Skip to main content

Molecular Simulations as Guides to Ammonothermal Syntheses of Nitrides—State of the Art and Perspectives

  • Chapter
  • First Online:
Ammonothermal Synthesis and Crystal Growth of Nitrides

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 304))

Abstract

Molecular Simulations are increasingly entering the realm of materials syntheses. While pioneering studies were bound to simple models which could only address selected aspects of ‘real chemistry’ in the lab, recent advances in simulation methodology and computing hardware indeed paved the way to also modelling complex systems. Yet, we are hardly more than at the beginning of establishing molecular simulations as a routine tool for guiding syntheses. In the present contribution, we discuss the progress that has been made to understand ammonothermal syntheses of nitrides. This encompasses molecular dynamics simulations based on non-reactive force-fields—such as studies of liquid ammonia as a solvent, and its supercritical nature at high temperature and pressure. Moreover, we report on recent work on quantum and hybrid quantum/classical approaches for modelling the auto-protolysis of ammonia and ammonia protolyses in the course of metal ion solvation. This forms a basis for rationalizing the association of ion aggregates, size-induced proton transfer and the self-organization of amides, imides and nitrides from molecular simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T.M.M. Richter, R. Niewa, Inorganics 2, 29 (2014)

    Article  CAS  Google Scholar 

  2. R. Dwiliński, A. Wysmołek, J. Baranowski, M. Kamińska, R. Doradziński, J. Garczyński, L. Sierzputowski, H. Jacobs, Acta Phys. Pol. A 88, 833 (1995)

    Article  Google Scholar 

  3. Y.C. Lan, X.L. Chen, Y.G. Cao, Y.P. Xu, L.D. Xun, T. Xu, J.K. Liang, J. Cryst. Growth 207, 247 (1999)

    Article  CAS  Google Scholar 

  4. J. Higuchi, J. Chem. Phys. 24, 535 (1956)

    Article  CAS  Google Scholar 

  5. H. Kaplan, J. Chem. Phys. 26, 1704 (1957)

    Article  CAS  Google Scholar 

  6. A.B.F. Duncan, J. Chem. Phys. 27, 423 (1957)

    Article  CAS  Google Scholar 

  7. D.M. Bishop, J.R. Hoyland, R.G. Parr, Mol. Phys. 6, 467 (1963)

    Article  CAS  Google Scholar 

  8. C.M. Reeves, M.C. Harrison, J. Chem. Phys. 39, 1 (1963)

    Article  CAS  Google Scholar 

  9. R. Moccia, J. Chem. Phys. 40, 2176 (1964)

    Article  CAS  Google Scholar 

  10. B.D. Joshi, J. Chem. Phys. 43, S40 (1965)

    Article  CAS  Google Scholar 

  11. P. Rajagopal, Z. Naturforsch. A 20, 1557 (1965)

    Google Scholar 

  12. R.M. Rutledge, A.F. Saturno, J. Chem. Phys. 44, 977 (1966)

    Article  CAS  Google Scholar 

  13. U. Kaldor, I. Shavitt, J. Chem. Phys. 45, 888 (1966)

    Article  CAS  Google Scholar 

  14. D.M. Bishop, J. Chem. Phys. 45, 1787 (1966)

    Article  CAS  Google Scholar 

  15. L.C. Snyder, J. Chem. Phys. 46, 3602 (1967)

    Article  CAS  Google Scholar 

  16. R.G. Body, D.S. McClure, E. Clementi, J. Chem. Phys. 49, 4916 (1968)

    Article  CAS  Google Scholar 

  17. J.D. Dill, L.C. Allen, W.C. Topp, J.A. Pople, J. Am. Chem. Soc. 97, 7220 (1975)

    Article  CAS  Google Scholar 

  18. O. Novaro, S. Cruz, S. Castillo, W. Kołos, A. Leś, J. Chem. Phys. 74, 1118 (1981)

    Article  CAS  Google Scholar 

  19. P.J. Turner, C.W. David, J. Phys. Chem. 85, 3501 (1981)

    Article  CAS  Google Scholar 

  20. C.E. Dykstra, L. Andrews, J. Chem. Phys. 92, 6043 (1990)

    Article  CAS  Google Scholar 

  21. K. Hirao, T. Fujikawa, H. Konishi, S. Yamabe, Chem. Phys. Lett. 104, 184 (1984)

    Article  CAS  Google Scholar 

  22. D.D. Nelson, G.T. Fraser, W. Klemperer, J. Chem. Phys. 83, 6201 (1985)

    Article  CAS  Google Scholar 

  23. D.D. Nelson, W. Klemperer, G.T. Fraser, F.J. Lovas, R.D. Suenram, J. Chem. Phys. 87, 6364 (1987)

    Article  CAS  Google Scholar 

  24. J.C. Greer, R. Ahlrichs, I.V. Hertel, Chem. Phys. 133, 191 (1989)

    Article  CAS  Google Scholar 

  25. J.K. Park, J. Phys. Chem. A 104, 5093 (2000)

    Article  CAS  Google Scholar 

  26. A. Fouqueau, M. Meuwly, J. Chem. Phys. 123, 244308 (2005)

    Article  CAS  Google Scholar 

  27. A. Malloum, J.J. Fifen, Z. Dhaouadi, S.G.N. Engo, N.E. Jaidane, Phys. Chem. Chem. Phys. 17, 29226 (2015)

    Article  CAS  Google Scholar 

  28. J. San Fabián, S. Omar, J.M. García de la Vega, Eur. Phys. J. B 91, 124 (2018)

    Google Scholar 

  29. A. Malloum, J.J. Fifen, J. Conradie, J. Chem. Phys. 149, 024304 (2018)

    Article  CAS  Google Scholar 

  30. A.D. Boese, A. Chandra, J.M.L. Martin, D. Marx, J. Chem. Phys. 119, 5965 (2003)

    Article  CAS  Google Scholar 

  31. M. Bethkenhagen, M. French, R. Redmer, J. Chem. Phys. 138, 234504 (2013)

    Article  CAS  Google Scholar 

  32. M. Diraison, G.J. Martyna, M.E. Tuckerman, J. Chem. Phys. 111, 1096 (1999)

    Article  CAS  Google Scholar 

  33. J.H. Jensen, H. Li, in Calculation of Reduction Potential and pKa. Encyclopedia of Inorganic Chemistry (2009)

    Google Scholar 

  34. G. Li, Q. Cui, J. Phys. Chem. B 107, 14521 (2003)

    Article  CAS  Google Scholar 

  35. C.C.R. Sutton, G.V. Franks, G. Da Silva, J. Phys. Chem. B 116, 11999 (2012)

    Article  CAS  Google Scholar 

  36. J.R. Pliego, Chem. Phys. Lett. 367, 145 (2003)

    Article  CAS  Google Scholar 

  37. M.D. Liptak, G.C. Shields, J. Am. Chem. Soc. 123, 7314 (2001)

    Article  CAS  Google Scholar 

  38. M. Namazian, S. Halvani, J. Chem. Thermodyn. 38, 1495 (2006)

    Article  CAS  Google Scholar 

  39. N. Sadlej-Sosnowska, Theor. Chem. Acc. 118, 281 (2007)

    Article  CAS  Google Scholar 

  40. D. Zahn, Chem. Phys. Lett. 682, 55 (2017)

    Article  CAS  Google Scholar 

  41. D. Zahn, RSC Adv. 7, 54063 (2017)

    Article  CAS  Google Scholar 

  42. M. Albertí, A. Amat, L. Farrera, F. Pirani, J. Molec, Liquids 212, 307 (2015)

    Article  CAS  Google Scholar 

  43. K. Heinzinger, J. Molec, Liquids 88, 77 (2000)

    Article  CAS  Google Scholar 

  44. S. Schimmel, P. Duchstein, T.G. Steigerwald, A.-C.L. Kimmel, E. Schlücker, D. Zahn, R. Niewa, P. Wellmann, J. Cryst. Growth 498, 214 (2018)

    Article  CAS  Google Scholar 

  45. A. Kawska, J. Brickmann, R. Kniep, O. Hochrein, D. Zahn, J. Chem. Phys. 124, 024513 (2006)

    Article  CAS  Google Scholar 

  46. J. Anwar, D. Zahn, Angew. Chem. Int. Ed. 50, 1996 (2011)

    Google Scholar 

  47. A. Kawska, P. Duchstein, O. Hochrein, D. Zahn, Nano Lett. 8, 2336 (2008)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Zahn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wonglakhon, T., Zahn, D. (2021). Molecular Simulations as Guides to Ammonothermal Syntheses of Nitrides—State of the Art and Perspectives. In: Meissner, E., Niewa, R. (eds) Ammonothermal Synthesis and Crystal Growth of Nitrides. Springer Series in Materials Science, vol 304. Springer, Cham. https://doi.org/10.1007/978-3-030-56305-9_15

Download citation

Publish with us

Policies and ethics