Skip to main content

Pollination Systems in the Atlantic Forest: Characterisation, Threats, and Opportunities

  • Chapter
  • First Online:
The Atlantic Forest

Abstract

In the Brazilian Atlantic forest, pollination systems encompass several animal groups and vary from very specialised to highly generalised ones. Plant-pollinator interactions are at the origin and maintenance of diversity and affect ecosystems’ functioning. Moreover, pollination deficit may impact agricultural systems and the dynamics in natural systems with varying importance according to interaction specialisation. We present here examples of pollination studies in the Atlantic forest, highlighting current stressors of plant-pollinator interactions and opportunities to mitigate them. Habitat loss, climate change, and invasive species are the major threats to pollination interactions. Despite the risk, the opportunities for change (restoration, ecological corridors, and protected areas, and landscape management) can contribute to the maintenance of pollination services in the Atlantic forest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acosta AL, Giannini TC, Imperatriz-Fonseca VL et al (2016) Worldwide alien invasion: a methodological approach to forecast the potential spread of a highly invasive pollinator. PlosOne 11:e0148295

    Article  CAS  Google Scholar 

  • Agostini K, Sazima M, Sazima I (2006) Bird pollination of explosive flowers while foraging for nectar and caterpillars. Biotropica 38:674–678

    Article  Google Scholar 

  • Agostini K, Sazima M, Galetto L (2011) Nectar production dynamics and sugar composition in two Mucuna species (Leguminosae, Faboideae) with different specialized pollinators. Naturwissenschaften 98:933–942

    Article  CAS  PubMed  Google Scholar 

  • Agostini K, Lopes AV, Machado IC (2014) Recursos florais. In: Rech AR, Agostini K, Oliveira PE, Machado IC (eds) Biologia da Polinização. Projeto Cultural, Rio de Janeiro, pp 129–150

    Google Scholar 

  • Amorim FW, Galetto L, Sazima M (2013) Beyond the pollination syndrome: nectar ecology and the role of diurnal and nocturnal pollinators in the reproductive success of Inga sessilis (Fabaceae). Plant Biol 15:317–327

    Article  CAS  PubMed  Google Scholar 

  • Amorim FW, Wyatt GE, Sazima M (2014) Low abundance of long-tongued pollinators leads to pollen limitation in four specialized hawkmoth-pollinated plants in the Atlantic Rain forest, Brazil. Naturwissenschaften 101:893–905

    Article  CAS  PubMed  Google Scholar 

  • Andresen E, Arroyo-Rodríguez V, Escobar F (2018) Tropical biodiversity: the importance of biotic interactions for its origin, maintenance, function, and conservation. In: Dáttilo W, Rico-Gray V (eds) Ecological networks in the tropics. Springer, Cham, pp 1–13

    Google Scholar 

  • Ashman TL, Knight TM, Steets JA et al (2004) Pollen limitation of plant reproduction: ecological and evolutionary causes and consequences. Ecology 85:2408–2421

    Article  Google Scholar 

  • Avila Jr RS (2009) Composição, fenologia reprodutiva e biologia da polinização de espécies esfingófilas no Parque Estadual da Serra do Mar (Núcleo Picinguaba). PhD Thesis, Ecologia, Universidade Estadual de Campinas, Campinas

    Google Scholar 

  • Banks-Leite C, Pardini R, Tambosi LR et al (2014) Using ecological thresholds to evaluate the costs and benefits of set-asides in a biodiversity hotspot. Science 345:1041

    Article  CAS  PubMed  Google Scholar 

  • Barlow J, França F, Gardner TA et al (2018) The future of hyperdiverse tropical ecosystems. Nature 559:517–526

    Article  CAS  PubMed  Google Scholar 

  • Bezerra ELS, Machado IC (2003) Floral biology and pollination system of Solanum stramonifolium Jacq. (Solanaceae) in an Atlantic Forest remnant in Pernambuco. Acta Bot Bras 17:247–257

    Article  Google Scholar 

  • Bezerra ADM, Pacheco-Filho AJS, Bomfim IGA et al (2019) Agricultural area losses and pollinator mismatch due to climate changes endanger passion fruit production in the Neotropics. Agric Syst 169:49–57

    Article  Google Scholar 

  • BPBES/REBIPP (2019) Relatório temático sobre Polinização, Polinizadores e Produção de Alimentos no Brasil. Wolowski M, Agostini K, Rech AR, Varassin IG, Maués M, Freitas L, Carneiro LT, Bueno RO, Consolaro H, Carvalheiro L, Saraiva AM, Silva CI, Padgurschi MCG (Org.). Editora Cubo, São Carlos

    Google Scholar 

  • Braun M, Dötterl S, Schlindwein C et al (2012) Can nectar be a disadvantage? Contrasting pollination natural histories of two woody Violaceae from the neotropics. Int J Plant Sci 173:161–171

    Article  Google Scholar 

  • Brito VLG, Sazima M (2012) Tibouchina pulchra (Melastomataceae): reproductive biology of a tree species at two sites of an elevational gradient in the Atlantic rainforest in Brazil. Plant Syst Evol 298:1271–1279

    Article  Google Scholar 

  • Brito VLG, Fendrich TG, Smidt EC et al (2016) Shifts from specialised to generalised pollination systems in Miconieae (Melastomataceae) and their relation with anther morphology and seed number. Plant Biol 18:585–593

    Article  CAS  PubMed  Google Scholar 

  • Burkle LA, Alarcon R (2011) The future of plant–pollinator diversity: understanding interaction networks across time, space, and global change. Am J Bot 98:528–538

    Article  PubMed  Google Scholar 

  • Burkle LA, Myers JA, Belote RT (2016) The beta-diversity of species interactions: untangling the drivers of geographic variation in plant-pollinator diversity and function across scales. Am J Bot 103:118–128

    Article  PubMed  Google Scholar 

  • Buzato S, Sazima M, Sazima I (1994) Pollination of three species of Abutilon (Malvaceae) intermediate between bat and hummingbird flower syndrome. Flora 189:327–334

    Article  Google Scholar 

  • Buzato S, Sazima M, Sazima I (2000) Hummingbird-pollinated floras at three Atlantic forest sites. Biotropica 32:824–841

    Article  Google Scholar 

  • Canela MB, Sazima M (2003) Aechmea pectinata: a hummingbird-dependent bromeliad with inconspicuous flowers from the rainforest in South-Eastern Brazil. Ann Bot 92:731–737

    Article  PubMed  PubMed Central  Google Scholar 

  • Canela MB, Sazima M (2005) The pollination of Bromelia antiacantha (Bromeliaceae) in Southeastern Brazil: ornithophilous versus melittophilous features. Plant Biol 7:411–416

    Article  CAS  PubMed  Google Scholar 

  • CaraDonna PJ, Petry WK, Brennan RM et al (2017) Interaction rewiring and the rapid turnover of plant–pollinator networks. Ecol Lett 20:385–394

    Article  PubMed  Google Scholar 

  • Carneiro LT, Martins CF (2012) Africanized honey bees pollinate and preempt the pollen of Spondias mombin (Anacardiaceae) flowers. Apidologie 43:474–486

    Article  Google Scholar 

  • Castro CC, Oliveira P, Alves MC (2004) Breeding system and floral morphometry of distylous Psychotria L. species in the Atlantic rain forest, SE Brazil. Plant Biol 6:755–760

    Article  CAS  PubMed  Google Scholar 

  • Cavalcante BP, Souza EH, Williams JH, Versieux LM (2019) Reproductive systems and post-pollination barriers between two closely related eu-bromelioids (Bromeliaceae) in the Atlantic Forest of Brazil. Botl J Linn Soc. https://doi.org/10.1093/botlinnean/boz101

  • Ceccon E, Varassin IG (2014) Plant-pollination interactions in ecosystem restoration. In: Benítez M, Miramontes O, Valiente-Banuet A (eds) Frontiers in ecology, evolution and complexity, 1st edn. CopItArXives, Mexico, pp 50–63

    Google Scholar 

  • Cham KO, Nocelli RCF, Borges LO et al (2018) Pesticide exposure assessment paradigm for stingless bees. Environ Entomol 48:36–48

    Article  Google Scholar 

  • Correa-Lima APA, Varassin IG, Barve N et al (2019) Spatio-temporal effects of climate change on the geographic distribution and flowering phenology of hummingbird-pollinated plants. Ann Bot 124:389–398

    Article  PubMed  PubMed Central  Google Scholar 

  • Crouzeilles R, Ferreira MS, Chazdon RL et al (2017) Ecological restoration success is higher for natural regeneration than for active restoration in tropical forests. Sci Adv 3:e1701345

    Article  PubMed  PubMed Central  Google Scholar 

  • Danieli-Silva A, Varassin IG (2013) Breeding systems and thrips (Thysanoptera) pollination in an endangered tree (Lauraceae): implications for conservation. Plant Biol 28:31–40

    Article  Google Scholar 

  • de Marco P, Coelho FM (2004) Services performed by the ecosystem: forest remnants influence agricultural cultures’ pollination and production. Biodivers Conserv 13:1245–1255

    Article  Google Scholar 

  • Domene F (2018) Reintrodução de epífitas vasculares em plantios de restauração florestal PhD. University of São Paulo

    Google Scholar 

  • Dunley BS, Freitas L, Galetto L (2009) Reproduction of Byrsonima sericea (Malpighiaceae) in Restinga fragmented habitats in Southeastern Brazil. Biotropica 41:692–699

    Article  Google Scholar 

  • Faegri K, van der Pijl L (1979) Principles of pollination ecology. Pergamon Press, Oxford

    Google Scholar 

  • Falcão BF, Schlindwein C, Stehmann JR (2016) Pollen release mechanisms and androecium structure in Solanum (Solanaceae): does anther morphology predict pollination strategy? Flora 224:211–217

    Article  Google Scholar 

  • Feinsinger P (1983) Coevolution and pollination. In: Futuyma DJ, Slatkin M (eds) Coevolution. Sinauer Associates, Sunderland, pp 282–310

    Google Scholar 

  • Ferreira PA, Boscolo D, Carvalheiro LG et al (2015) Responses of bees to habitat loss in fragmented landscapes of Brazilian Atlantic Rainforest. Landsc Ecol 30:2067–2078

    Article  Google Scholar 

  • Fonseca GAB (1985) The vanishing Brazilian Atlantic forest. Biol Conserv 34:17–34

    Article  Google Scholar 

  • Fragoso FP, Varanda EM (2011) Flower-visiting insects of five tree species in a restored area of semideciduous seasonal forest. Neotrop Entomol 40:431–435

    CAS  PubMed  Google Scholar 

  • Franceschinelli EV, Carmo RM, Silva Neto CM et al (2015) Reproductive success of Cabralea canjerana (Meliaceae) in Atlantic forest fragments, Brazil. Rev Biol Trop 63:515–524

    Article  Google Scholar 

  • Freitas BM, Pinheiro JN (2010) Efeitos sub-letais dos pesticidas agrícolas e seus impactos no manejo de polinizadores dos agroecossistemas brasileiros. Oecol Aust 14:282–298

    Article  Google Scholar 

  • Freitas L, Vizentin-Bugoni J, Wolowski M, Souza JMT, Varassin IG (2014) Interações planta-polinizador e a estruturação das comunidades. In: Rech AR, Agostini K, Oliveira PE, Machado IC (eds) Biologia da Polinização. Projeto Cultural, Rio de Janeiro, pp 373–397

    Google Scholar 

  • Gaiotto FA, Grattapaglia D, Vencovsky R (2003) Genetic structure, mating system, and long-distance gene flow in heart of palm (Euterpe edulis Mart.). J Hered 94:399–406

    Article  CAS  PubMed  Google Scholar 

  • Garibaldi LA, Carvalheiro LG, Leonhardt SD et al (2014) From research to action: enhancing crop yield through wild pollinators. Front Ecol Environ 12:439–447

    Article  Google Scholar 

  • Garibaldi LA, Carvalheiro LG, Vaissière BE et al (2016) Mutually beneficial pollinator diversity and crop yield outcomes in small and large farms. Science 351:388–391

    Article  CAS  PubMed  Google Scholar 

  • Giannini TC, Acosta AL, Garófalo CA et al (2012) Pollination services at risk: bee habitats will decrease owing to climate change in Brazil. Ecol Model 244:127–131

    Article  Google Scholar 

  • Giannini TC, Cordeiro GD, Freitas BM et al (2015a) The dependence of crops for pollinators and the economic value of pollination in Brazil. J Econ Entomol 108:849–857

    Article  CAS  PubMed  Google Scholar 

  • Giannini TC, Garibaldi LA, Acosta AL et al (2015b) Native and non-native supergeneralist bee species have different effects on plant-bee networks. PLoS One 10:e0137198

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Giannini TC, Costa WF, Cordeiro GD et al (2017) Projected climate change threatens pollinators and crop production in Brazil. PLoS One 12:e0182274

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Girão LC, Lopes AV, Tabarelli M et al (2007) Changes in tree reproductive traits reduce functional diversity in a fragmented Atlantic Forest landscape. PLoS One 2:e908

    Article  PubMed  PubMed Central  Google Scholar 

  • Goldenberg R, Varassin IG (2001) Sistemas reprodutivos de espécies de Melastomataceae da Serra do Japi, Jundiaí, São Paulo, Brasil. Rev Bras Bot 24:283–288

    Article  Google Scholar 

  • Gonçalves RB, Brandão CRF (2008) Diversidade de abelhas (Hymenoptera, Apidae) ao longo de um gradiente latitudinal na Mata Atlantica. Biota Neotropica 8:51–61

    Article  Google Scholar 

  • Gottsberger G (1977) Some aspects of beetle pollination in the evolution of flowering plants. Plant Syst Evol 1:211–226

    Google Scholar 

  • Hadley AS, Betts MG (2009) Tropical deforestation alters hummingbird movement patterns. Biol Lett 5:207–210

    Article  PubMed  PubMed Central  Google Scholar 

  • Hagen M, Kissling WD, Rasmussen C et al (2012) Biodiversity, species interactions and ecological networks in a fragmented world. Adv Ecol Res 46:89–210

    Article  Google Scholar 

  • Holzschuh A, Steffan-Dewenter I, Tscharntke T (2008) Agricultural landscapes with organic crops support higher pollinator diversity. Oikos 117:354–361

    Article  Google Scholar 

  • Holzschuh A, Steffan-Dewenter I, Tscharntke T (2010) How do landscape composition and configuration, organic farming and fallow strips affect the diversity of bees, wasps and their parasitoids? J Anim Ecol 79:491–500

    Article  PubMed  Google Scholar 

  • Jeske-Pieruschka V, Fidelis A, Bergamin RS et al (2010) Araucaria forest dynamics in relation to fire frequency in southern Brazil based on fossil and modern pollen data. Rev Palaeobot Palynol 160:53–65

    Article  Google Scholar 

  • Johnson SD, Steiner KE (2000) Generalization versus specialization in plant pollination systems. Trends Ecol Evol 15:140–143

    Article  CAS  PubMed  Google Scholar 

  • Jones HP, Jones PC, Barbier EB et al (2018) Restoration and repair of Earth’s damaged ecosystems. Proc R Soc B 285:20172577

    Article  PubMed  PubMed Central  Google Scholar 

  • Klein AM, Vaissiere BE, Cane JH et al (2007) Importance of pollinators in changing landscapes for world crops. Proc R Soc B 274:303–313

    Article  PubMed  Google Scholar 

  • Klein D, Freitas L, da Cunha M (2009) Self-incompatibility in a distylous species of Rubiaceae: is there a single incompatibility response of the morphs? Sex Plant Reprod 22:121–131

    Article  CAS  PubMed  Google Scholar 

  • Knight TM, Steets JA, Vamosi JC et al (2005) Pollen limitation of plant reproduction: pattern and process. Annu Rev Ecol Evol Syst 36:467–497

    Article  Google Scholar 

  • Kormann U, Scherber C, Tscharntke T et al (2016) Corridors restore animal-mediated pollination in fragmented tropical forest landscapes. Proc Biol Sci 283:20152347

    PubMed  PubMed Central  Google Scholar 

  • Laurance SG (2004) Landscape connectivity and biological corridors. In: Schroth G, Fonseca GAB, Harvey CA et al (eds) Agroforestry and biodiversity conservation in tropical landscapes. Island Press, Washington, pp 50–63

    Google Scholar 

  • Lopes LE, Buzato S (2007) Variation in pollinator assemblages in a fragmented landscape and its effects on reproductive stages of a self-incompatible treelet, Psychotria suterella (Rubiaceae). Oecologia 154:305–314

    Article  PubMed  Google Scholar 

  • Lopes AV, Girão LC, Santos BA et al (2009) Long-term erosion of tree reproductive trait diversity in edge-dominated Atlantic forest fragments. Biol Conserv 142:1154–1165

    Article  Google Scholar 

  • Maia FR, Varassin IG, Goldenberg R (2016) Apomixis does not affect visitation to flowers of Melastomataceae, but pollen sterility does. Plant Biol 18:132–138

    Article  CAS  PubMed  Google Scholar 

  • Malucelli TS, Maia FR, Varassin IG (2018) Breeding system and pollination of Pleroma trichopodum DC. (Melastomataceae): a potential species for the restoration of Atlantic Forest in southern Brazil. Acta Bot Bras 32:402–409

    Article  Google Scholar 

  • Marsden SJ, Whiffin M, Galetti M (2001) Bird diversity and abundance in forest fragments and Eucalyptus plantations around an Atlantic forest reserve, Brazil. Biodivers Conserv 10:737–751

    Article  Google Scholar 

  • Martins R, Antonini Y (2016) Can pollination syndromes indicate ecological restoration success in tropical forests? Restor Ecol 24:373–380

    Article  Google Scholar 

  • Martins AC, Silva DP, De Marco P et al (2015) Species conservation under future climate change: the case of Bombus bellicosus, a potentially threatened South American bumblebee species. J Insect Conserv 19:33–43

    Article  Google Scholar 

  • Maruyama PM, Vizentin-Bugoni J, Sonne J et al (2016) The integration of alien plants in mutualistic plant–hummingbird networks across the Americas: the importance of species traits and insularity. Divers Distrib 22:672–681

    Article  Google Scholar 

  • Matallana G, Godinho M, Guilherme F et al (2010) Breeding systems of Bromeliaceae species: evolution of selfing in the context of sympatric occurrence. Plant Syst Evol 289:57–65

    Article  Google Scholar 

  • Maués MM, Varassin IG, Freitas L et al (2012) A Importância dos polinizadores nos biomas brasileiros, conhecimento atual e perspectivas futuras para conservação. In: Imperatriz-Fonseca VL, Canhos DAL, Alves DA et al (eds) Polinizadores no Brasil. Edusp, São Paulo, pp 49–66

    Google Scholar 

  • MengoniGoñalons C, Farina WM (2018) Impaired associative learning after chronic exposure to pesticides in young adult honey bees. J Exp Biol 221:jeb176644

    Article  Google Scholar 

  • Metzger JPW, Brancalion PHS (2013) Challenges and opportunities in applying a landscape ecology perspective in ecological restoration: a powerful approach to shape neolandscapes. Nat Conservacao 2:103–107

    Article  Google Scholar 

  • Morris RJ (2010) Anthropogenic impacts on tropical forest biodiversity: a network structure and ecosystem functioning perspective. Philos Trans R 365:3709–3718

    Article  Google Scholar 

  • Moure JS, Urban D, Melo GAR (org.) (2007) Catalogue of bees (Hymenoptera, Apoidea) in the neotropical region. Sociedade Brasileira de Entomologia, Curitiba

    Google Scholar 

  • Nehren UDO, Kirchner A, Sattler D et al (2013) Impact of natural climate change and historical land use on landscape development in the Atlantic Forest of Rio de Janeiro, Brazil. An Acad Bras Cienc 85:497–518

    Article  PubMed  Google Scholar 

  • Nery LS, Takata JT, Camargo BB, Chaves AM, Ferreira PA, Boscolo D (2018) Bee diversity responses to forest and open areas in heterogeneous Atlantic Forest. Sociobiology 65:686–695

    Article  Google Scholar 

  • Newmark WD, Jenkins CN, Pimm SL et al (2017) Targeted habitat restoration can reduce extinction rates in fragmented forests. Proc Natl Acad Sci U S A 114:9635–9640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicholls C, Altieri M (2013) Plant biodiversity enhances bees and other insect pollinators in agroecosystems. A review. Agron Sustain Dev 33:257–274

    Article  Google Scholar 

  • Nunes CEP, Gerlachb G, Bandeirac KDO et al (2017) Two orchids, one scent? Floral volatiles of Catasetum cernuum and Gongora bufonia suggest convergent evolution to a unique pollination niche. Flora 232:207–216

    Article  Google Scholar 

  • Oliveira RR, Engemann C (2011) História da paisagem e paisagens sem história: a presença humana na Floresta Atlântica do Sudeste Brasileiro. Esboços: histórias em contextos globais 18:9–1

    Google Scholar 

  • Ollerton J (2017) Pollinator diversity: distribution, ecological function, and conservation. Annu Rev Ecol Evol Syst 48:353–376

    Article  Google Scholar 

  • Ollerton J, Killick A, Lamborn E et al (2007) Multiple meanings and modes: on the many ways to be a generalist flower. Taxon 56:717–728

    Article  Google Scholar 

  • Ollerton J, Winfree R, Tarrant S (2011) How many flowering plants are pollinated by animals? Oikos 120:321–326

    Article  Google Scholar 

  • Pansarin E, Amaral M (2009) Reproductive biology and pollination of Southeastern Brazilian StanhopeaFrost ex Hook. (Orchidaceae). Flora 204:238–249

    Article  Google Scholar 

  • Pinheiro JN, Freitas BM (2010) Efeitos letais dos pesticidas agrícolas sobre polinizadores e perspectivas de manejo para os agroecossistemas brasileiros. Oecol Aust 14:266–281

    Article  Google Scholar 

  • Pinheiro M, Abrão B, Harter-Marques B et al (2008) Floral resources used by insects in a grassland community in Southern Brazil. Rev Bras Bot 31:469–489

    Article  Google Scholar 

  • Pires J, Freitas L (2008) Reproductive biology of two tree species of Leguminosae in a montane rain forest in Southeastern Brazil. Flora 203:491–498

    Article  Google Scholar 

  • Pires JPA, Silva AG, Freitas L (2014) Plant size, flowering synchrony and edge effects: what, how and where they affect the reproductive success of a Neotropical tree species. Austral Ecol 39:328–336

    Article  Google Scholar 

  • Potts SG, Biesmeijer JC, Kremen C et al (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25:345–353

    Article  PubMed  Google Scholar 

  • Proctor M, Yeo P, Lack A (1996) The natural history of pollination. Harper Collins Publishers, London

    Google Scholar 

  • Ramalho M (2004) Stingless bees and mass flowering trees in the canopy of Atlantic Forest: a tight relationship. Acta Bot Bras 18:37–47

    Article  Google Scholar 

  • Ramalho AV, Gaglianone MC, de Oliveira ML (2009) Comunidades de abelhas Euglossina (Hymenoptera, Apidae) em fragmentos de Mata Atlântica no sudeste do Brasil. Rev Bras Entomol 53:95–101

    Article  Google Scholar 

  • Ramos FN, Santos FAM (2006) Floral visitors and pollination of Psychotria tenuinervis (Rubiaceae): distance from the anthropogenic and natural edges of an Atlantic Forest fragment. Biotropica 38:383–389

    Article  Google Scholar 

  • Rech AR, Agostini K, Oliveira PE, Machado IC (eds) (2014) Biologia da polinização. Projeto Cultural, Rio de Janeiro

    Google Scholar 

  • Rezende CL, Scarano FR, Assad ED et al (2018) From hotspot to hopespot: an opportunity for the Brazilian Atlantic Forest. Perspect Ecol Conser 16:208–214

    Google Scholar 

  • Ribeiro KT, Freitas L (2010) Potential impacts of changes to Brazilian Forest Code in Campos rupestres and Campos de altitude. Biota Neotrop 10:239–246

    Article  Google Scholar 

  • Rocca M, Sazima M (2008) Ornithophilous canopy species in the Atlantic Rain Forest of Southeastern Brazil. J Field Ornithol 79:130–137

    Article  Google Scholar 

  • Rodrigues RR, Brancalion PHS, Isernhagen I (2009) Pacto pela restauração da Mata Atlântica: referencial dos conceitos e ações de restauração florestal. Instituto BioAtlântica, São Paulo

    Google Scholar 

  • Roubik DW (2018) The pollination of cultivated plants: a compendium for practitioners. Food and Agriculture Organization of the United Nations (FAO), Roma

    Google Scholar 

  • SanMartin-Gajardo I, Sazima M (2005) Chiropterophily in Sinningieae (Gesneriaceae): Sinningia brasiliensis and Paliavana prasinataare bat-pollinated, but P. sericiflorais not. Not yet? Ann Bot 95:1097–1103

    Article  PubMed  PubMed Central  Google Scholar 

  • Santos APM, Fracasso CM, Santos ML et al (2012) Reproductive biology and species geographical distribution in the Melastomataceae: a survey based on New World taxa. Ann Bot 110:667–679

    Article  PubMed  PubMed Central  Google Scholar 

  • Santos J, Varassin IG, Muschner VC et al (2018) Estimating seed and pollen dispersal kernels from genetic data demonstrates a high pollen dispersal capacity for an endangered palm species. Am J Bot 105:1–11

    Article  CAS  Google Scholar 

  • Saturni FT, Jaffé R, Metzger JP (2016) Landscape structure influences bee community and coffee pollination at different spatial scales. Agric Ecosyst Environ 235:1–12

    Article  Google Scholar 

  • Sazima M (1972) Observações sobre polinização em Velloziaceae. Ciênc Cult 24:335

    Google Scholar 

  • Sazima M, Sazima I (1975) Quiropterofilia em Lafoensia pacari St.Hil (Lythraceae), na Serra do Cipó, Minas Gerais. Ciênc Cult 27:406–416

    Google Scholar 

  • Sazima I, Buzato S, Sazima M (1996) An assemblage of hummingbird-pollinated flowers in a montane forest in Southeastern Brazil. Bot Acta 109:149–160

    Article  Google Scholar 

  • Sazima M, Sazima I, Buzato S (1999) Bat-pollinated flower assemblages and bat visitors at two Atlantic Forest sites in Brazil. Ann Bot 83:705–712

    Article  Google Scholar 

  • Sazima M, Buzato S, Sazima I (2003) Dyssochroma viridiflorum (Solanaceae): a reproductively bat-dependent epiphyte from the Atlantic Rainforest in Brazil. Ann Bot 92:725–730

    Article  PubMed  PubMed Central  Google Scholar 

  • Schneider SS, DeGrandi-Hoffman G, Smith DR (2004) The African honey bee, factors contributing to a successful biological invasion. Annu Rev Entomol 49:351–376

    Article  CAS  Google Scholar 

  • Singer R, Sazima M (2001) The pollination mechanism of three sympatric Prescottia (Orchidaceae: Prescottinae) species in Southeastern Brazil. Ann Bot 88:999–1005

    Article  Google Scholar 

  • Slaa EJ, Chaves LAS, Malagodi-Braga KS et al (2006) Stingless bees in applied pollination: practice and perspectives. Apidologie 37:293–315

    Article  Google Scholar 

  • Stouffer PC, Bierregaard RO Jr (1995) Effects of forest fragmentation on understory hummingbirds in Amazonian Brazil. Conserv Biol 9:1085–1094

    Article  PubMed  Google Scholar 

  • Strassburg BBN, Beyer HL, Crouzeilles R et al (2019) Strategic approaches to restoring ecosystems can triple conservation gains and halve costs. Nat Ecol Evol 3:62–70

    Article  PubMed  Google Scholar 

  • Tabarelli T, Aguiar AV, Ribeiro MC et al (2010) Prospects for biodiversity conservation in the Atlantic Forest: lessons from aging human-modified landscapes. Biol Conserv 143:2328–2340

    Article  Google Scholar 

  • Tonhasca A Jr, Blackmer JL, Albuquerque G (2002) Abundance and diversity of Euglossine bees in the fragmented landscape of the Brazilian Atlantic Forest. Biotropica 34:416–422

    Article  Google Scholar 

  • Townsend PA, Levey DJ (2005) An experimental test of whether habitat corridors affect pollen transfer. Ecology 86:466–475

    Article  Google Scholar 

  • Vaissière BE, Freitas BM, Gemmill-Herren (2011) Protocol to detect and assess pollination deficits in crops: a handbook for its use. FAO, Roma

    Google Scholar 

  • Valle BRALG (2018) Diversidade de beija-flores (Trochilidae) em fragmentos florestais na zona de amortecimento e entorno do Parque Nacional do Itatiaia. Professional MSc, Jardim Botânico do Rio de Janeiro, Rio de Janeiro

    Google Scholar 

  • Viana BF, Boscolo D, Mariano-Neto E et al (2012) How well do we understand landscape effects on pollinators and pollination services? J Pollinat Ecol 7:31–41

    Google Scholar 

  • Warring B, Cardoso FCG, Marques MM et al (2016) Functional diversity of reproductive traits increases across succession in the Atlantic forest. Rodriguésia 67:321–333

    Article  Google Scholar 

  • Waser NM, Ollerton J (2006) Plant-pollinator interactions – from specialization to generalization. The University of Chicago Press, Chigaco

    Google Scholar 

  • Waser NM, Chittka L, Price MV et al (1996) Generalization in pollination systems, and why it matters. Ecology 77:1043–1060

    Article  Google Scholar 

  • Wendt T, Coser T, Matallana G, Guilherme F (2008) An apparent lack of prezygotic reproductive isolation among 42 sympatric species of Bromeliaceae in Southeastern Brazil. Plant Syst Evol 275:31–41

    Article  Google Scholar 

  • Wilms W (1995) Die bienenfauna im Küstenregenwald Brasiliens und ihre Beziehungen zu Blütenplanzen: Fallstudie Boracéia, São Paulo. PhD thesis, Fakultät für Biologie der Eberhard-Karls-Universität Tübingen, Tübingen

    Google Scholar 

  • Wolowski M, Ashman T-L, Freitas L (2014) Meta-analysis of pollen limitation reveals the relevance of pollination generalization in the Atlantic Forest of Brazil. Plos One 9:e89498

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zambon V, Agostini K, Nepi M, Rossi ML, Martinelli AP, Sazima M (2019a) The role of nectar traits and nectary morphoanatomy in the plant-pollinator interaction between Billbergia distachia (Bromeliaceae) and the hermit Phaethornis eurynome (Trochilidae). Bot J Linn Soc. https://doi.org/10.1093/botlinnean/boz107

  • Zambon V, Agostini K, Nepi M, Rossi ML, Martinelli AP, Sazima M (2019b) Nectar as manipulator: how nectar traits influence changes in pollinator groups of Aechmea vanhoutteana, a bromeliad from the Brazilian Atlantic Forest. Bot J Linn Soc. https://doi.org/10.1093/botlinnean/boz086

Download references

Acknowledgements

We thank Ana Paula Araujo Correa-Lima for the maps (Fig. 15.4); Eduardo Giehl for the photos (Fig. 15.4); Fernando Jeronimo and Israel Schneiberg for the drawings (Fig. 15.3); CNPq (grant no 445405/2014-7 and PQ scholarships no. 313801/2017-7 to IGV, no 304794/2018-0 to LF; CNE-FAPERJ (grant no 202.775/2018 to LF). This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Appendix 15.1

Supplementary references that composed the literature list of studies done at the Atlantic forest based on a review of published studies from 1992 to 2020 using the database 'Web of Science® Core Collection' (see main text) (DOCX 41 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Varassin, I.G., Agostini, K., Wolowski, M., Freitas, L. (2021). Pollination Systems in the Atlantic Forest: Characterisation, Threats, and Opportunities. In: Marques, M.C.M., Grelle, C.E.V. (eds) The Atlantic Forest. Springer, Cham. https://doi.org/10.1007/978-3-030-55322-7_15

Download citation

Publish with us

Policies and ethics