Skip to main content

Role of the Serotonin 2B Receptor in the Reinforcing Effects of Psychostimulants

  • Chapter
  • First Online:
5-HT2B Receptors

Part of the book series: The Receptors ((REC,volume 35))

  • 403 Accesses

Abstract

In this chapter, we will review the current literature underlying the essential role played by the 5-HT2B receptor in the regulation of serotonin and dopamine neurotransmission, by first focusing on its involvement in the psychostimulant effects of the club-drug Ecstasy, then by further describing its contribution to the psychostimulant effects of amphetamine, and finally, by presenting its role in the psychostimulant effects of cocaine. Throughout this review, we will compare the current findings in mice and rats with an emphasis on interspecies discrepancies. to conclude, we will discuss the potential pharmacotherapeutic strategies for the treatment of psychostimulant addiction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

MDA:

3,4-methylenedioxyamphetamine

MDMA, Ecstasy:

3,4-methylenedioxymethamphetamine

DA:

Dopamine

DAT:

Dopamine transporter

DRN:

Dorsal raphe nucleus

GAD-67:

Glutamate decarboxylase 67

MSN:

Medium-size spiny neuron

NET:

Noradrenaline transporter

NAC shell:

Nucleus accumbens shell

PKC:

Protein kinase C

PKG:

Protein kinase G

SERT:

Serotonin transporter

SSRIs:

Selective serotonin reuptake inhibitors

TPH2:

Tryptophan hydroxylase 2

VMAT:

Vesicular monoamine transporter

VTA:

Ventral tegmental area

References

  1. Kursar JD, Nelson DL, Wainscott DB, Cohen ML, Baez M (1992) Molecular cloning, functional expression, and pharmacological characterization of a novel serotonin receptor (5-hydroxytryptamine2F) from rat stomach fundus. Mol Pharmacol 42(4):549–557

    CAS  PubMed  Google Scholar 

  2. Pompeiano M, Palacios JM, Mengod G (1994) Distribution of the serotonin 5-HT2 receptor family mRNAs: comparison between 5-HT2A and 5-HT2C receptors. Brain Res Mol Brain Res 23(1–2):163–178

    Article  CAS  PubMed  Google Scholar 

  3. Schmuck K, Ullmer C, Engels P, Lübbert H (1994) Cloning and functional characterization of the human 5-HT2B serotonin receptor. FEBS Lett 342(1):85–90

    Article  CAS  PubMed  Google Scholar 

  4. Bonaventure P, Guo H, Tian B, Liu X, Bittner A, Roland B et al (2002) Nuclei and subnuclei gene expression profiling in mammalian brain. Brain Res 943(1):38–47

    Article  CAS  PubMed  Google Scholar 

  5. Diaz SL, Doly S, Narboux-Nême N, Fernández S, Mazot P, Banas SM et al (2012) 5-HT(2B) receptors are required for serotonin-selective antidepressant actions. Mol Psychiatry 17(2):154–163

    Article  CAS  PubMed  Google Scholar 

  6. Cathala A, Devroye C, Drutel G, Revest J-M, Artigas F, Spampinato U (2019) Serotonin2B receptors in the rat dorsal raphe nucleus exert a GABA-mediated tonic inhibitory control on serotonin neurons. Exp Neurol 311:57–66

    Article  CAS  PubMed  Google Scholar 

  7. Doly S, Quentin E, Eddine R, Tolu S, Fernandez SP, Bertran-Gonzalez J et al (2017) Serotonin 2B Receptors in mesoaccumbens dopamine pathway regulate cocaine responses. J Neurosci 37(43):10372–10388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bonhaus DW, Bach C, DeSouza A, Salazar FH, Matsuoka BD, Zuppan P et al (1995) The pharmacology and distribution of human 5-hydroxytryptamine2B (5-HT2B) receptor gene products: comparison with 5-HT2A and 5-HT2C receptors. Br J Pharmacol 115(4):622–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bevilacqua L, Doly S, Kaprio J, Yuan Q, Tikkanen R, Paunio T et al (2010) A population-specific HTR2B stop codon predisposes to severe impulsivity. Nature 468(7327):1061–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shikanai H, Yoshida T, Konno K, Yamasaki M, Izumi T, Ohmura Y et al (2012) Distinct neurochemical and functional properties of GAD67-containing 5-HT neurons in the rat dorsal raphe nucleus. J Neurosci 32(41):14415–14426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Belin MF, Nanopoulos D, Didier M, Aguera M, Steinbusch H, Verhofstad A et al (1983) Immunohistochemical evidence for the presence of γ-aminobutyric acid and serotonin in one nerve cell. A study on the raphe nuclei of the rat using antibodies to glutamate decarboxylase and serotonin. Brain Res 275(2):329–339

    Article  CAS  PubMed  Google Scholar 

  12. Stamp JA, Semba K (1995) Extent of colocalization of serotonin and GABA in the neurons of the rat raphe nuclei. Brain Res 677(1):39–49

    Article  CAS  PubMed  Google Scholar 

  13. Duxon MS, Flanigan TP, Reavley AC, Baxter GS, Blackburn TP, Fone KC (1997) Evidence for expression of the 5-hydroxytryptamine-2B receptor protein in the rat central nervous system. Neuroscience 76(2):323–329

    CAS  PubMed  Google Scholar 

  14. Choi DS, Maroteaux L (1996) Immunohistochemical localisation of the serotonin 5-HT2B receptor in mouse gut, cardiovascular system, and brain. FEBS Lett 391(1–2):45–51

    Article  CAS  PubMed  Google Scholar 

  15. Doly S, Bertran-Gonzalez J, Callebert J, Bruneau A, Banas SM, Belmer A et al (2009) Role of serotonin via 5-HT2B receptors in the reinforcing effects of MDMA in mice. PLoS ONE 4(11):e7952

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Doly S, Valjent E, Setola V, Callebert J, Hervé D, Launay J-M et al (2008) Serotonin 5-HT2B receptors are required for 3,4-methylenedioxymethamphetamine-induced hyperlocomotion and 5-HT release in vivo and in vitro. J Neurosci 28(11):2933–2940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Belmer A, Quentin E, Diaz SL, Guiard BP, Fernandez SP, Doly S et al (2018) Positive regulation of raphe serotonin neurons by serotonin 2B receptors. Neuropsychopharmacology 43(7):1623–1632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pitychoutis PM, Belmer A, Moutkine I, Adrien J, Maroteaux L (2015) Mice lacking the serotonin Htr2B receptor gene present an antipsychotic-sensitive schizophrenic-like phenotype. Neuropsychopharmacology 40(12):2764–2773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Auclair AL, Cathala A, Sarrazin F, Depoortère R, Piazza PV, Newman-Tancredi A et al (2010) The central serotonin 2B receptor: a new pharmacological target to modulate the mesoaccumbens dopaminergic pathway activity. J Neurochem 114(5):1323–1332

    CAS  PubMed  Google Scholar 

  20. Devroye C, Cathala A, Di Marco B, Caraci F, Drago F, Piazza PV et al (2015) Central serotonin(2B) receptor blockade inhibits cocaine-induced hyperlocomotion independently of changes of subcortical dopamine outflow. Neuropharmacology 97:329–337

    Article  CAS  PubMed  Google Scholar 

  21. Crespi D, Mennini T, Gobbi M (1997) Carrier-dependent and Ca(2+)-dependent 5-HT and dopamine release induced by (+)-amphetamine, 3,4-methylendioxymethamphetamine, p-chloroamphetamine and (+)-fenfluramine. Br J Pharmacol 121(8):1735–1743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lizarraga LE, Cholanians AB, Phan AV, Herndon JM, Lau SS, Monks TJ (2015) Vesicular monoamine transporter 2 and the acute and long-term response to 3,4-(±)-methylenedioxymethamphetamine. Toxicol Sci 143(1):209–219

    Article  CAS  PubMed  Google Scholar 

  23. Partilla JS, Dempsey AG, Nagpal AS, Blough BE, Baumann MH, Rothman RB (2006) Interaction of amphetamines and related compounds at the vesicular monoamine transporter. J Pharmacol Exp Ther 319(1):237–246

    Article  CAS  PubMed  Google Scholar 

  24. Rothman RB, Baumann MH (2002) Therapeutic and adverse actions of serotonin transporter substrates. Pharmacol Ther 95(1):73–88

    Article  CAS  PubMed  Google Scholar 

  25. Rudnick G, Clark J (1993) From synapse to vesicle: the reuptake and storage of biogenic amine neurotransmitters. Biochim Biophys Acta 1144(3):249–263

    Article  CAS  PubMed  Google Scholar 

  26. Rudnick G, Wall SC (1992) The molecular mechanism of “ecstasy” [3,4-methylenedioxy-methamphetamine (MDMA)]: serotonin transporters are targets for MDMA-induced serotonin release. Proc Natl Acad Sci U S A 89(5):1817–1821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bengel D, Murphy DL, Andrews AM, Wichems CH, Feltner D, Heils A et al (1998) Altered brain serotonin homeostasis and locomotor insensitivity to 3, 4-methylenedioxymethamphetamine (“Ecstasy”) in serotonin transporter-deficient mice. Mol Pharmacol 53(4):649–655

    Article  CAS  PubMed  Google Scholar 

  28. Brox BW, Ellenbroek BA (2018) A genetic reduction in the serotonin transporter differentially influences MDMA and heroin induced behaviours. Psychopharmacology 235(7):1907–1914

    Article  CAS  PubMed  Google Scholar 

  29. Callaway CW, Wing LL, Geyer MA (1990) Serotonin release contributes to the locomotor stimulant effects of 3,4-methylenedioxymethamphetamine in rats. J Pharmacol Exp Ther 254(2):456–464

    CAS  PubMed  Google Scholar 

  30. Lizarraga LE, Phan AV, Cholanians AB, Herndon JM, Lau SS, Monks TJ (2014) Serotonin reuptake transporter deficiency modulates the acute thermoregulatory and locomotor activity response to 3,4-(±)-methylenedioxymethamphetamine, and attenuates depletions in serotonin levels in SERT-KO rats. Toxicol Sci 139(2):421–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Trigo JM, Renoir T, Lanfumey L, Hamon M, Lesch K-P, Robledo P et al (2007) 3,4-methylenedioxymethamphetamine self-administration is abolished in serotonin transporter knockout mice. Biol Psychiatry 62(6):669–679

    Article  CAS  PubMed  Google Scholar 

  32. Launay J-M, Schneider B, Loric S, Da Prada M, Kellermann O (2006) Serotonin transport and serotonin transporter-mediated antidepressant recognition are controlled by 5-HT2B receptor signaling in serotonergic neuronal cells. FASEB J 20(11):1843–1854

    Article  CAS  PubMed  Google Scholar 

  33. Buchmayer F, Schicker K, Steinkellner T, Geier P, Stübiger G, Hamilton PJ et al (2013) Amphetamine actions at the serotonin transporter rely on the availability of phosphatidylinositol-4,5-bisphosphate. PNAS 110(28):11642–11647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hilber B, Scholze P, Dorostkar MM, Sandtner W, Holy M, Boehm S et al (2005) Serotonin-transporter mediated efflux: a pharmacological analysis of amphetamines and non-amphetamines. Neuropharmacology 49(6):811–819

    Article  CAS  PubMed  Google Scholar 

  35. Kern C, Erdem FA, El-Kasaby A, Sandtner W, Freissmuth M, Sucic S (2017) The N terminus specifies the switch between transport modes of the human serotonin transporter. J Biol Chem 292(9):3603–3613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sandtner W, Schmid D, Schicker K, Gerstbrein K, Koenig X, Mayer FP et al (2014) A quantitative model of amphetamine action on the 5-HT transporter. Br J Pharmacol 171(4):1007–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Seidel S, Singer EA, Just H, Farhan H, Scholze P, Kudlacek O et al (2005) Amphetamines take two to tango: an oligomer-based counter-transport model of neurotransmitter transport explores the amphetamine action. Mol Pharmacol 67(1):140–151

    Article  CAS  PubMed  Google Scholar 

  38. Sitte HH, Freissmuth M (2015) Amphetamines, new psychoactive drugs and the monoamine transporter cycle. Trends Pharmacol Sci 36(1):41–50

    Article  CAS  PubMed  Google Scholar 

  39. Sitte HH, Freissmuth M (2010) The reverse operation of Na+/Cl−-coupled neurotransmitter transporters–why amphetamines take two to tango. J Neurochem 112(2):340–355

    Article  CAS  PubMed  Google Scholar 

  40. Setola V, Hufeisen SJ, Grande-Allen KJ, Vesely I, Glennon RA, Blough B et al (2003) 3,4-methylenedioxymethamphetamine (MDMA, “Ecstasy”) induces fenfluramine-like proliferative actions on human cardiac valvular interstitial cells in vitro. Mol Pharmacol 63(6):1223–1229

    Article  CAS  PubMed  Google Scholar 

  41. Belmer A, Maroteaux L (2019) Regulation of raphe serotonin neurons by serotonin 1A and 2B receptors. Neuropsychopharmacology 44(1):218–219

    Article  PubMed  Google Scholar 

  42. Quentin E, Belmer A, Maroteaux L (2018) Somato-dendritic regulation of raphe serotonin neurons; a key to antidepressant action. Front Neurosci 12:982

    Article  PubMed  PubMed Central  Google Scholar 

  43. Rothman RB, Baumann MH, Blough BE, Jacobson AE, Rice KC, Partilla JS (2010) Evidence for noncompetitive modulation of substrate-induced serotonin release. Synapse 64(11):862–869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ball KT, Rebec GV (2005) Role of 5-HT2A and 5-HT2C/B receptors in the acute effects of 3,4-methylenedioxymethamphetamine (MDMA) on striatal single-unit activity and locomotion in freely moving rats. Psychopharmacology 181(4):676–687

    Article  CAS  PubMed  Google Scholar 

  45. Gocho Y, Sakai A, Yanagawa Y, Suzuki H, Saitow F (2013) Electrophysiological and pharmacological properties of GABAergic cells in the dorsal raphe nucleus. J Physiol Sci 63(2):147–154

    Article  CAS  PubMed  Google Scholar 

  46. Calizo LH, Ma X, Pan Y, Lemos J, Craige C, Heemstra L et al (2011) Raphe serotonin neurons are not homogenous: electrophysiological, morphological and neurochemical evidence. Neuropharmacology 61(3):524–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Calipari ES, Ferris MJ (2013) Amphetamine mechanisms and actions at the dopamine terminal revisited. J Neurosci 33(21):8923–8925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. De Deurwaerdère P, Spampinato U (1999) Role of serotonin(2A) and serotonin(2B/2C) receptor subtypes in the control of accumbal and striatal dopamine release elicited in vivo by dorsal raphe nucleus electrical stimulation. J Neurochem 73(3):1033–1042

    Article  PubMed  Google Scholar 

  49. Di Giovanni G, De Deurwaerdére P, Di Mascio M, Di Matteo V, Esposito E, Spampinato U (1999) Selective blockade of serotonin-2C/2B receptors enhances mesolimbic and mesostriatal dopaminergic function: a combined in vivo electrophysiological and microdialysis study. Neuroscience 91(2):587–597

    Article  PubMed  Google Scholar 

  50. Di Matteo V, Di Giovanni G, Di Mascio M, Esposito E (1998) Selective blockade of serotonin2C/2B receptors enhances dopamine release in the rat nucleus accumbens. Neuropharmacology 37(2):265–272

    Article  PubMed  Google Scholar 

  51. Porras G, Di Matteo V, Fracasso C, Lucas G, De Deurwaerdère P, Caccia S et al (2002) 5-HT2A and 5-HT2C/2B receptor subtypes modulate dopamine release induced in vivo by amphetamine and morphine in both the rat nucleus accumbens and striatum. Neuropsychopharmacology 26(3):311–324

    Article  CAS  PubMed  Google Scholar 

  52. Lucas G, De Deurwaerdère P, Caccia S (2000) Umberto Spampinato null. The effect of serotonergic agents on haloperidol-induced striatal dopamine release in vivo: opposite role of 5-HT(2A) and 5-HT(2C) receptor subtypes and significance of the haloperidol dose used. Neuropharmacology 39(6):1053–1063

    Article  CAS  PubMed  Google Scholar 

  53. Heidbreder C, Feldon J (1998) Amphetamine-induced neurochemical and locomotor responses are expressed differentially across the anteroposterior axis of the core and shell subterritories of the nucleus accumbens. Synapse 29(4):310–322

    Article  CAS  PubMed  Google Scholar 

  54. Devroye C, Cathala A, Piazza PV, Spampinato U (2018) The central serotonin2B receptor as a new pharmacological target for the treatment of dopamine-related neuropsychiatric disorders: Rationale and current status of research. Pharmacol Ther 181:143–155

    Article  CAS  PubMed  Google Scholar 

  55. Filip M, Alenina N, Bader M, Przegaliński E (2010) Behavioral evidence for the significance of serotoninergic (5-HT) receptors in cocaine addiction. Addict Biol 15(3):227–249

    Article  CAS  PubMed  Google Scholar 

  56. Filip M, Bubar MJ, Cunningham KA (2006) Contribution of serotonin (5-HT) 5-HT2 receptor subtypes to the discriminative stimulus effects of cocaine in rats. Psychopharmacology 183(4):482–489

    Article  CAS  PubMed  Google Scholar 

  57. McCreary AC, Cunningham KA (1999) Effects of the 5-HT2C/2B antagonist SB 206553 on hyperactivity induced by cocaine. Neuropsychopharmacology 20(6):556–564

    Article  CAS  PubMed  Google Scholar 

  58. Craige CP, Unterwald EM (2013) Serotonin (2C) receptor regulation of cocaine-induced conditioned place preference and locomotor sensitization. Behav Brain Res 238:206–210

    Article  CAS  PubMed  Google Scholar 

  59. Fletcher PJ, Sinyard J, Higgins GA (2006) The effects of the 5-HT(2C) receptor antagonist SB242084 on locomotor activity induced by selective, or mixed, indirect serotonergic and dopaminergic agonists. Psychopharmacology 187(4):515–525

    Article  CAS  PubMed  Google Scholar 

  60. Liu S, Cunningham KA (2006) Serotonin2C receptors (5-HT2C R) control expression of cocaine-induced conditioned hyperactivity. Drug Alcohol Depend 81(3):275–282

    Article  CAS  PubMed  Google Scholar 

  61. Navailles S, Moison D, Cunningham KA, Spampinato U (2008) Differential regulation of the mesoaccumbens dopamine circuit by serotonin2C receptors in the ventral tegmental area and the nucleus accumbens: an in vivo microdialysis study with cocaine. Neuropsychopharmacology 33(2):237–246

    Article  CAS  PubMed  Google Scholar 

  62. Eilam D, Szechtman H (1989) Biphasic effect of D-2 agonist quinpirole on locomotion and movements. Eur J Pharmacol 161(2–3):151–157

    Article  CAS  PubMed  Google Scholar 

  63. Horvitz JC, Williams G, Joy R (2001) Time-dependent actions of D2 family agonist quinpirole on spontaneous behavior in the rat: dissociation between sniffing and locomotion. Psychopharmacology 154(4):350–355

    Article  CAS  PubMed  Google Scholar 

  64. Koeltzow TE, Austin JD, Vezina P (2003) Behavioral sensitization to quinpirole is not associated with increased nucleus accumbens dopamine overflow. Neuropharmacology 44(1):102–110

    Article  CAS  PubMed  Google Scholar 

  65. Benaliouad F, Kapur S, Natesan S, Rompré P-P (2009) Effects of the dopamine stabilizer, OSU-6162, on brain stimulation reward and on quinpirole-induced changes in reward and locomotion. Eur Neuropsychopharmacol 19(6):416–430

    Article  CAS  PubMed  Google Scholar 

  66. Carey RJ, DePalma G, Damianopoulos E, Hopkins A, Shanahan A, Müller CP et al (2004) Dopaminergic and serotonergic autoreceptor stimulation effects are equivalent and additive in the suppression of spontaneous and cocaine induced locomotor activity. Brain Res 1019(1–2):134–143

    Article  CAS  PubMed  Google Scholar 

  67. Carey RJ, Depalma G, Damianopoulos E, Müller CP, Huston JP (2004) The 5-HT1A receptor and behavioral stimulation in the rat: effects of 8-OHDPAT on spontaneous and cocaine-induced behavior. Psychopharmacology 177(1–2):46–54

    Article  CAS  PubMed  Google Scholar 

  68. Valjent E, Corvol J-C, Trzaskos JM, Girault J-A, Hervé D (2006) Role of the ERK pathway in psychostimulant-induced locomotor sensitization. BMC Neurosci 7:20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. D’Souza MS (2019) Brain and cognition for addiction medicine: from prevention to recovery neural substrates for treatment of psychostimulant-induced cognitive deficits. Front Psych 10:509. https://doi.org/10.3389/fpsyt.2019.0050

    Article  Google Scholar 

  70. Abid S, Boiron E, Tissot CM, Houssaini A, Czibik G, Sawaki D et al (2015) The role of 5-HT2B receptors in development of valvulopathy, cardiomyopathy, and pulmonary hypertension in Fawn-Hooded rats. Rev Mal Respir 32(3):328

    Article  Google Scholar 

  71. Ayme-Dietrich E, Lawson R, Côté F, de Tapia C, Da Silva S, Ebel C et al (2017) The role of 5-HT2B receptors in mitral valvulopathy: bone marrow mobilization of endothelial progenitors. Br J Pharmacol 174(22):4123–4139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Elangbam CS (2010) Drug-induced valvulopathy: an update. Toxicol Pathol 38(6):837–848

    Article  CAS  PubMed  Google Scholar 

  73. Launay J-M, Hervé P, Callebert J, Mallat Z, Collet C, Doly S et al (2012) Serotonin 5-HT2B receptors are required for bone-marrow contribution to pulmonary arterial hypertension. Blood 119(7):1772–1780

    Article  CAS  PubMed  Google Scholar 

  74. Launay J-M, Hervé P, Peoc’h K, Tournois C, Callebert J, Nebigil CG et al (2002) Function of the serotonin 5-hydroxytryptamine 2B receptor in pulmonary hypertension. Nat Med 8(10):1129–1135

    Article  CAS  PubMed  Google Scholar 

  75. Rothman RB, Baumann MH (2009) Serotonergic drugs and valvular heart disease. Expert Opin Drug Saf 8(3):317–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Adachi YU, Satomoto M, Higuchi H, Watanabe K, Yamada S, Kazama T (2005) Halothane enhances dopamine metabolism at presynaptic sites in a calcium-independent manner in rat striatum. Br J Anaesth 95(4):485–494

    Article  CAS  PubMed  Google Scholar 

  77. Adachi YU, Watanabe K, Higuchi H, Satoh T, Zsilla G (2001) Halothane decreases impulse-dependent but not cytoplasmic release of dopamine from rat striatal slices. Brain Res Bull 56(6):521–524

    Article  CAS  PubMed  Google Scholar 

  78. Eckenhoff RG, Fagan D (1994) Inhalation anaesthetic competition at high-affinity cocaine binding sites in rat brain synaptosomes. Br J Anaesth 73(6):820–825

    Article  CAS  PubMed  Google Scholar 

  79. Adachi YU, Watanabe K, Satoh T, Vizi ES (2001) Halothane potentiates the effect of methamphetamine and nomifensine on extracellular dopamine levels in rat striatum: a microdialysis study. Br J Anaesth 86(6):837–845

    Article  CAS  PubMed  Google Scholar 

  80. Fink-Jensen A, Ingwersen SH, Nielsen PG, Hansen L, Nielsen EB, Hansen AJ (1994) Halothane anesthesia enhances the effect of dopamine uptake inhibition on interstitial levels of striatal dopamine. Naunyn Schmiedeberg’s Arch Pharmacol 350(3):239–244

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnauld Belmer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cooper, I.A., Beecher, K., Bartlett, S.E., Belmer, A. (2021). Role of the Serotonin 2B Receptor in the Reinforcing Effects of Psychostimulants. In: Maroteaux, L., Monassier, L. (eds) 5-HT2B Receptors. The Receptors, vol 35. Springer, Cham. https://doi.org/10.1007/978-3-030-55920-5_18

Download citation

Publish with us

Policies and ethics