Skip to main content

Modeling the Complex Network of Social Interactions

  • Chapter
  • First Online:
Pathways Between Social Science and Computational Social Science

Part of the book series: Computational Social Sciences ((CSS))

Abstract

The development of information communication technology has changed the society, and, at the same time, it has a major impact on the scientific approach to study social systems. Big Data provides information at the societal scale and reflect almost all aspects of social life as digital footprints with very good statistics. The analysis of such data and other observations has already led to a number of “stylized facts” about the system of social interactions, including the characterization of the degree distribution, the correlation between tie strength and network topology, assortative mixing by degree, high clustering, overlapping community structure, multiplexity, as well as mechanisms of tie formation and fading. We have constructed a series of multi-agent models, which increasingly reflect the observations. Our aim has been at this stage to shed light on the mechanisms rather than to achieve quantitative agreement. The Weighted Social Network (WSN) model produces Granovetterian correlations between tie strength and topology, and we have explored the roles of the different mechanisms of link fading. We have shown that with the introduction of appropriate correlations, e.g., due to geographic distance, this model can be generalized to multiplex interactions. In case of a multiplicity of individual features serving as the basis of homophily, we have identified a transition between a segregated and a more heterogeneous phases, where the former is characteristic for critical situations, when only few features matter. In the paper we touch upon the problem of selecting communication channels as a limitation of the applicability of ICT data as a proxy for social interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The use of networks based on communication data as a proxy for the real social network has its limitations which we will discuss later.

  2. 2.

    We call stylized facts the set of established properties, which have been found repeatedly as characteristic for social networks.

  3. 3.

    Power-law tail of a distribution of a variable x means that for large values the distribution behaves like x γ. As a power-law function is scale invariant, no characteristic scale occurs in it—hence the “scale free” terminology.

  4. 4.

    Periodic boundary conditions: nodes on the left (top) side of the space are also close to the ones on the right (bottom) edge.

References

  • Y.-Y. Ahn, J.P. Bagrow, S. Lehmann, Link communities reveal multiscale complexity in networks. Nature 466(7307), 761–764 (2010)

    Article  Google Scholar 

  • S. Aparicio, J. Villazón-Terrazas, G. Álvarez, A model for scale-free networks: application to twitter. Entropy 17, 5848–5867 (2015)

    Article  Google Scholar 

  • R. Axelrod, The dissemination of culture: a model with local convergence and global polarization. J. Confl. Resolut. 41(2), 203–226 (1997)

    Article  Google Scholar 

  • A.-L. Barabási, E. Bonabeau, Scale-free networks. Sci. Am. 288(5), 60–69 (2003)

    Article  Google Scholar 

  • G. Bianconi, Multilayer Networks (Oxford University Press, Oxford, 2018)

    Book  Google Scholar 

  • V.D. Blondel, A. Decuyper, G. Krings, A survey of results on mobile phone datasets analysis. EPJ Data Sci. 4(10) (2015)

    Google Scholar 

  • D. Butler, Data sharing threatens privacy. Nature 449, 644–645 (2007)

    Article  Google Scholar 

  • C. Cattuto, W. Van den Broeck, A. Barrat, V. Colizza, J.-F. Pinton, A. Vespignani, Dynamics of person-to-person interactions from distributed RFID sensor networks. PLOS ONE 5, e11596 (2010)

    Article  Google Scholar 

  • R.I.M. Dunbar, Constraints on the evolution of social institutions and their implications for information flow. J. Inst. Econ. 7(Special Issue 03), 345–371 (2011)

    Google Scholar 

  • J.-P. Eckmann, E. Moses, D. Sergi, Entropy of dialogues creates coherent structures in e-mail traffic. Proc. Natl. Acad. Sci. U. S. A. 101(40), 14333–14337 (2004)

    Article  Google Scholar 

  • D.N. Fisher, M.J. Silk, D.W. Franks, The perceived assortativity of social networks: methodological problems and solutions, in Trends in Social Network Analysis: Information Propagation, User Behavior Modeling, Forecasting, and Vulnerability Assessment, ed. by R. Missaoui et al. Lecture Notes in Social Networks (Springer, Berlin, 2017), pp. 1–19

    Google Scholar 

  • S. Fortunato Community detection in graphs. Phys. Rep. 486, 75–174 (2010)

    Google Scholar 

  • M.C. González, C.A. Hidalgo, A.-L. Barabási. Understanding individual human mobility patterns. Nature 453(7196), 779–782 (2008)

    Article  Google Scholar 

  • M.S. Granovetter, The strength of weak ties. Am. J. Sociol. 78(6), 1360–1380 (1973)

    Article  Google Scholar 

  • L. Isella, J. Stehlé, A. Barrat, C. Cattuto, J.-F. Pinton, W. Van den Broeck, What’s in a crowd? Analysis of face-to-face behavioral networks. J. Theor. Biol. 271(1), 166–180 (2011)

    Google Scholar 

  • H.-H. Jo, Y. Murase, J. Török, J. Kertész, K. Kaski, Stylized facts in social networks: Community-based static modeling. Physica A 500, 23–39 (2018)

    Article  Google Scholar 

  • J. Kertész, J. Török, Y. Muraze, H.-H. Jo, K. Kaski, Multiplex modeling of society, in Multiplex and Multilevel Networks, ed. by S. Battiston et al. (Oxford University Press, Oxford, 2018)

    Google Scholar 

  • M. Kivelä, A. Arenas, M. Barthelemy, J.P. Gleeson, Y. Moreno, M.A. Porter, Multilayer networks. J. Complex Netw. 2(3), 203–271 (2014)

    Article  Google Scholar 

  • G. Kossinets, D.J. Watts, Empirical analysis of an evolving social network. Science 311(5757), 88–90 (2006)

    Article  Google Scholar 

  • J.M. Kumpula, J.P. Onnela, J. Saramäki, K. Kaski, J. Kertész, Emergence of communities in weighted networks. Phys. Rev. Lett. 99(22), 228701 (2007)

    Google Scholar 

  • H. Kwak, C. Lee, H. Park, S. Moon. What is twitter, a social network or a news media? in Proceedings of the 19th International Conference on World Wide Web, WWW’10, New York (ACM, 2010), pp. 591–600

    Google Scholar 

  • B. Lengyel, A. Varga, B. Ságvári, Á. Jakobi, J. Kertész, Geographies of an online social network. PLoS ONE 10(9), e0137248 (2015)

    Google Scholar 

  • M. McPherson, L. Smith-Lovin, J.M. Cook, Birds of a feather: homophily in social networks. Annu. Rev. Sociol. 27, 415–444 (2001)

    Article  Google Scholar 

  • Y. Murase, T. Uchitane, N. Ito, A tool for parameter-space explorations. Phys. Proc. 57, 73–76 (2014)

    Article  Google Scholar 

  • Y. Murase, J. Török, H.-H. Jo, K. Kaski, J. Kertész, Multilayer weighted social network model. Phys. Rev. E 90(5), 052810 (2014)

    Google Scholar 

  • Y. Murase, H.-H. Jo, J. Török, J. Kertész, K. Kaski, Modeling the role of relationship fading and breakup in social network formation. PLoS ONE 10(7), e0133005 (2015)

    Google Scholar 

  • Y. Murase, H.-H. Jo, J. Török, J. Kertész, K. Kaski, Sampling networks by nodal attributes. Phys. Rev. E 99, 052304 (2019)

    Article  Google Scholar 

  • Y. Murase, H.-H. Jo, J. Török, J. Kertész, K. Kaski, Structural transition in social networks: the role of homophily. Sci. Rep. 9, 4310 (2019)

    Article  Google Scholar 

  • M.E.J. Newman, Networks: An Introduction (Oxford University Press, Oxford, 2010)

    Book  Google Scholar 

  • J.P. Onnela, J. Saramäki, J. Hyvönen, G. Szabó, D. Lazer, K. Kaski, J. Kertész, A.L. Barabási, Structure and tie strengths in mobile communication networks. Proc. Natl. Acad. Sci. 104(18), 7332–7336 (2007)

    Article  Google Scholar 

  • J.-P. Onnela, J. Saramäki, J. Hyvönen, G. zabó, M.A. de Menezes, K. Kaski, A.-L. Barabási, J. Kertész, Analysis of a large-scale weighted network of one-to-one human communication. New J. Phys. 9(6), 179 (2007)

    Google Scholar 

  • V. Palchykov, K. Kaski, J. Kertész, A.-L. Barabási, R.I.M. Dunbar, Sex differences in intimate relationships. Sci. Rep. 2, 370 (2012)

    Article  Google Scholar 

  • G. Palla, I. Derényi, I. Farkas, T. Vicsek, Uncovering the overlapping community structure of complex networks in nature and society. Nature 435, 814–818 (2005)

    Article  Google Scholar 

  • L.E. Reichl, A Modern Course in Statistical Physics (Wiley, Weinheim, 2016)

    Book  Google Scholar 

  • J. Saramäki, E.A. Leicht, E. López, S.G.B. Roberts, F. Reed-Tsochas, R.I.M. Dunbar, Persistence of social signatures in human communication. Proc. Natl. Acad. Sci. 111(3), 942–947 (2014)

    Article  Google Scholar 

  • T.E. Schelling, Models of segregation. Am. Econ. Rev. 59, 488–493 (1969)

    Google Scholar 

  • A. Sîrbu, D. Pedreschi, F. Giannotti, J. Kertész, Algorithmic bias amplifies opinion fragmentation and polarization: a bounded confidence model. PLoS ONE 14, e0213246 (2019)

    Article  Google Scholar 

  • G. Szabó, M. Alava, J. Kertész, Clustering in complex networks, in Complex Netowrks, ed. by E. Ben-Naim et al. Lecture Notes in Physics, vol. 650 (Springer, Berlin, 2004), pp. 139–162

    Google Scholar 

  • R. Toral, M. San Miguel, K. Klemm, V.M. Eguíluz, Global culture: a noise-induced transition in finite systems. Phys. Rev. E 67, 045101 (2003)

    Google Scholar 

  • J. Török, Y. Murase, H.-H. Jo, J. Kertész, K. Kaski, What big data tells: sampling the social network by communication channels. Phys. Rev. E 94, 052319 (2016)

    Article  Google Scholar 

  • J. Ugander, B. Karrer, L. Backstrom, C. Marlow, The anatomy of the facebook social graph, Nov 2011

    Google Scholar 

  • S. Unicomb, G. Iñiguez, J. Kertész, M. Karsai, Reentrant phase transitions in threshold driven contagion on multiplex networks, ArXiv, 1902.04707 (2019)

    Google Scholar 

  • L. Weng, M. Karsai, N. Perra, F. Menczer, A. Flammini, Attention on weak ties in social and communication networks, in Computational Social Sciences (Springer, Berlin, 2018), pp. 213–228

    Google Scholar 

  • K. Zhao, J. Stehlé, G. Bianconi, A. Barrat, Social network dynamics of face-to-face interactions. Phys. Rev. E 83(5), 056109 (2011)

    Google Scholar 

Download references

Acknowledgements

Research reported here was supported by European grants FP7 SIMPLEX (JK), H2020 MULTIPLEX (JK), Hungarian grant OTKA K129124 “Uncovering patterns of social inequalities and imbalances in large-scale networks” (JK, JT), Aalto AScI (JT) the Academy of Finland (KK), The Alan Turing Institute (KK). YM acknowledges support from MEXT as “Exploratory Challenges on Post-K computer (Studies of multi-level spatiotemporal simulation of socioeconomic phenomena)” and from Japan Society for the Promotion of Science (JSPS) (JSPS KAKENHI; Grant No. 18H03621). H-HJ acknowledges financial support by Basic Science Research Program through the National Research Foundation of Korea (NRF) grant funded by the Ministry of Education (NRF-2018R1D1A1A09081919). The systematic simulations in this study used OACIS (Murase 2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to János Kertész .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kertész, J., Török, J., Murase, Y., Jo, HH., Kaski, K. (2021). Modeling the Complex Network of Social Interactions. In: Rudas, T., Péli, G. (eds) Pathways Between Social Science and Computational Social Science. Computational Social Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-54936-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-54936-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-54935-0

  • Online ISBN: 978-3-030-54936-7

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics