in women, as it is in men. Statins lower atherogenic lipoproteins to a similar degree in both sexes. Meta-analyses demonstrate that women and men at similar risk of major vascular events achieve similar proportional and absolute benefits from statin therapy, even in primary prevention and among individuals at low baseline risk. The evidence for prevention of ASCVD in women with the use of non-statin drugs is limited as no large randomized controlled trials have been adequately powered to evaluate sex differences in response to non-statin therapies. However, current guidelines for the use of non-statin therapies for management of dyslipidemia for women are the same as those for men. Clinically significant adverse drug effects and self-reported drug allergies have been reported to occur more frequently among women than men for a number of drug classes, and clinicians should be aware of potential sex differences in adverse events. There are important considerations in management of dyslipidemia in women across the lifespan, particularly during conception, pregnancy, and lactation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benjamin EJ, Blaha MJ, Chuive SE, et al. Heart disease and stroke statistics—2019 update: a report from the American Heart Association. Circulation. 2019;139:e56–e528.

    Article  PubMed  Google Scholar 

  2. Benjamin EJ, Munter P, Alonso A, et al. Heart disease and stroke statistics—2019 update. A report from the American Heart Association. Circulation. 2019;139:e56–e528. https://doi.org/10.1161/CIR.0000000000000659.

    Article  PubMed  Google Scholar 

  3. Wilmot KA, OFlaherty M, Capewell S, et al. Coronary heart disease mortality declines in the U.S. from 1979 through 2011: evidence for stagnation in young adults, especially women. Circulation. 2015;132:997–1002. https://doi.org/10.1161/CIRCULATIONAHA.115.015293.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Towfighi A, Zheng L, Ovbiagele B, et al. Trends in midlife coronary heart disease risk and prevalence. Arch Intern Med. 2009;169:1762–6.

    Article  PubMed  Google Scholar 

  5. Vacarino V. Ischemic heart disease in women: many questions, few facts. Circ Cardiovasc Qual Outcomes. 2010;3:111–5.

    Article  Google Scholar 

  6. Vaccarino V, Parsons L, Every NR, et al. Sex-based differences in early mortality after myocardial infarction. NEJM. 1999;341:217–25.

    Article  CAS  PubMed  Google Scholar 

  7. Greenland P, Blaha MJ, Budoff MJ, et al. Coronary calcium score and cardiovascular risk: state of the art review. J Am Coll Cardiol. 2018;72:434–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lloyd-Jones DM, Larson MG, Beiser A, Levy D, et al. Lifetime risk of developing coronary heart disease. Lancet. 1999;353:89–92.

    Article  CAS  PubMed  Google Scholar 

  9. Pencina MJ, Navar-Boggan AM, D-Agostino RB, et al. Application of new cholesterol guidelines to a population-based sample. N Engl J Med. 2014;370:1422–31.

    Article  CAS  PubMed  Google Scholar 

  10. Kannel WB, Dawber TR, Kagan A, et al. Factors of risk in the development of coronary heart disease–six year follow-up experience. The Framingham Study. Ann Intern Med. 1961;55:33–50.

    Article  CAS  PubMed  Google Scholar 

  11. Manolio TA, Pearson TA, Wenger NK, et al. Cholesterol and heart disease in older persons and women: review of an NHLBI worship. Ann Epidemiol. 1992;2:161–76.

    Article  CAS  PubMed  Google Scholar 

  12. Kannel WB, Wilson PW, et al. Risk factors that attenuate the female coronary disease advantage. Arch Intern Med. 1995;155:57–61.

    Article  CAS  PubMed  Google Scholar 

  13. Sharrett AR, Ballantyne CM, Coady SA, et al. Coronary heart disease prediction from lipoprotein cholesterol levels, triglycerides, lipoprotein(a), apolipoproteins A-1 and B, and HDL density subfractions. The atherosclerosis risk in communities (ARIC) study. Circulation. 2001;104:1108–13.

    Article  CAS  PubMed  Google Scholar 

  14. Schaefer EJ, Lamon-Fava S, Cohn SD, et al. Effects of age, gender, and menopausal status on the plasma low density lipoprotein cholesterol and apo-lipoprotein B levels in the Framingham Offspring Study. J Lipid Res. 1994;35:779–92.

    CAS  PubMed  Google Scholar 

  15. Ridker P, Rifai N, Cook NR. Non-HDL-cholesterol, apolipoproteins A-1 and B100, standard lipid measures, lipid ratios, and CRP as risk factors for cardiovascular disease in women. JAMA. 2005;294(3):236–3.

    Article  Google Scholar 

  16. Lloyd-Jones DM, PWF W, Larson MG, et al. Lifetime risk of coronary heart disease by cholesterol levels at selected ages. Arch Intern Med. 2003;163:1966–72.

    Article  PubMed  Google Scholar 

  17. Prospective Studies Collaboration. Blood cholesterol and vascular mortality by age, sex, and BP: a meta-analysis of individual data from 61 prospective studies with 55,000 vascular deaths. Lancet. 2007;370:1829–39.

    Article  CAS  Google Scholar 

  18. Collaboration CCT. Efficacy and safety of LDL-lowering therapy among men and women: meta-analysis of individual data from 174 000 participants in 27 randomised trials. Lancet. 2015;385:1397–405.

    Article  CAS  Google Scholar 

  19. Collaboration CTTs. Protocol for a prospective collaborative overview of all current and planned randomized trials of cholesterol treatment regimens. Cholesterol Treatment Trialists’ (CTT) collaboration. Am J Cardiol. 1995;75:1130–4.

    Article  Google Scholar 

  20. Ridker PM, MacFadyen JG, Fonseca FA, et al. Number needed to treat with rosuvastatin to prevent first cardiovascular events and death among men and women with low low-density lipoprotein cholesterol and elevated high-sensitivity C-reactive protein: justification for the use of statins in prevention: an intervention trial evaluating rosuvastatin (JUPITER). Circ Cardiovasc Qual Outcomes. 2009;2:616–23.

    Article  PubMed  Google Scholar 

  21. Mizuno K, Nakaya N, Ohashi Y, et al. Usefulness of pravastatin in primary prevention of cardiovascular events in women: analysis of the management of elevated cholesterol in the primary prevention group of adult Japanese (MEGA study). Circulation. 2008;117:494–502.

    Article  CAS  PubMed  Google Scholar 

  22. Clearfield M, Downs JR, Weis S, et al. Air Force/Texas Coronary Atherosclerosis Prevention Study (AFCAPS/TexCAPS): efficacy and tolerability of long-term treatment with lovastatin in women. J Womens Health Gend Based Med. 2001;10:971–81.

    Article  CAS  PubMed  Google Scholar 

  23. Officers A, Coordinators for the ACRGTA, Lipid-Lowering Treatment to Prevent Heart Attack T. Major outcomes in moderately hypercholesterolemic, hypertensive patients randomized to pravastatin vs usual care: the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT-LLT). JAMA. 2002;288:2998–3007.

    Article  Google Scholar 

  24. Sever PS, Dahlof B, Poulter NR, et al. Prevention of coronary and stroke events with atorvastatin in hypertensive patients who have average or lower-than-average cholesterol concentrations, in the Anglo-Scandinavian Cardiac Outcomes Trial—Lipid Lowering Arm (ASCOT-LLA): a multicentre randomised controlled trial. Lancet. 2003;361:1149–58.

    Article  CAS  PubMed  Google Scholar 

  25. Stegman B, Shao M, Nicholls SJ, et al. Coronary atheroma progression rates in men and women following high-intensity statin therapy: a pooled analysis of REVERSAL, ASTEROID and SATURN. Atherosclerosis. 2016;254:78–84.

    Article  CAS  PubMed  Google Scholar 

  26. Shepherd J, Blauw GJ, Murphy MB, et al. Pravastatin in elderly individuals at risk of vascular disease (PROSPER): a randomised controlled trial. Lancet. 2002;360:1623–30.

    Article  CAS  PubMed  Google Scholar 

  27. Stone NJ, Robinson JG, Lichtenstein AH, et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2014;129:S1–45.

    Article  PubMed  Google Scholar 

  28. Goff DC Jr, Lloyd-Jones DM, Bennett G, et al. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2014;129:S49–73.

    Article  PubMed  Google Scholar 

  29. Muntner P, Colantonio LD, Cushman M, et al. Validation of the atherosclerotic cardiovascular disease Pooled Cohort risk equations. JAMA. 2014;311:1406–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Mora S, Wenger NK, Cook NR, et al. Evaluation of the pooled cohort risk equations for cardiovascular risk prediction in a multiethnic cohort from the Women’s Health Initiative. JAMA Intern Med. 2018;178:1231–40.

    Article  PubMed  PubMed Central  Google Scholar 

  31. McClelland RL, Jorgensen NW, Budoff M, et al. 10-year coronary heart disease risk prediction using coronary artery calcium and traditional risk factors: derivation in the MESA (Multi-Ethnic Study of Atherosclerosis) with validation in the HNR (Heinz Nixdorf Recall) study and the DHS (Dallas Heart Study). J Am Coll Cardiol. 2015;66:1643–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Grundy SM, Stone NJ, Bailey AL, et al. AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol. Circulation. 2018;2018:CIR0000000000000625.

    Google Scholar 

  33. Ridker PM, Buring JE, Rifai N, Cook NR. Development and validation of improved algorithms for the assessment of global cardiovascular risk in women: the Reynolds Risk Score. JAMA. 2007;297:611–9.

    Article  CAS  PubMed  Google Scholar 

  34. Ridker PM, Cook NR, Lee IM, et al. A randomized trial of low-dose aspirin in the primary prevention of cardiovascular disease in women. N Engl J Med. 2005;352:1293–304.

    Article  CAS  PubMed  Google Scholar 

  35. Cushman M, McClure LA, Howard VJ, et al. Implications of increased C-reactive protein for cardiovascular risk stratification in black and white men and women in the US. Clin Chem. 2009;55(9):1627–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. DeFilippis AP, Young R, Carrubba CJ, et al. An analysis of calibration and discrimination among multiple cardiovascular risk scores in a modern multiethnic cohort. Ann Intern Med. 2015;162:266–75.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lerner DJ, Kannel WB. Patterns of coronary heart disease morbidity and mortality in the sexes: a 26-year follow-up of the Framingham population. Am Heart J. 1986;111:383–90.

    Article  CAS  PubMed  Google Scholar 

  38. Huxley R, Barzi F, Woodward M. Excess risk of fatal coronary heart disease associated with diabetes in men and women: meta-analysis of 37 prospective cohort studies. BMJ. 2006;332:73–8.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Millett ERC, Peters SAE, Woodward M. Sex differences in risk factors for myocardial infarction: cohort study of UK Biobank participants. BMJ. 2018;363:k4247.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Cholesterol Treatment Trialists C, Kearney PM, Blackwell L, et al. Efficacy of cholesterol-lowering therapy in 18,686 people with diabetes in 14 randomised trials of statins: a meta-analysis. Lancet. 2008;371:117–25.

    Article  CAS  Google Scholar 

  41. Collaboration CTTs. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170 000 participants in 26 randomised trials. Lancet. 2010;376:1670–81.

    Article  CAS  Google Scholar 

  42. Lipid Research Clinics Program. The lipid research clinics coronary primary prevention trial results. I. Reduction in the incidence of coronary heart disease. JAMA. 1984;251:351–64.

    Article  Google Scholar 

  43. Lipid research clinics coronary primary prevention trial results. II. The relationship of reduction in incidence of coronary heart disease to cholesterol lowering. JAMA. 1984;251:365–74.

    Article  Google Scholar 

  44. Cannon CP, Blazing MA, Giugliano RP, et al., IMPROVE-IT Investigators. Ezetimibe added to statin therapy after acute coronary syndromes. N Engl J Med. 2015;372:2387–97.

    Article  CAS  PubMed  Google Scholar 

  45. Kato ET, Cannon CP, Blazing MA, et al. Efficacy and safety of adding ezetimibe to statin therapy among women and men: insight from IMPROVE-IT (Improved Reduction of Outcomes: Vytorin Efficacy International Trial). J Am Heart Assoc. 2017;6(11). pii: e006901. https://doi.org/10.1161/JAHA.117.006901.

  46. Canner PL, Berge KG, Wenger NK, et al. for the Coronary Drug Project Research Group. Fifteen-year mortality in coronary drug project patients: long-term benefit with niacin. J Am Coll Cardiol. 1986;8:1245–55.

    Article  CAS  PubMed  Google Scholar 

  47. Brown BG, Zhao XQ, Chait A, et al. Simvastatin and niacin, antioxidant vitamins, or the combination for the prevention of coronary disease. N Engl J Med. 2001;345:1583–92.

    Article  CAS  PubMed  Google Scholar 

  48. AIM-HIGH Investigators. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N Engl J Med. 2011;365:2255–67.

    Article  CAS  Google Scholar 

  49. HPS2-THRIVE Collaborative Group, Landray MJ, Haynes R, Hopewell JC, et al. Effects of extended-release niacin with laropiprant in high-risk patients. N Engl J Med. 2014;371:203–12.

    Article  CAS  Google Scholar 

  50. Keech A, Simes RJ, Barter P, et al., FIELD Study Investigators. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet. 2005;366:1849–61.

    Article  CAS  PubMed  Google Scholar 

  51. d’Emden MC, Jenkins AJ, Li L, et al., FIELD Study Investigators. Favourable effects of fenofibrate on lipids and cardiovascular disease in women with type 2 diabetes: results from the Fenofibrate intervention and event lowering in diabetes (FIELD) study. Diabetologia. 2014;57:2296–303.

    Article  PubMed  CAS  Google Scholar 

  52. ACCORD Study Group. Effects of combination lipid therapy in type 2 diabetes mellitus. N Engl J Med. 2010;362:1563–74.

    Article  Google Scholar 

  53. Yokoyama M, Origasa H, Matsuzaki M, et al., Japan EPA Lipid Intervention Study (JELIS) investigators. Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised open-label, blinded endpoint analysis. Lancet. 2007;369:1090–8.

    Article  CAS  PubMed  Google Scholar 

  54. Manson JE, Cook NR, Lee I, et al. Marine n−3 fatty acids and prevention of cardiovascular disease and Cancer. N Engl J Med. 2019;380:23–32.

    Article  CAS  PubMed  Google Scholar 

  55. Bhatt DL, Steg PG, Miller M, et al. Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia. N Engl J Med. 2019;380:11–22.

    Article  CAS  PubMed  Google Scholar 

  56. Giugliano RP, Sabatine MS. Are PCSK9 inhibitors the next breakthrough in the cardiovascular field? J Am Coll Cardiol. 2015;65:2638–51.

    Article  CAS  PubMed  Google Scholar 

  57. Sabatine MS, Giugliano RP, Keech AC, et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med. 2017;376:1713–22.

    Article  CAS  PubMed  Google Scholar 

  58. Schwartz GG, Steg PG, Szarek M, et al. Alirocumab and cardiovascular outcomes after acute coronary syndrome. N Engl J Med. 2018;379:2097–107.

    Article  CAS  PubMed  Google Scholar 

  59. Grundy SM, Stone NJ, Bailey AL, et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol. J Am Coll Cardiol. 2018. https://doi.org/10.1016/j.jacc.2018.11.003.

  60. Baigent C, Keech A, Kearney PM, et al., Cholesterol Treatment Trialists’ (CTT) Collaborators. Efficacy and safety of cholesterol lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet. 2005;366:1267–78.

    Article  CAS  PubMed  Google Scholar 

  61. Cholesterol Treatment Trialists’ (CTT) Collaboration, Baigent C, Blackwell L, Emberson J, et al. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet. 2010;376:1670–81.

    Article  CAS  Google Scholar 

  62. Cholesterol Treatment Trialists’ (CTT) Collaboration, Fulcher J, O’Connell R, Voysey M, et al. Efficacy and safety of LDL lowering therapy among men and women: meta-analysis of individual data from 174,000 participants in 27 randomised trials. Lancet. 2015;385:1397–405.

    Article  CAS  Google Scholar 

  63. Karalis DG, Wild RA, Maki KC, et al. Gender differences in side effects and attitudes regarding statin use in the understanding statin use in America and gaps in patient education (USAGE) study. J Clin Lipidol. 2016;10:833–41.

    Article  PubMed  Google Scholar 

  64. Ridker PM, Danielson E, Fonseca FA, et al., JUPITER Study Group. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med. 2008;359:2195–207.

    Article  CAS  PubMed  Google Scholar 

  65. Mora S, Glynn RJ, Hsia J, MacFadyen JG, Genest J, Ridker PM. Statins for the primary prevention of cardiovascular events in women with elevated high-sensitivity C-reactive protein or dyslipidemia. Circulation. 2010;121:1069–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Truong QA, Murphy SA, McCabe CH, Armani A, Cannon TP, TIMI Study Group. Benefit of intensive statin therapy in women: results from PROVE IT-TIMI 22. Circ Cardiovasc Qual Outcomes. 2011;4:328–36.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Hsue PY, Bittner VA, Betteridge J, et al. Impact of female sex on lipid lowering, clinical outcomes, and adverse effects in atorvastatin trials. Am J Cardiol. 2015;115:447–53.

    Article  CAS  PubMed  Google Scholar 

  68. de Vries ST, Denig P, Ekhart C, et al. Gender differences in adverse drug reactions reported to the national pharmacovigilance centre in the Netherlands an explorative observational study. Br J Clin Pharmacol. 2019. https://doi.org/10.1111/bcp.13923.

  69. Tran C, Knowles SR, Liu BA, Shear NH. Gender differences in adverse drug reactions. J Clin Pharmacol. 1998;38:1003–9.

    Article  CAS  PubMed  Google Scholar 

  70. Bhardwaj S, Selvarajah S, Schneider EB. Muscular effects of statins in the elderly female: a review. Clin Interv Aging. 2013;8:47–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Sousa-Pinto B, Fonseca JA, Gomes ER. Frequency of self-reported drug allergy: a systematic review and meta-analysis with meta-regression. Ann Allergy Asthma Immunol. 2017;119(4):362–73.

    Article  PubMed  Google Scholar 

  72. Tamargo J, Rosano G, Walther T, et al. Gender differences in the effects of cardiovascular drugs. Eur Heart J Cardiovasc Pharmacother. 2017;3(3):163–82.

    Article  CAS  PubMed  Google Scholar 

  73. Parekh A, Fadiran EO, Uhl K, et al. Adverse effects in women: implications for drug development and regulatory policies. Expert Rev Clin Pharmacol. 2011;4(4):453–66.

    Article  PubMed  Google Scholar 

  74. Fay KE, Farina LA, Burks HR, Wild RA, Stone NJ. Lipids and women’s health: recent updates and implications for practice. J Women’s Health (2002). 2019;28(6):752–60.

    Article  Google Scholar 

  75. Aune D, Saugstad OD, Henriksen T, Tonstad S. Maternal body mass index and the risk of fetal death, stillbirth, and infant death: a systematic review and meta-analysis. JAMA. 2014;311(15):1536–46.

    Article  CAS  PubMed  Google Scholar 

  76. Shostrom DCV, Sun Y, Oleson JJ, Snetselaar LG, Bao W. History of gestational diabetes mellitus in relation to cardiovascular disease and cardiovascular risk factors in US women. Front Endocrinol. 2017;8:144.

    Article  Google Scholar 

  77. Charlton F, Tooher J, Rye KA, Hennessy A. Cardiovascular risk, lipids and pregnancy: preeclampsia and the risk of later life cardiovascular disease. Heart Lung Circ. 2014;23(3):203–12.

    Article  PubMed  Google Scholar 

  78. Brouwers L, van der Meiden-van Roest AJ, Savelkoul C, et al. Recurrence of pre-eclampsia and the risk of future hypertension and cardiovascular disease: a systematic review and meta-analysis. Br J Obstet Gynaecol. 2018;125:1642–54.

    Google Scholar 

  79. Coutinho T, Lamai O, Nerenberg K. Hypertensive disorders of pregnancy and cardiovascular diseases: current knowledge and future directions. Curr Treat Options Cardiovasc Med. 2018;20(7):56.

    Article  PubMed  Google Scholar 

  80. van Oers AM, Mutsaerts MAQ, Burggraaff JM, et al. Association between periconceptional weight loss and maternal and neonatal outcomes in obese infertile women. PLoS ONE. 2018;13(3):e0192670.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Jacobson TA, Maki KC, Orringer CE, et al. National lipid association recommendations for patient-centered management of dyslipidemia: part 2. J Clin Lipidol. 2015;9(6 Suppl):S1–122.e121.

    Article  PubMed  Google Scholar 

  82. Wiznitzer A, Mayer A, Novack V, et al. Association of lipid levels during gestation with preeclampsia and gestational diabetes mellitus: a population-based study. Am J Obstet Gynecol. 2009;201(5):482.e1–8.

    Article  CAS  Google Scholar 

  83. Goldberg AS, Hegele RA. Severe hypertriglyceridemia in pregnancy. J Clin Endocrinol Metab. 2012;97(8):2589–96.

    Article  CAS  PubMed  Google Scholar 

  84. Emet T, Ustuner I, Guven SG, et al. Plasma lipids and lipoproteins during pregnancy and related pregnancy outcomes. Arch Gynecol Obstet. 2013;288(1):49–55.

    Article  CAS  PubMed  Google Scholar 

  85. Kinoshita T, Shirai K, Itoh M. The level of pre-heparin serum lipoprotein lipase mass at different stages of pregnancy. Clin Chim Acta. 2003;337(1–2):153–6.

    Article  CAS  PubMed  Google Scholar 

  86. Ghio A, Bertolotto A, Resi V, Volpe L, Di Cianni G. Triglyceride metabolism in pregnancy. Adv Clin Chem. 2011;55:133–53.

    Article  CAS  PubMed  Google Scholar 

  87. Eddy JJ, Gideonsen MD, Song JY, Grobman WA, O’Halloran P. Pancreatitis in pregnancy. Obstet Gynecol. 2008;112(5):1075–81.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Papadakis EP, Sarigianni M, Mikhailidis DP, Mamopoulos A, Karagiannis V. Acute pancreatitis in pregnancy: an overview. Eur J Obstet Gyn R B. 2011;159(2):261–6.

    Article  CAS  Google Scholar 

  89. Muktabhant B, Lawrie TA, Lumbiganon P, Laopaiboon M. Diet or exercise, or both, for preventing excessive weight gain in pregnancy. Cochrane Database Syst Rev. 2015;15(6):Cd007145.

    Google Scholar 

  90. Cruciat G, et al. Hypertriglyceridemia triggered acute pancreatitis in pregnancy—diagnostic approach, management and follow-up care. Lipids Health Dis. 2020;19(1):2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Heiberg A, Berg K. The inheritance of hyperlipoproteinaemia with xanthomatosis. A study of 132 kindreds. Clin Genet. 1976;9(2):203–33.

    Article  CAS  PubMed  Google Scholar 

  92. Herrera E, Amusquivar E, Lopez-Soldado I, Ortega H. Maternal lipid metabolism and placental lipid transfer. Horm Res. 2006;65 Suppl 3:59–64.

    CAS  PubMed  Google Scholar 

  93. Martin U, Davies C, Hayavi S, Hartland A, Dunne F. Is normal pregnancy atherogenic? Clin Sci (London, England: 1979). 1999;96(4):421–5.

    Article  CAS  Google Scholar 

  94. Amundsen AL, Khoury J, Iversen PO, et al. Marked changes in plasma lipids and lipoproteins during pregnancy in women with familial hypercholesterolemia. Atherosclerosis. 2006;189(2):451–7.

    Article  CAS  PubMed  Google Scholar 

  95. Toleikyte I, Retterstol K, Leren TP, Iversen PO. Pregnancy outcomes in familial hypercholesterolemia: a registry-based study. Circulation. 2011;124:1606–14.

    Article  PubMed  Google Scholar 

  96. Harada-Shiba M, Arai H, Ishigaki Y, et al. Guidelines for diagnosis and treatment of familial hypercholesterolemia 2017. J Atheroscler Thromb. 2018;25(8):751–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Beckham AJ, Urrutia RP, Sahadeo L, Corbie-Smith G, Nicholson W. “We know but we don’t really know”: diet, physical activity and cardiovascular disease prevention knowledge and beliefs among underserved pregnant women. Matern Child Health J. 2015;19(8):1791–801.

    Article  PubMed  Google Scholar 

  98. Wild R, Weedin EA, Gill EA. Women’s health considerations for lipid management. Cardiol Clin. 2015;33(2):217–31.

    Article  PubMed  Google Scholar 

  99. Naderpoor N, Shorakae S, Joham A, Boyle J, De Courten B, Teede HJ. Obesity and polycystic ovary syndrome. Minerva Endocrinol. 2015;40(1):37–51.

    CAS  PubMed  Google Scholar 

  100. Vine DF, Wang Y, Jetha MM, Ball GD, Proctor SD. Impaired ApoB-lipoprotein and triglyceride metabolism in obese adolescents with polycystic ovary syndrome. J Clin Endocrinol Metab. 2017;102(3):970–82.

    PubMed  Google Scholar 

  101. Yilmaz B, Vellanki P, Ata B, Yildiz BO. Metabolic syndrome, hypertension, and hyperlipidemia in mothers, fathers, sisters, and brothers of women with polycystic ovary syndrome: a systematic review and meta-analysis. Fertil Steril. 2018;109(2):356–364.e332.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Palomba S, de Wilde MA, Falbo A, Koster MP, La Sala GB, Fauser BC. Pregnancy complications in women with polycystic ovary syndrome. Hum Reprod Update. 2015;21(5):575–92.

    Article  PubMed  Google Scholar 

  103. Glintborg D, Rubin KH, Nybo M, Abrahamsen B, Andersen M. Cardiovascular disease in a nationwide population of Danish women with polycystic ovary syndrome. Cardiovasc Diabetol. 2018;17(1):37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Shufelt CL, Bairey Merz CN. Contraceptive hormone use and cardiovascular disease. J Am Coll Cardiol. 2009;53:221–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Anagnostis P, et al. Menopause symptom management in women with dyslipidemias: an EMAS clinical guide. Maturitas. 2020;135:82–8.

    Article  CAS  PubMed  Google Scholar 

  106. Laliberte F, et al. Does the route of administration for estrogen hormone therapy impact the risk of venous thromboembolism? Estradiol transdermal system versus oral estrogen-only hormone therapy. Menopause. 2018;25(11):1297–305.

    Article  PubMed  Google Scholar 

  107. Mohammed K, et al. Oral vs transdermal estrogen therapy and vascular events: a systematic review and meta-analysis. J Clin Endocrinol Metab. 2015;100(11):4012–20.

    Article  CAS  PubMed  Google Scholar 

  108. The North American Menopause Society. The 2017 hormone therapy position statement of the North American Menopause Society. Menopause. 2017;24(7):728–53.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pamela B. Morris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Morris, P.B., Aspry, K.E., Watson, K.E., Wild, R.A., Bittner, V. (2021). Cardiovascular Disease in Women: Focus on Lipid Management. In: Davidson, M.H., Toth, P.P., Maki, K.C. (eds) Therapeutic Lipidology. Contemporary Cardiology. Humana, Cham. https://doi.org/10.1007/978-3-030-56514-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-56514-5_24

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-56513-8

  • Online ISBN: 978-3-030-56514-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics