Skip to main content

ADABench - Towards an Industry Standard Benchmark for Advanced Analytics

  • Conference paper
  • First Online:
Performance Evaluation and Benchmarking for the Era of Cloud(s) (TPCTC 2019)

Abstract

The digital revolution, rapidly decreasing storage cost, and remarkable results achieved by state of the art machine learning (ML) methods are driving widespread adoption of ML approaches. While notable recent efforts to benchmark ML methods for canonical tasks exist, none of them address the challenges arising with the increasing pervasiveness of end-to-end ML deployments. The challenges involved in successfully applying ML methods in diverse enterprise settings extend far beyond efficient model training.

In this paper, we present our work in benchmarking advanced data analytics systems and lay the foundation towards an industry standard machine learning benchmark. Unlike previous approaches, we aim to cover the complete end-to-end ML pipeline for diverse, industry-relevant application domains rather than evaluating only training performance. To this end, we present reference implementations of complete ML pipelines including corresponding metrics and run rules, and evaluate them at different scales in terms of hardware, software, and problem size.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.tpc.org.

  2. 2.

    http://www.spec.org.

  3. 3.

    https://www.kaggle.com/c/walmart-recruiting-trip-type-classification.

  4. 4.

    Self-Monitoring, Analysis and Reporting Technology.

  5. 5.

    https://www.backblaze.com/b2/hard-drive-test-data.html.

  6. 6.

    https://www.kaggle.com/c/walmart-recruiting-store-sales-forecasting.

  7. 7.

    https://grouplens.org/datasets/movielens/.

  8. 8.

    http://surpriselib.com/.

  9. 9.

    https://spark.apache.org/docs/latest/ml-collaborative-filtering.html.

  10. 10.

    https://github.com/soumith/convnet-benchmarks.

References

  1. MLPerf (2018). https://mlperf.org/, https://mlperf.org/

  2. Abadi, M., Barham, P., Chen, J., et al.: Tensorflow: a system for large-scale machine learning. In: OSDI, pp. 265–283 (2016)

    Google Scholar 

  3. Amatriain, X.: Building industrial-scale real-world recommender systems. In: RecSys, pp. 7–8 (2012)

    Google Scholar 

  4. Baru, C., et al.: Discussion of BigBench: a proposed industry standard performance benchmark for big data. In: Nambiar, R., Poess, M. (eds.) TPCTC 2014. LNCS, vol. 8904, pp. 44–63. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15350-6_4

    Chapter  Google Scholar 

  5. Bennett, J., Lanning, S., et al.: The netflix prize. In: Proceedings of KDD Cup and Workshop, p. 35 (2007)

    Google Scholar 

  6. Bhandarkar, M.: AdBench: a complete data pipeline benchmark for modern data pipelines. In: TPCTC, pp. 107–120 (2016)

    Google Scholar 

  7. Boden, C., Rabl, T., Markl, V.: Distributed machine learning-but at what cost. In: Machine Learning Systems Workshop at Conference on Neural Information Processing Systems (2017)

    Google Scholar 

  8. Boden, C., Spina, A., Rabl, T., Markl, V.: Benchmarking data flow systems for scalable machine learning. In: SIGMOD Workshop on Algorithms and Systems for MapReduce and Beyond, pp. 5:1–5:10. BeyondMR (2017)

    Google Scholar 

  9. Chen, T., Guestrin, C.: Xgboost: a scalable tree boosting system. In: ACM SigKDD, pp. 785–794 (2016)

    Google Scholar 

  10. Chen, T., Li, M., Li, Y., et al.: Mxnet: a flexible and efficient machine learning library for heterogeneous distributed systems. arXiv preprint arXiv:1512.01274 (2015)

  11. Chigurupati, A., Thibaux, R., Lassar, N.: Predicting hardware failure using machine learning. In: Reliability and Maintainability Symposium (RAMS), pp. 1–6 (2016)

    Google Scholar 

  12. Chowdhury, B., Rabl, T., Saadatpanah, P., Du, J., Jacobsen, H.-A.: A BigBench implementation in the hadoop ecosystem. In: Rabl, T., Jacobsen, H.-A., Raghunath, N., Poess, M., Bhandarkar, M., Baru, C. (eds.) WBDB 2013. LNCS, vol. 8585, pp. 3–18. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10596-3_1

    Chapter  Google Scholar 

  13. Chui, M., et al.: Notes from the AI Frontier - insights from hundreds of use cases. Technical report, McKinsey Global Institute (2018)

    Google Scholar 

  14. Coleman, C., et al.: Analysis of DAWNBench, a time-to-accuracy machine learning performance benchmark. CoRR abs/1806.01427 (2018)

    Google Scholar 

  15. Deng, D., Fernandez, R.C., Abedjan, Z., et al.: The data civilizer system. In: CIDR (2017)

    Google Scholar 

  16. Gao, W., Zhan, J., Wang, L., et al.: BigDataBench: a dwarf-based big data and AI benchmark suite. CoRR abs/1802.0 (2018)

    Google Scholar 

  17. Ghazal, A., et al.: BigBench: towards an industry standard benchmark for big data analytics. In: SIGMOD (2013)

    Google Scholar 

  18. Jain, R.: The Art of Computer Systems Performance Analysis - Techniques for Experimental Design, Measurement, Simulation, and Modeling. Wiley Professional Computing. Wiley, Hoboken (1991)

    MATH  Google Scholar 

  19. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  20. LeCun, Y.: The mnist database of handwritten digits (1998). http://yann.lecun.com/exdb/mnist/

  21. Liu, Y., Zhang, H., Zeng, L., Wu, W., Zhang, C.: Mlbench: benchmarking machine learning services against human experts. PVLDB 11(10), 1220–1232 (2018)

    Google Scholar 

  22. McKinney, W., et al.: Data structures for statistical computing in Python. In: Proceedings of the 9th Python in Science Conference, pp. 51–56 (2010)

    Google Scholar 

  23. Meng, X., Bradley, J., Yavuz, B., et al.: Mllib: machine learning in apache spark. J. Mach. Learn. Res. 17(1), 1235–1241 (2016)

    MathSciNet  MATH  Google Scholar 

  24. Narang, S.: DeepBench (2016). https://svail.github.io/DeepBench/

  25. Paszke, A., Gross, S., Chintala, S., et al.: Automatic differentiation in pytorch. In: NIPS Autodiff Decision Workshop (2017)

    Google Scholar 

  26. Pedregosa, F., Varoquaux, G., Gramfort, A., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  27. Poess, M., Rabl, T., Jacobsen, H.A.: Analysis of TPC-DS: the first standard benchmark for SQL-based big data systems. In: Proceedings of the 2017 Symposium on Cloud Computing (2017)

    Google Scholar 

  28. Polyzotis, N., Roy, S., Whang, S.E., Zinkevich, M.: Data management challenges in production machine learning. In: SIGMOD, pp. 1723–1726 (2017)

    Google Scholar 

  29. Rabl, T., Frank, M., Danisch, M., Gowda, B., Jacobsen, H.-A.: Towards a complete BigBench implementation. In: Rabl, T., Sachs, K., Poess, M., Baru, C., Jacobson, H.-A. (eds.) WBDB 2015. LNCS, vol. 8991, pp. 3–11. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20233-4_1

    Chapter  Google Scholar 

  30. Rabl, T., Frank, M., Danisch, M., Jacobsen, H.A., Gowda, B.: The vision of BigBench 2.0. In: Proceedings of the Fourth Workshop on Data Analytics in the Cloud DanaC 2015, pp. 3:1–3:4. ACM, New York (2015)

    Google Scholar 

  31. Rabl, T., Frank, M., Sergieh, H.M., Kosch, H.: A data generator for cloud-scale benchmarking. In: Nambiar, R., Poess, M. (eds.) TPCTC 2010. LNCS, vol. 6417, pp. 41–56. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18206-8_4

    Chapter  Google Scholar 

  32. Rabl, T., Poess, M.: Parallel data generation for performance analysis of large, complex RDBMS. In: DBTest 2011, p. 5 (2011)

    Google Scholar 

  33. Schelter, S., Palumbo, A., Quinn, S., Marthi, S., Musselman, A.: Samsara: declarative machine learning on distributed dataflow systems. In: NIPS Workshop MLSystems (2016)

    Google Scholar 

  34. Shah, V., Kumar, A.: The ML data prep zoo: towards semi-automatic data preparation for ML. In: DEEM, pp. 11:1–11:4 (2019)

    Google Scholar 

  35. Stevens, C.E.: Information TPC-Cechnology - ATA/ATAPI Command Set - 2 (ACS-2). Technical report, ANSI INCITS (2011)

    Google Scholar 

  36. Sun, C., Shrivastava, A., Singh, S., Gupta, A.: Revisiting unreasonable effectiveness of data in deep learning era. In: ICCV (2017)

    Google Scholar 

  37. Transaction Processing Performance Council: TPC-Energy Specification, version 1.5.0 (2012)

    Google Scholar 

  38. Transaction Processing Performance Council: TPC Pricing Specification, version 2.5.0 (2019)

    Google Scholar 

  39. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: cluster computing with working sets. In: HotCloud, p. 10 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tilmann Rabl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rabl, T. et al. (2020). ADABench - Towards an Industry Standard Benchmark for Advanced Analytics. In: Nambiar, R., Poess, M. (eds) Performance Evaluation and Benchmarking for the Era of Cloud(s). TPCTC 2019. Lecture Notes in Computer Science(), vol 12257. Springer, Cham. https://doi.org/10.1007/978-3-030-55024-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-55024-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-55023-3

  • Online ISBN: 978-3-030-55024-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics