Skip to main content

Ultrasound and MRI Assessment of Cardiovascular Risk

  • Chapter
  • First Online:
ASPC Manual of Preventive Cardiology

Part of the book series: Contemporary Cardiology ((CONCARD))

Abstract

Detection of subclinical atherosclerosis through noninvasive imaging such as ultrasound and magnetic resonance imaging (MRI) can improve cardiovascular risk stratification beyond that based on traditional cardiovascular risk factors. Ultrasound-based measures such as carotid intima-media thickness (CIMT) and presence of plaque (carotid, iliofemoral) have been evaluated and shown to have associations with cardiovascular events. However, given issues with reproducibility and other potential errors related to assessment of CIMT, there is currently a greater focus on use of carotid artery plaque measurement for cardiovascular risk assessment. The Mannheim consensus defined plaque as a focal structure or thickening (1) that is at least 50% greater than the thickness of its surrounding vessel, or (2) encroaches into the arterial lumen by at least 0.5 mm, or (3) demonstrates a CIMT greater than 1.5 mm. Several methods of plaque quantification including plaque score, plaque area, and 3D ultrasound-based plaque volume have been shown to predict cardiovascular outcomes. Additional efforts in characterizing plaque also continue to be evaluated. Carotid MRI is an important diagnostic tool not only to identify plaque burden but also to characterize plaque components including a thin fibrous cap, lipid-rich necrotic core, calcification, and intraplaque hemorrhage. It demonstrates moderate to excellent correlation of different plaque characteristics with histology. Clinical data on the value of MRI in risk prediction are starting to emerge. Numerous prospective and retrospective studies have shown MRI-derived measures of plaque characteristic and burden can identify those at higher risk for future cardiovascular events. At the current time, coronary calcium scoring is the recommended imaging approach in cardiovascular risk stratification. However, as technology continues to advance, the value of ultrasound and MRI in cardiovascular risk stratification will likely increase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Naghavi M, Libby P, Falk E, et al. From vulnerable plaque to vulnerable patient. Circulation. 2003;108:1664–72.

    Article  PubMed  Google Scholar 

  2. Hellings WE, Peeters W, Moll FL, et al. Composition of carotid atherosclerotic plaque is associated with cardiovascular outcome: a prognostic study. Circulation. 2010;121:1941–50.

    Article  PubMed  Google Scholar 

  3. Pignoli P, Tremoli E, Poli A, Oreste P, Paoletti R. Intimal plus medial thickness of the arterial wall: a direct measurement with ultrasound imaging. Circulation. 1986;74:1399–406.

    Article  CAS  PubMed  Google Scholar 

  4. Stein JH, Korcarz CE, Hurst RT, et al. Use of carotid ultrasound to identify subclinical vascular disease and evaluate cardiovascular disease risk: a consensus statement from the American Society of Echocardiography Carotid Intima-Media Thickness Task Force. Endorsed by the Society for Vascular Medicine. J Am Soc Echocardiogr. 2008;21:93–111; quiz 89–90.

    Article  PubMed  Google Scholar 

  5. Nicolaides A, Beach K, Kyriacou E, Pattichis C. Ultrasound and carotid bifurcation atherosclerosis. London: Springer London; 2012.

    Book  Google Scholar 

  6. Howard G, Sharrett AR, Heiss G, et al. Carotid artery intimal-medial thickness distribution in general populations as evaluated by B-mode ultrasound. ARIC investigators. Stroke. 1993;24:1297–304.

    Article  CAS  PubMed  Google Scholar 

  7. Urbina EM, Srinivasan SR, Tang R, Bond MG, Kieltyka L, Berenson GS. Impact of multiple coronary risk factors on the intima-media thickness of different segments of carotid artery in healthy young adults (The Bogalusa Heart Study). Am J Cardiol. 2002;90:953–8.

    Article  PubMed  Google Scholar 

  8. Naghavi M, Falk E, Hecht HS, et al. From vulnerable plaque to vulnerable patient--Part III: executive summary of the Screening for Heart Attack Prevention and Education (SHAPE) Task Force report. Am J Cardiol. 2006;98:2h–15h.

    Article  PubMed  Google Scholar 

  9. Chambless LE, Heiss G, Folsom AR, et al. Association of coronary heart disease incidence with carotid arterial wall thickness and major risk factors: the Atherosclerosis Risk in Communities (ARIC) study, 1987–1993. Am J Epidemiol. 1997;146:483–94.

    Article  CAS  PubMed  Google Scholar 

  10. Touboul PJ, Hennerici MG, Meairs S, et al. Mannheim carotid intima-media thickness and plaque consensus (2004–2006–2011). An update on behalf of the advisory board of the 3rd, 4th and 5th watching the risk symposia, at the 13th, 15th and 20th European Stroke Conferences, Mannheim, Germany, 2004, Brussels, Belgium, 2006, and Hamburg, Germany, 2011. Cerebrovasc Dis (Basel, Switzerland). 2012;34:290–6.

    Article  Google Scholar 

  11. Stensland-Bugge E, Bonaa KH, Joakimsen O. Reproducibility of ultrasonographically determined intima-media thickness is dependent on arterial wall thickness. The Tromso study. Stroke. 1997;28:1972–80.

    Article  CAS  PubMed  Google Scholar 

  12. Bots ML, Hoes AW, Koudstaal PJ, Hofman A, Grobbee DE. Common carotid intima-media thickness and risk of stroke and myocardial infarction: the Rotterdam study. Circulation. 1997;96:1432–7.

    Article  CAS  PubMed  Google Scholar 

  13. Li R, Duncan BB, Metcalf PA, et al. B-mode-detected carotid artery plaque in a general population. Atherosclerosis Risk in Communities (ARIC) Study Investigators. Stroke. 1994;25:2377–83.

    Article  CAS  PubMed  Google Scholar 

  14. Ainsworth CD, Blake CC, Tamayo A, Beletsky V, Fenster A, Spence JD. 3D ultrasound measurement of change in carotid plaque volume: a tool for rapid evaluation of new therapies. Stroke. 2005;36:1904–9.

    Article  PubMed  Google Scholar 

  15. Reilly LM, Lusby RJ, Hughes L, Ferrell LD, Stoney RJ, Ehrenfeld WK. Carotid plaque histology using real-time ultrasonography. Clinical and therapeutic implications. Am J Surg. 1983;146:188–93.

    Article  CAS  PubMed  Google Scholar 

  16. Grønholdt M-LM, Nordestgaard BG, Schroeder TV, Vorstrup S, Sillesen H. Ultrasonic echolucent carotid plaques predict future strokes. Circulation. 2001;104:68–73.

    Article  PubMed  Google Scholar 

  17. Madani A, Beletsky V, Tamayo A, Munoz C, Spence JD. High-risk asymptomatic carotid stenosis. Ulceration on 3D ultrasound vs TCD microemboli. Neurology. 2011;77:744–50.

    Article  CAS  PubMed  Google Scholar 

  18. Komatsu T, Iguchi Y, Arai A, et al. Large but nonstenotic carotid artery plaque in patients with a history of embolic stroke of undetermined source. Stroke. 2018;49:3054–6.

    Article  PubMed  Google Scholar 

  19. Staub D, Patel MB, Tibrewala A, et al. Vasa vasorum and plaque neovascularization on contrast-enhanced carotid ultrasound imaging correlates with cardiovascular disease and past cardiovascular events. Stroke. 2010;41:41–7.

    Article  PubMed  Google Scholar 

  20. Polak JF, Pencina MJ, Meisner A, et al. Associations of carotid artery intima-media thickness (IMT) with risk factors and prevalent cardiovascular disease: comparison of mean common carotid artery IMT with maximum internal carotid artery IMT. J Ultrasound Med. 2010;29:1759–68.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chambless LE, Folsom AR, Clegg LX, et al. Carotid wall thickness is predictive of incident clinical stroke: the Atherosclerosis Risk in Communities (ARIC) study. Am J Epidemiol. 2000;151:478–87.

    Article  CAS  PubMed  Google Scholar 

  22. Lorenz MW, von Kegler S, Steinmetz H, Markus HS, Sitzer M. Carotid intima-media thickening indicates a higher vascular risk across a wide age range: prospective data from the Carotid Atherosclerosis Progression Study (CAPS). Stroke. 2006;37:87–92.

    Article  PubMed  Google Scholar 

  23. O’Leary DH, Polak JF, Kronmal RA, Manolio TA, Burke GL, Wolfson SK Jr. Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults. Cardiovascular Health Study Collaborative Research Group. N Engl J Med. 1999;340:14–22.

    Article  PubMed  Google Scholar 

  24. Rosvall M, Janzon L, Berglund G, Engstrom G, Hedblad B. Incident coronary events and case fatality in relation to common carotid intima-media thickness. J Intern Med. 2005;257:430–7.

    Article  CAS  PubMed  Google Scholar 

  25. van der Meer IM, Bots ML, Hofman A, del Sol AI, van der Kuip DA, Witteman JC. Predictive value of noninvasive measures of atherosclerosis for incident myocardial infarction: the Rotterdam study. Circulation. 2004;109:1089–94.

    Article  PubMed  Google Scholar 

  26. Lorenz MW, Markus HS, Bots ML, Rosvall M, Sitzer M. Prediction of clinical cardiovascular events with carotid intima-media thickness: a systematic review and meta-analysis. Circulation. 2007;115:459–67.

    Article  PubMed  Google Scholar 

  27. Den Ruijter HM, Peters SA, Anderson TJ, et al. Common carotid intima-media thickness measurements in cardiovascular risk prediction: a meta-analysis. JAMA. 2012;308:796–803.

    Article  Google Scholar 

  28. Polak JF, Pencina MJ, Pencina KM, O’Donnell CJ, Wolf PA, D’Agostino RB Sr. Carotid-wall intima-media thickness and cardiovascular events. N Engl J Med. 2011;365:213–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nambi V, Chambless L, Folsom AR, et al. Carotid intima-media thickness and presence or absence of plaque improves prediction of coronary heart disease risk: the ARIC (Atherosclerosis Risk In Communities) study. J Am Coll Cardiol. 2010;55:1600–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gardin JM, Bartz TM, Polak JF, O’Leary DH, Wong ND. What do carotid intima-media thickness and plaque add to the prediction of stroke and cardiovascular disease risk in older adults? The cardiovascular health study. J Am Soc Echocardiogr. 2014;27:998–1005.e2.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Baldassarre D, Hamsten A, Veglia F, et al. Measurements of carotid intima-media thickness and of interadventitia common carotid diameter improve prediction of cardiovascular events. J Am Coll Cardiol. 2012;60:1489.

    Article  PubMed  Google Scholar 

  32. Lorenz MW, Schaefer C, Steinmetz H, Sitzer M. Is carotid intima media thickness useful for individual prediction of cardiovascular risk? Ten-year results from the Carotid Atherosclerosis Progression Study (CAPS). Eur Heart J. 2010;31:2041–8.

    Article  PubMed  Google Scholar 

  33. Yeboah J, McClelland RL, Polonsky TS, et al. Comparison of novel risk markers for improvement in cardiovascular risk assessment in intermediate-risk individuals. JAMA. 2012;308:788–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lorenz MW, Polak JF, Kavousi M, et al. Carotid intima-media thickness progression to predict cardiovascular events in the general population (the PROG-IMT collaborative project): a meta-analysis of individual participant data. Lancet (London, England). 2012;379:2053–62.

    Article  Google Scholar 

  35. Akosah KO, Schaper A, Cogbill C, Schoenfeld P. Preventing myocardial infarction in the young adult in the first place: how do the National Cholesterol Education Panel III guidelines perform? J Am Coll Cardiol. 2003;41:1475–9.

    Article  PubMed  Google Scholar 

  36. Sibley C, Blumenthal RS, Merz CNB, Mosca L. Limitations of current cardiovascular disease risk assessment strategies in women. J Womens Health (Larchmt). 2006;15:54–6.

    Article  Google Scholar 

  37. Kusters DM, Wiegman A, Kastelein JJ, Hutten BA. Carotid intima-media thickness in children with familial hypercholesterolemia. Circ Res. 2014;114:307–10.

    Article  CAS  PubMed  Google Scholar 

  38. Wiegman A, Gidding SS, Watts GF, et al. Familial hypercholesterolaemia in children and adolescents: gaining decades of life by optimizing detection and treatment. Eur Heart J. 2015;36:2425–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Descamps OS, Gilbeau JP, Leysen X, Van Leuven F, Heller FR. Impact of genetic defects on atherosclerosis in patients suspected of familial hypercholesterolaemia. Eur J Clin Invest. 2001;31:958–65.

    Article  CAS  PubMed  Google Scholar 

  40. Kusters DM, Avis HJ, de Groot E, et al. Ten-year follow-up after initiation of statin therapy in children with familial hypercholesterolemia. JAMA. 2014;312:1055–7.

    Article  PubMed  CAS  Google Scholar 

  41. Luirink IK, Wiegman A, Kusters DM, et al. 20-year follow-up of statins in children with familial hypercholesterolemia. N Engl J Med. 2019;381:1547–56.

    Article  CAS  PubMed  Google Scholar 

  42. Hunt KJ, Evans GW, Folsom AR, et al. Acoustic shadowing on B-mode ultrasound of the carotid artery predicts ischemic stroke: the Atherosclerosis Risk in Communities (ARIC) study. Stroke. 2001;32:1120–6.

    Article  CAS  PubMed  Google Scholar 

  43. Polak JF, Szklo M, Kronmal RA, et al. The value of carotid artery plaque and intima-media thickness for incident cardiovascular disease: the multi-ethnic study of atherosclerosis. J Am Heart Assoc. 2013;2:e000087.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Plichart M, Celermajer DS, Zureik M, et al. Carotid intima-media thickness in plaque-free site, carotid plaques and coronary heart disease risk prediction in older adults. The three-city study. Atherosclerosis. 2011;219:917–24.

    Article  CAS  PubMed  Google Scholar 

  45. Störk S, van den Beld AW, von Schacky C, et al. Carotid artery plaque burden, stiffness, and mortality risk in elderly men. Circulation. 2004;110:344–8.

    Article  PubMed  Google Scholar 

  46. Sillesen H, Sartori S, Sandholt B, Baber U, Mehran R, Fuster V. Carotid plaque thickness and carotid plaque burden predict future cardiovascular events in asymptomatic adult Americans. Eur Heart J Cardiovasc Imaging. 2018;19:1042–50.

    Article  PubMed  Google Scholar 

  47. Spence JD, Eliasziw M, DiCicco M, Hackam DG, Galil R, Lohmann T. Carotid plaque area: a tool for targeting and evaluating vascular preventive therapy. Stroke. 2002;33:2916–22.

    Article  PubMed  Google Scholar 

  48. Mathiesen EB, Johnsen SH, Wilsgaard T, Bonaa KH, Lochen ML, Njolstad I. Carotid plaque area and intima-media thickness in prediction of first-ever ischemic stroke: a 10-year follow-up of 6584 men and women: the Tromso study. Stroke. 2011;42:972–8.

    Article  PubMed  Google Scholar 

  49. Baber U, Mehran R, Sartori S, et al. Prevalence, impact, and predictive value of detecting subclinical coronary and carotid atherosclerosis in asymptomatic adults. The BioImage study. J Am Coll Cardiol. 2015;65:1065–74.

    Article  PubMed  Google Scholar 

  50. Prati P, Tosetto A, Casaroli M, et al. Carotid plaque morphology improves stroke risk prediction: usefulness of a new ultrasonographic score. Cerebrovasc Dis. 2011;31:300–4.

    Article  CAS  PubMed  Google Scholar 

  51. Inaba Y, Chen JA, Bergmann SR. Carotid plaque, compared with carotid intima-media thickness, more accurately predicts coronary artery disease events: a meta-analysis. Atherosclerosis. 2012;220:128–33.

    Article  CAS  PubMed  Google Scholar 

  52. Greenland P, Abrams J, Aurigemma GP, et al. Prevention conference V: beyond secondary prevention: identifying the high-risk patient for primary prevention: noninvasive tests of atherosclerotic burden: Writing Group III. Circulation. 2000;101:E16–22.

    Article  CAS  PubMed  Google Scholar 

  53. Third report of the National Cholesterol Education Program (NCEP) Expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III) final report. Circulation. 2002;106:3143–421.

    Google Scholar 

  54. Greenland P, Alpert JS, Beller GA, et al. 2010 ACCF/AHA guideline for assessment of cardiovascular risk in asymptomatic adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2010;56:e50–103.

    Article  PubMed  Google Scholar 

  55. Goff DC Jr, Lloyd-Jones DM, Bennett G, et al. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2014;129:S49–73.

    Article  PubMed  Google Scholar 

  56. Arnett DK, Blumenthal RS, Albert MA, et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease. A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2019;74:e177–232.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Mach F, Baigent C, Catapano AL, et al. 2019 ESC/EAS guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk: the task force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS). Eur Heart J. 2020;41(1):111–88.

    Article  PubMed  Google Scholar 

  58. Belcaro G, Nicolaides AN, Laurora G, et al. Ultrasound morphology classification of the arterial wall and cardiovascular events in a 6-year follow-up study. Arterioscler Thromb Vasc Biol. 1996;16:851–6.

    Article  CAS  PubMed  Google Scholar 

  59. Davidsson L, Fagerberg B, Bergstrom G, Schmidt C. Ultrasound-assessed plaque occurrence in the carotid and femoral arteries are independent predictors of cardiovascular events in middle-aged men during 10 years of follow-up. Atherosclerosis. 2010;209:469–73.

    Article  CAS  PubMed  Google Scholar 

  60. Belcaro G, Nicolaides AN, Ramaswami G, et al. Carotid and femoral ultrasound morphology screening and cardiovascular events in low risk subjects: a 10-year follow-up study (the CAFES-CAVE study(1)). Atherosclerosis. 2001;156:379–87.

    Article  CAS  PubMed  Google Scholar 

  61. Fernandez-Friera L, Fuster V, Lopez-Melgar B, et al. Normal LDL-cholesterol levels are associated with subclinical atherosclerosis in the absence of risk factors. J Am Coll Cardiol. 2017;70:2979–91.

    Article  CAS  PubMed  Google Scholar 

  62. Lester SJ, Eleid MF, Khandheria BK, Hurst RT. Carotid intima-media thickness and coronary artery calcium score as indications of subclinical atherosclerosis. Mayo Clin Proc. 2009;84:229–33.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Nakao YM, Miyamoto Y, Higashi M, et al. Sex differences in impact of coronary artery calcification to predict coronary artery disease. Heart. 2018;104:1118–24.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Lansky AJ, Ng VG, Maehara A, et al. Gender and the extent of coronary atherosclerosis, plaque composition, and clinical outcomes in acute coronary syndromes. J Am Coll Cardiol Img. 2012;5:S62–72.

    Article  Google Scholar 

  65. Wyman RA, Gimelli G, McBride PE, Korcarz CE, Stein JH. Does detection of carotid plaque affect physician behavior or motivate patients? Am Heart J. 2007;154:1072–7.

    Article  PubMed  Google Scholar 

  66. Barth JD. Which tools are in your cardiac workshop? Carotid ultrasound, endothelial function, and magnetic resonance imaging. Am J Cardiol. 2001;87:8a–14a.

    Article  CAS  PubMed  Google Scholar 

  67. Naslund U, Ng N, Lundgren A, et al. Visualization of asymptomatic atherosclerotic disease for optimum cardiovascular prevention (VIPVIZA): a pragmatic, open-label, randomised controlled trial. Lancet (London, England). 2019;393:133–42.

    Article  Google Scholar 

  68. Cai J-M, Hatsukami TS, Ferguson MS, Small R, Polissar NL, Yuan C. Classification of human carotid atherosclerotic lesions with in vivo multicontrast magnetic resonance imaging. Circulation. 2002;106:1368–73.

    Article  PubMed  Google Scholar 

  69. Hatsukami TS, Ross R, Polissar NL, Yuan C. Visualization of fibrous cap thickness and rupture in human atherosclerotic carotid plaque in vivo with high-resolution magnetic resonance imaging. Circulation. 2000;102:959–64.

    Article  CAS  PubMed  Google Scholar 

  70. Chu B, Kampschulte A, Ferguson MS, et al. Hemorrhage in the atherosclerotic carotid plaque: a high-resolution MRI study. Stroke. 2004;35:1079–84.

    Article  PubMed  Google Scholar 

  71. Saam T, Hetterich H, Hoffmann V, et al. Meta-analysis and systematic review of the predictive value of carotid plaque hemorrhage on cerebrovascular events by magnetic resonance imaging. J Am Coll Cardiol. 2013;62:1081–91.

    Article  PubMed  Google Scholar 

  72. Albuquerque LC, Narvaes LB, Maciel AA, et al. Intraplaque hemorrhage assessed by high-resolution magnetic resonance imaging and C-reactive protein in carotid atherosclerosis. J Vasc Surg. 2007;46:1130–7.

    Article  PubMed  Google Scholar 

  73. McDermott MM, Kramer CM, Tian L, et al. Plaque composition in the proximal superficial femoral artery and peripheral artery disease events. J Am Coll Cardiol Img. 2017;10:1003–12.

    Article  Google Scholar 

  74. Saam T, Ferguson MS, Yarnykh VL, et al. Quantitative evaluation of carotid plaque composition by in vivo MRI. Arterioscler Thromb Vasc Biol. 2005;25:234–9.

    Article  CAS  PubMed  Google Scholar 

  75. Mitsumori LM, Hatsukami TS, Ferguson MS, Kerwin WS, Cai J, Yuan C. In vivo accuracy of multisequence MR imaging for identifying unstable fibrous caps in advanced human carotid plaques. J Magn Reson Imaging. 2003;17:410–20.

    Article  PubMed  Google Scholar 

  76. Ota H, Yarnykh VL, Ferguson MS, et al. Carotid intraplaque hemorrhage imaging at 3.0-T MR imaging: comparison of the diagnostic performance of three T1-weighted sequences. Radiology. 2010;254:551–63.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Puppini G, Furlan F, Cirota N, et al. Characterisation of carotid atherosclerotic plaque: comparison between magnetic resonance imaging and histology. Radiol Med. 2006;111:921–30.

    Article  CAS  PubMed  Google Scholar 

  78. Sun J, Zhao XQ, Balu N, et al. Carotid magnetic resonance imaging for monitoring atherosclerotic plaque progression: a multicenter reproducibility study. Int J Cardiovasc Imaging. 2015;31:95–103.

    Article  PubMed  Google Scholar 

  79. Gupta A, Baradaran H, Schweitzer AD, et al. Carotid plaque MRI and stroke risk: a systematic review and meta-analysis. Stroke. 2013;44:3071–7.

    Article  PubMed  Google Scholar 

  80. Takaya N, Yuan C, Chu B, et al. Association between carotid plaque characteristics and subsequent ischemic cerebrovascular events: a prospective assessment with MRI--initial results. Stroke. 2006;37:818–23.

    Article  PubMed  Google Scholar 

  81. Zhang Y, Guallar E, Malhotra S, et al. Carotid artery wall thickness and incident cardiovascular events: a comparison between US and MRI in the Multi-Ethnic Study of Atherosclerosis (MESA). Radiology. 2018;289:649–57.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Zavodni AE, Wasserman BA, McClelland RL, et al. Carotid artery plaque morphology and composition in relation to incident cardiovascular events: the Multi-Ethnic Study of Atherosclerosis (MESA). Radiology. 2014;271(2):381–9. https://doi.org/10.1148/radiol.14131020

  83. Virani Salim S, Sun W, Dodge R, et al. Abstract 14835: carotid artery plaque burden and characteristics and subsequent risk of incident cardiovascular events: the atherosclerosis risk in communities (ARIC) carotid magnetic resonance imaging study. Circulation. 2013;128:A14835.

    Google Scholar 

  84. Zhao XQ, Yuan C, Hatsukami TS, et al. Effects of prolonged intensive lipid-lowering therapy on the characteristics of carotid atherosclerotic plaques in vivo by MRI: a case-control study. Arterioscler Thromb Vasc Biol. 2001;21:1623–9.

    Article  CAS  PubMed  Google Scholar 

  85. Gaarder M, Seierstad T. Measurements of carotid intima media thickness in non-invasive high-frequency ultrasound images: the effect of dynamic range setting. Cardiovasc Ultrasound. 2015;13(1):5.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Rosei EA, Salvetti M, Muiesan ML. Ultrasound: carotid intima-media thickness and plaque (2D–3D). In: Agabiti Rosei E, Mancia G, editors. Assessment of preclinical organ damage in hypertension. Cham: Springer International Publishing; 2015. p. 41–50.

    Chapter  Google Scholar 

  87. Sztajzel RF. Grayscale-based stratified color mapping of carotid plaque. In: Nicolaides A, Beach KW, Kyriacou E, Pattichis CS, editors. Ultrasound and carotid bifurcation atherosclerosis. London: Springer London; 2012. p. 563–9.

    Google Scholar 

  88. Saba L, Anzidei M, Marincola BC, et al. Imaging of the carotid artery vulnerable plaque. Cardiovasc Intervent Radiol. 2014;37(3):572–85.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay Nambi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hussain, A., Brunner, G., Nambi, V. (2021). Ultrasound and MRI Assessment of Cardiovascular Risk. In: Wong, N.D., Amsterdam, E.A., Toth, P.P. (eds) ASPC Manual of Preventive Cardiology. Contemporary Cardiology. Springer, Cham. https://doi.org/10.1007/978-3-030-56279-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-56279-3_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-56278-6

  • Online ISBN: 978-3-030-56279-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics