Skip to main content

Kidney Failure Associated with Polycompartment Syndrome

  • Chapter
  • First Online:
Compartment Syndrome

Abstract

The detrimental effects of elevated intra-abdominal pressure (IAP) on kidney function have been known for centuries. However, only recently there has been an increasing focus on the potential role of venous congestion in the development of renal failure, through coexisting repercussions on the heart and abdominal compartment. In contrast with the traditional perception of worsening renal function due to hypoperfusion, this chapter discusses the pathophysiological insights on kidney injury induced by intra-abdominal hypertension (IAH) and the role of IAP in worsening renal function in the setting of decompensated heart failure, introducing the new concept of “cardio-abdominal-renal syndrome” (CARS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ACS:

Abdominal compartment syndrome

ADHF:

Acute decompensated heart failure

APP:

Abdominal perfusion pressure

ARF:

Advanced renal failure

BP:

Blood pressure

CABG:

Coronary artery bypass surgery

CARS:

Cardio-abdominal-renal syndrome

CCU:

Cardiac/coronary care unit

CrCl:

Creatinine clearance

CVP:

Central venous pressure

EVLWI:

Extravascular lung water index

FG:

Filtration gradient

GEDVI:

Global end-diastolic volume index

GFP:

Glomerular filtration pressure

GFR:

Glomerular filtration rate

HF:

Heart failure

HJR:

Hepatojugular reflux

IAH:

Intra-abdominal hypertension

IAP:

Intra-abdominal pressure

ICU:

Intensive care unit

ITP:

Intrathoracic pressure

IVCCI:

Inferior vena cava collapsibility index

JVP:

Jugular venous pressure

MAP:

Mean arterial pressure

MV:

Mechanical ventilation

PAOP:

Pulmonary artery occlusion pressure

PAP:

Pulmonary artery pressure

PTP:

Proximal tubular pressure

RVP:

Renal venous pressure

STEMI:

ST-elevation myocardial infarction

WRF:

Worsening renal function

References

  1. Mullens W, Abrahams Z, Skouri HN, Francis GS, Taylor DO, Starling RC, et al. Elevated intra-abdominal pressure in acute decompensated heart failure: a potential contributor to worsening renal function? J Am Coll Cardiol. 2008;51(3):300–6.

    Article  Google Scholar 

  2. Kellum JA, Lameire N. Diagnosis, evaluation, and management of acute kidney injury: a KDIGO summary (part 1). Crit Care. 2013;17(1):204.

    Article  Google Scholar 

  3. Damman K, Testani JM. The kidney in heart failure: an update. Eur Heart J. 2015;36(23):1437–44.

    Article  Google Scholar 

  4. Metra M, Ponikowski P, Dickstein K, McMurray JJ, Gavazzi A, Bergh CH, et al. Advanced chronic heart failure: a position statement from the Study Group on Advanced Heart Failure of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2007;9(6–7):684–94.

    Article  Google Scholar 

  5. Kirkpatrick AW, Roberts DJ, De Waele J, Jaeschke R, Malbrain ML, De Keulenaer B, et al. Intra-abdominal hypertension and the abdominal compartment syndrome: updated consensus definitions and clinical practice guidelines from the World Society of the Abdominal Compartment Syndrome. Intensive Care Med. 2013;39(7):1190–206.

    Article  Google Scholar 

  6. Mohmand H, Goldfarb S. Renal dysfunction associated with intra-abdominal hypertension and the abdominal compartment syndrome. J Am Soc Nephrol. 2011;22(4):615–21.

    Article  Google Scholar 

  7. Malbrain ML, Chiumello D, Cesana BM, Reintam Blaser A, Starkopf J, Sugrue M, et al. A systematic review and individual patient data meta-analysis on intra-abdominal hypertension in critically ill patients: the wake-up project. World initiative on Abdominal Hypertension Epidemiology, a Unifying Project (WAKE-Up!). Minerva Anestesiol. 2014;80(3):293–306.

    CAS  Google Scholar 

  8. Vidal MG, Ruiz Weisser J, Gonzalez F, Toro MA, Loudet C, Balasini C, et al. Incidence and clinical effects of intra-abdominal hypertension in critically ill patients. Crit Care Med. 2008;36(6):1823–31.

    Article  Google Scholar 

  9. Ronco C, Di Lullo L. Cardiorenal syndrome. Heart Fail Clin. 2014;10(2):251–80.

    Article  Google Scholar 

  10. Mullens W, Abrahams Z, Francis GS, Sokos G, Taylor DO, Starling RC, et al. Importance of venous congestion for worsening of renal function in advanced decompensated heart failure. J Am Coll Cardiol. 2009;53(7):589–96.

    Article  Google Scholar 

  11. Sugrue M, Jones F, Deane SA, Bishop G, Bauman A, Hillman K. Intra-abdominal hypertension is an independent cause of postoperative renal impairment. Arch Surg. 1999;134(10):1082–5.

    Article  CAS  Google Scholar 

  12. Dalfino L, Tullo L, Donadio I, Malcangi V, Brienza N. Intra-abdominal hypertension and acute renal failure in critically ill patients. Intensive Care Med. 2008;34(4):707–13.

    Article  Google Scholar 

  13. Biancofiore G, Bindi ML, Romanelli AM, Bisa M, Boldrini A, Consani G, et al. Postoperative intra-abdominal pressure and renal function after liver transplantation. Arch Surg. 2003;138(7):703–6.

    Article  Google Scholar 

  14. Malbrain ML, Chiumello D, Pelosi P, Bihari D, Innes R, Ranieri VM, et al. Incidence and prognosis of intraabdominal hypertension in a mixed population of critically ill patients: a multiple-center epidemiological study. Crit Care Med. 2005;33(2):315–22.

    Article  Google Scholar 

  15. Wendt E. Uber den einfluss des intraabdominalen druckes auf die absonderungsgeschwindigkeit des harnes. Arch Physiologische Heilkunde. 1876;57:525–7.

    Google Scholar 

  16. Landois L. Increase in IAP decreased BP, pulse and urine output. Lehrbuch der physiologie des Menschen. 1st Halfe. 1899. p. 218.

    Google Scholar 

  17. Bradley SE, Bradley GP. The effect of increased intra-abdominal pressure on renal function in man. J Clin Invest. 1947;26(5):1010–22.

    Article  CAS  Google Scholar 

  18. Doty JM, Saggi BH, Blocher CR, Fakhry I, Gehr T, Sica D, et al. Effects of increased renal parenchymal pressure on renal function. J Trauma. 2000;48(5):874–7.

    Article  CAS  Google Scholar 

  19. Malbrain ML, Peeters Y, Wise R. The neglected role of abdominal compliance in organ-organ interactions. Crit Care. 2016;20:67.

    Article  Google Scholar 

  20. Malbrain MLNG, Deeren D, De Potter TJR. Intra-abdominal hypertension in the critically ill: it is time to pay attention. Curr Opin Crit Care. 2005;11(2):156–71.

    Article  Google Scholar 

  21. Villa G, Samoni S, De Rosa S, Ronco C. The pathophysiological hypothesis of kidney damage during intra-abdominal hypertension. Front Physiol. 2016;7:55.

    Article  Google Scholar 

  22. Basile DP. The endothelial cell in ischemic acute kidney injury: implications for acute and chronic function. Kidney Int. 2007;72(2):151–6.

    Article  CAS  Google Scholar 

  23. Le Dorze M, Legrand M, Payen D, Ince C. The role of the microcirculation in acute kidney injury. Curr Opin Crit Care. 2009;15(6):503–8.

    Article  Google Scholar 

  24. Legrand M, Dupuis C, Simon C, Gayat E, Mateo J, Lukaszewicz AC, et al. Association between systemic hemodynamics and septic acute kidney injury in critically ill patients: a retrospective observational study. Crit Care (London, England). 2013;17(6):R278.

    Article  Google Scholar 

  25. Cruces P, Lillo P, Salas C, Salomon T, Lillo F, Gonzalez C, et al. Renal decapsulation prevents intrinsic renal compartment syndrome in ischemia-reperfusion-induced acute kidney injury: a physiologic approach. Crit Care Med. 2018;46(2):216–22.

    Article  Google Scholar 

  26. Harman PK, Kron IL, McLachlan HD, Freedlender AE, Nolan SP. Elevated intra-abdominal pressure and renal function. Ann Surg. 1982;196(5):594–7.

    Article  CAS  Google Scholar 

  27. Fallick C, Sobotka PA, Dunlap ME. Sympathetically mediated changes in capacitance: redistribution of the venous reservoir as a cause of decompensation. Circ Heart Fail. 2011;4(5):669–75.

    Article  Google Scholar 

  28. Verbrugge FH, Dupont M, Steels P, Grieten L, Malbrain M, Tang WH, et al. Abdominal contributions to cardiorenal dysfunction in congestive heart failure. J Am Coll Cardiol. 2013;62(6):485–95.

    Article  Google Scholar 

  29. Carrithers SL, Eber SL, Forte LR, Greenberg RN. Increased urinary excretion of uroguanylin in patients with congestive heart failure. Am J Physiol Heart Circ Physiol. 2000;278(2):H538–47.

    Article  CAS  Google Scholar 

  30. Winton FR. The influence of venous pressure on the isolated mammalian kidney. J Physiol. 1931;72(1):49–61.

    Article  CAS  Google Scholar 

  31. Di Nicolo P. The dark side of the kidney in cardio-renal syndrome: renal venous hypertension and congestive kidney failure. Heart Fail Rev. 2018;23(2):291–302.

    Article  Google Scholar 

  32. Chen X, Wang X, Honore PM, Spapen HD, Liu D. Renal failure in critically ill patients, beware of applying (central venous) pressure on the kidney. Ann Intensive Care. 2018;8(1):91.

    Article  Google Scholar 

  33. Honore PM, Jacobs R, Hendrickx I, Bagshaw SM, Joannes-Boyau O, Boer W, et al. Prevention and treatment of sepsis-induced acute kidney injury: an update. Ann Intensive Care. 2015;5(1):51.

    Article  CAS  Google Scholar 

  34. Gambardella I, Gaudino M, Ronco C, Lau C, Ivascu N, Girardi LN. Congestive kidney failure in cardiac surgery: the relationship between central venous pressure and acute kidney injury. Interact Cardiovasc Thorac Surg. 2016;23(5):800–5.

    Article  Google Scholar 

  35. Firth JD, Raine AE, Ledingham JG. Raised venous pressure: a direct cause of renal sodium retention in oedema? Lancet. 1988;1(8593):1033–5.

    Article  CAS  Google Scholar 

  36. Testani JM, Khera AV, St John Sutton MG, Keane MG, Wiegers SE, Shannon RP, et al. Effect of right ventricular function and venous congestion on cardiorenal interactions during the treatment of decompensated heart failure. Am J Cardiol. 2010;105(4):511–6.

    Article  Google Scholar 

  37. Beaubien-Souligny W, Rola P, Haycock K, et al. Quantifying systemic congestion with Point-Of-Care ultrasound: development of the venous excess ultrasound grading system. Ultrasound J. 2020;12(1):16. https://doi.org/10.1186/s13089-020-00163-w.

  38. Mullens W, Abrahams Z, Francis GS, Taylor DO, Starling RC, Tang WH. Prompt reduction in intra-abdominal pressure following large-volume mechanical fluid removal improves renal insufficiency in refractory decompensated heart failure. J Card Fail. 2008;14(6):508–14.

    Article  Google Scholar 

  39. Tang WH, Mullens W. Cardiorenal syndrome in decompensated heart failure. Heart. 2010;96(4):255–60.

    Article  Google Scholar 

  40. Verbrugge FH, Mullens W, Malbrain MLNG. Worsening renal function during decompensated heart failure: the cardio-abdomino-renal syndrome. In: Annual update in intensive care and emergency medicine 2012. Berlin: Springer; 2012. p. 577–88.

    Chapter  Google Scholar 

  41. Malbrain M, Van Regenmortel N, Saugel B, De Tavernier B, Van Gaal PJ, Joannes-Boyau O, et al. Principles of fluid management and stewardship in septic shock: it is time to consider the four D’s and the four phases of fluid therapy. Ann Intensive Care. 2018;8(1):66.

    Article  CAS  Google Scholar 

  42. Felker GM, Lee KL, Bull DA, Redfield MM, Stevenson LW, Goldsmith SR, et al. Diuretic strategies in patients with acute decompensated heart failure. N Engl J Med. 2011;364(9):797–805.

    Article  CAS  Google Scholar 

  43. Testani JM, Chen J, McCauley BD, Kimmel SE, Shannon RP. Potential effects of aggressive decongestion during the treatment of decompensated heart failure on renal function and survival. Circulation. 2010;122(3):265–72.

    Article  Google Scholar 

  44. De Laet I, Deeren D, Schoonheydt K, Van Regenmortel N, Dits H, Malbrain ML. Renal replacement therapy with net fluid removal lowers intra-abdominal pressure and volumetric indices in critically ill patients. Ann Intensive Care. 2012;2(Suppl 1):S20.

    Article  Google Scholar 

  45. Cordemans C, De Laet I, Van Regenmortel N, Schoonheydt K, Dits H, Martin G, et al. Aiming for a negative fluid balance in patients with acute lung injury and increased intra-abdominal pressure: a pilot study looking at the effects of PAL-treatment. Ann Intensive Care. 2012;2(Suppl 1):S15.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manu L. N. G. Malbrain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Minini, A., Rola, P., Malbrain, M.L.N.G. (2021). Kidney Failure Associated with Polycompartment Syndrome. In: Coccolini, F., Malbrain, M.L., Kirkpatrick, A.W., Gamberini, E. (eds) Compartment Syndrome. Hot Topics in Acute Care Surgery and Trauma. Springer, Cham. https://doi.org/10.1007/978-3-030-55378-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-55378-4_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-55377-7

  • Online ISBN: 978-3-030-55378-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics