Skip to main content

Vector-Borne Diseases in a Changing Climate and World

  • Chapter
  • First Online:
Climate Change and Global Public Health

Part of the book series: Respiratory Medicine ((RM))

Abstract

One of the most important global effects of climate change is likely to be on infectious diseases, especially those transmitted by insect vectors (e.g., mosquitos, ticks) that strongly depend on a specific climate for survival, population dynamics, and pathogen transmission. Given the current prevalence and contribution of vector-borne diseases to the global disease burden, the implications of climate variability and change on their transmission are extremely important. However, the potential impact on vector-borne disease risk is difficult to assess and remains highly uncertain, particularly in the long term. Moreover, there are several non-climatic factors in our changing world that drive vector-borne disease transmission, such as urbanization, land use changes, and human mobility, and affect population exposure to these diseases. Ideally, future models of vector-borne diseases would add projections of non-climatic factors and how these might be influenced or changed. Ultimately, the risk of vector-borne disease in a population is determined by that population’s vulnerability, which is a measure of the capacity available to adapt and respond to changes in the environmental suitability for mosquito vectors, pathogen replication, and disease transmission. In this chapter, we seek to review the current status and challenges in understanding vector-borne disease dynamics given the complex interplay of climatic and non-climatic factors in a warming climate. We focus on mosquito-borne diseases and highlight current knowledge base and knowledge gaps around this topic to stimulate future research in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bhatt S, Weiss DJ, Cameron E, Bisanzio D, Mappin B, Dalrymple U, et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature. 2015;526:207. https://doi.org/10.1038/nature15535. https://www.nature.com/articles/nature15535#supplementary-information

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dye C. After 2015: infectious diseases in a new era of health and development. Philos Trans R Soc Lond B Biol Sci. 369(1645):20130426. https://doi.org/10.1098/rstb.2013.0426. PubMed PMID: 24821913.

  3. Weaver SC, Charlier C, Vasilakis N, Lecuit M. Zika, chikungunya, and other emerging vector-borne viral diseases. Annu Rev Med. 2018;69:395–408. https://doi.org/10.1146/annurev-med-050715-105122. Epub 2017/08/28. PubMed PMID: 28846489.

    Article  CAS  PubMed  Google Scholar 

  4. Organization WH. Vector-borne diseases 2016 [cited 2019 May 4]. Available from: http://www.who.int/en/news-room/factsheets/detail/vector-borne-diseases

  5. Yun SI, Lee YM. Zika virus: An emerging flavivirus. J Microbiol (Seoul, Korea). 2017;55(3):204–19. https://doi.org/10.1007/s12275-017-7063-6. Epub 2017/03/01. PubMed PMID: 28243937.

    Article  CAS  Google Scholar 

  6. Caminade C, Kovats S, Rocklov J, Tompkins AM, Morse AP, Colón-González FJ, et al. Impact of climate change on global malaria distribution. Proc Natl Acad Sci U S A. 2014;111(9):3286–91. https://doi.org/10.1073/pnas.1302089111. Epub 2014/02/03. PubMed PMID: 24596427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rocklöv J, Quam MB, Sudre B, German M, Kraemer MUG, Brady O, et al. Assessing seasonal risks for the introduction and mosquito-borne spread of Zika virus in Europe. EBioMedicine. 2016;9:250–6. https://doi.org/10.1016/j.ebiom.2016.06.009. PubMed PMID: 27344225.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Liu-Helmersson J, Stenlund H, Wilder-Smith A, Rocklöv J. Vectorial capacity of Aedes aegypti: effects of temperature and implications for global dengue epidemic potential. PLoS One. 2014;9(3):e89783. https://doi.org/10.1371/journal.pone.0089783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dhiman S. Are malaria elimination efforts on right track? An analysis of gains achieved and challenges ahead. Infect Dis Poverty. 2019;8(1):14. https://doi.org/10.1186/s40249-019-0524-x. PubMed PMID: 30760324.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Dhiman RC, Sarkar S. El Niño southern oscillation as an early warning tool for malaria outbreaks in India. Malar J. 2017;16(1):122. https://doi.org/10.1186/s12936-017-1779-y.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Stanaway JD, Shepard DS, Undurraga EA, Halasa YA, Coffeng LE, Brady OJ, et al. The global burden of dengue: an analysis from the global burden of disease study 2013. Lancet Infect Dis. 2016;16(6):712–23. https://doi.org/10.1016/S1473-3099(16)00026-8. Epub 2016/02/10. PubMed PMID: 26874619.

    Article  PubMed  PubMed Central  Google Scholar 

  12. GBD DALYs and Hale Collaborators, CJL M, Barber RM, Foreman KJ, Abbasoglu Ozgoren A, Abd-Allah F, et al. Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990–2013: quantifying the epidemiological transition. Lancet. 2015;386(10009):2145–91. https://doi.org/10.1016/S0140-6736(15)61340-X. Epub 2015/08/28. PubMed PMID: 26321261.

    Article  Google Scholar 

  13. Smith KF, Goldberg M, Rosenthal S, Carlson L, Chen J, Chen C, et al. Global rise in human infectious disease outbreaks. J R Soc Interface. 2014;11(101):20140950. https://doi.org/10.1098/rsif.2014.0950. PubMed PMID: 25401184.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Khan K, Bogoch I, Brownstein JS, Miniota J, Nicolucci A, Hu W, et al. Assessing the origin of and potential for international spread of chikungunya virus from the Caribbean. PLoS Curr. 2014;6 https://doi.org/10.1371/currents.outbreaks.2134a0a7bf37fd8d388181539fea2da5. PubMed PMID: 24944846.

  15. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. The global distribution and burden of dengue. Nature. 2013;496(7446):504–7. https://doi.org/10.1038/nature12060. Epub 2013/04/07. PubMed PMID: 23563266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Joacim R, Yesim T, Aditya R, Maquines OS, Bertrand S, Jon G, et al. Using big data to monitor the introduction and spread of chikungunya, Europe, 2017. Emerg Infect Dis J. 2019;25(6):1041. https://doi.org/10.3201/eid2506.180138.

    Article  Google Scholar 

  17. Anyamba A, Chretien J-P, Britch SC, Soebiyanto RP, Small JL, Jepsen R, et al. Global disease outbreaks associated with the 2015–2016 El Niño Event. Sci Rep. 2019;9(1):1930. https://doi.org/10.1038/s41598-018-38034-z. PubMed PMID: 30760757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gubler DJ. Dengue, urbanization and globalization: the unholy trinity of the 21(st) century. Trop Med Health. 2011;39(4 Suppl):3–11. https://doi.org/10.2149/tmh.2011-S05. Epub 2012/04/14. PubMed PMID: 22500131; PubMed Central PMCID: PMCPMC3317603.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ramadona AL, Tozan Y, Lazuardi L, Rocklov J. A combination of incidence data and mobility proxies from social media predicts the intra-urban spread of dengue in Yogyakarta, Indonesia. PLoS Negl Trop Dis. 2019;13(4):e0007298. https://doi.org/10.1371/journal.pntd.0007298. Epub 2019/04/16. PubMed PMID: 30986218; PubMed Central PMCID: PMCPMC6483276.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Rocklov J, Tozan Y, Ramadona A, Sewe MO, Sudre B, Garrido J, et al. Using big data to monitor the introduction and spread of chikungunya, Europe, 2017. Emerg Infect Dis. 2019;25(6):1041–9. https://doi.org/10.3201/eid2506.180138. Epub 2019/05/21. PubMed PMID: 31107221.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Stewart-Ibarra AM, Lowe R. Climate and non-climate drivers of dengue epidemics in southern coastal ecuador. Am J Trop Med Hyg. 2013;88(5):971–81. https://doi.org/10.4269/ajtmh.12-0478. Epub 2013/03/13. PubMed PMID: 23478584; PubMed Central PMCID: PMCPMC3752767.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Struchiner CJ, Rocklov J, Wilder-Smith A, Massad E. Increasing dengue incidence in Singapore over the past 40 years: population growth, climate and mobility. PLoS One. 2015;10(8):e0136286. https://doi.org/10.1371/journal.pone.0136286. Epub 2015/09/01. PubMed PMID: 26322517; PubMed Central PMCID: PMCPMC4554991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wilder-Smith A, Gubler DJ. Geographic expansion of dengue: the impact of international travel. Med Clin North Am. 2008;92(6):1377–90, x. https://doi.org/10.1016/j.mcna.2008.07.002. Epub 2008/12/09. PubMed PMID: 19061757.

    Article  PubMed  Google Scholar 

  24. Ermert V, Fink AH, Morse AP, Paeth H. The impact of regional climate change on malaria risk due to greenhouse forcing and land-use changes in tropical Africa. Environ Health Perspect. 2012;120(1):77–84. https://doi.org/10.1289/ehp.1103681. Epub 2011/09/07. PubMed PMID: 21900078.

    Article  PubMed  Google Scholar 

  25. Amato R, Pearson RD, Almagro-Garcia J, Amaratunga C, Lim P, Suon S, et al. Origins of the current outbreak of multidrug resistant malaria in Southeast Asia: a retrospective genetic study. bioRxiv. 2017;208371 https://doi.org/10.1101/208371.

  26. Churcher TS, Lissenden N, Griffin JT, Worrall E, Ranson H. The impact of pyrethroid resistance on the efficacy and effectiveness of bednets for malaria control in Africa. eLife. 2016;5:e16090. https://doi.org/10.7554/eLife.16090. PubMed PMID: 27547988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wilder-Smith A, Gubler DJ, Weaver SC, Monath TP, Heymann DL, Scott TW. Epidemic arboviral diseases: priorities for research and public health. Lancet Infect Dis. 2017;17(3):e101–e6. https://doi.org/10.1016/S1473-3099(16)30518-7.

    Article  PubMed  Google Scholar 

  28. Watts N, Amann M, Arnell N, Ayeb-Karlsson S, Belesova K, Berry H, et al. The 2018 report of the <em>lancet</em> countdown on health and climate change: shaping the health of nations for centuries to come. Lancet. 2018;392(10163):2479–514. https://doi.org/10.1016/S0140-6736(18)32594-7.

    Article  PubMed  Google Scholar 

  29. Ryan SJ, Carlson CJ, Mordecai EA, Johnson LR. Global expansion and redistribution of Aedes-borne virus transmission risk with climate change. PLoS Negl Trop Dis. 2019;13(3):e0007213. https://doi.org/10.1371/journal.pntd.0007213.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tjaden NB, Caminade C, Beierkuhnlein C, Thomas SM. Mosquito-borne diseases: advances in modelling climate-change impacts. Trends Parasitol. 2018;34(3):227–45. https://doi.org/10.1016/j.pt.2017.11.006.

    Article  PubMed  Google Scholar 

  31. van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, et al. The representative concentration pathways: an overview. Clim Chang. 2011;109(1):5. https://doi.org/10.1007/s10584-011-0148-z.

    Article  Google Scholar 

  32. Christiansen-Jucht C, Parham PE, Saddler A, Koella JC, Basáñez M-G. Temperature during larval development and adult maintenance influences the survival of Anopheles gambiae s.s. Parasit Vectors. 2014;7:489. https://doi.org/10.1186/s13071-014-0489-3. PubMed PMID: 25367091.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Alto BW, Bettinardi D. Temperature and dengue virus infection in mosquitoes: independent effects on the immature and adult stages. Am J Trop Med Hyg. 2013;88(3):497–505. https://doi.org/10.4269/ajtmh.12-0421. Epub 2013/02/06. PubMed PMID: 23382163; PubMed Central PMCID: PMCPMC3592531.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Beck-Johnson LM, Nelson WA, Paaijmans KP, Read AF, Thomas MB, Bjørnstad ON. The effect of temperature on Anopheles mosquito population dynamics and the potential for malaria transmission. PLoS One. 2013;8(11):e79276-e. https://doi.org/10.1371/journal.pone.0079276. PubMed PMID: 24244467.

    Article  CAS  Google Scholar 

  35. DAVIS NC. The effect of various temperatures in modifying the extrinsic incubation period of the yellow fever virus in AËDES AEGYPTI*. Am J Epidemiol. 1932;16(1):163–76. https://doi.org/10.1093/oxfordjournals.aje.a117853.

    Article  Google Scholar 

  36. Haider N, Kirkeby C, Kristensen B, Kjaer LJ, Sorensen JH, Bodker R. Microclimatic temperatures increase the potential for vector-borne disease transmission in the Scandinavian climate. Sci Rep. 2017;7(1):8175. https://doi.org/10.1038/s41598-017-08514-9. Epub 2017/08/16. PubMed PMID: 28811576; PubMed Central PMCID: PMCPMC5557972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bangs MJ, Pudiantari R, Gionar YR. Persistence of dengue virus RNA in dried Aedes aegypti (Diptera: Culicidae) exposed to natural tropical conditions. J Med Entomol. 2007;44(1):163–7. https://doi.org/10.1603/0022-2585(2007)44[163:podvri]2.0.co;2. Epub 2007/02/14. PubMed PMID: 17294936.

    Article  CAS  PubMed  Google Scholar 

  38. Thomson MC, Muñoz ÁG, Cousin R, Shumake-Guillemot J. Climate drivers of vector-borne diseases in Africa and their relevance to control programmes. Infect Dis Poverty. 2018;7(1):81. https://doi.org/10.1186/s40249-018-0460-1. PubMed PMID: 30092816.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Paaijmans KP, Read AF, Thomas MB. Understanding the link between malaria risk and climate. Proc Natl Acad Sci. 2009;106(33):13844–9. https://doi.org/10.1073/pnas.0903423106.

    Article  PubMed  Google Scholar 

  40. Paaijmans KP, Blanford S, Bell AS, Blanford JI, Read AF, Thomas MB. Influence of climate on malaria transmission depends on daily temperature variation. Proc Natl Acad Sci U S A. 2010;107(34):15135–9. https://doi.org/10.1073/pnas.1006422107. Epub 2010/08/09. PubMed PMID: 20696913.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Lambrechts L, Paaijmans KP, Fansiri T, Carrington LB, Kramer LD, Thomas MB, et al. Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti. Proc Natl Acad Sci. 2011;108(18):7460–5. https://doi.org/10.1073/pnas.1101377108.

    Article  PubMed  Google Scholar 

  42. Blanford JI, Blanford S, Crane RG, Mann ME, Paaijmans KP, Schreiber KV, et al. Implications of temperature variation for malaria parasite development across Africa. Sci Rep. 2013;3:1300. https://doi.org/10.1038/srep01300. https://www.nature.com/articles/srep01300#supplementary-information

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hii YL, Rocklöv J, Ng N, Tang CS, Pang FY, Sauerborn R. Climate variability and increase in intensity and magnitude of dengue incidence in Singapore. Glob Health Action. 2009;2 https://doi.org/10.3402/gha.v2i0.2036. PubMed PMID: 20052380.

  44. Linthicum KJAA, Britch SC, Small JL, Tucker CJ. Climate teleconnections, weather extremes, and vector-borne disease outbreaks. Washington, DC: National Academies Press (US); 2016. Available from: https://www.ncbi.nlm.nih.gov/books/NBK390440/

    Google Scholar 

  45. Beck-Johnson LM, Nelson WA, Paaijmans KP, Read AF, Thomas MB, Bjørnstad ON. The effect of temperature on Anopheles mosquito population dynamics and the potential for malaria transmission. PLoS One. 2013;8(11):e79276. https://doi.org/10.1371/journal.pone.0079276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Anyamba A, Linthicum KJ, Small JL, Collins KM, Tucker CJ, Pak EW, et al. Climate Teleconnections and recent patterns of human and animal disease outbreaks. PLoS Negl Trop Dis. 2012;6(1):e1465. https://doi.org/10.1371/journal.pntd.0001465.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Chretien JP, Anyamba A, Bedno SA, Breiman RF, Sang R, Sergon K, et al. Drought-associated chikungunya emergence along coastal East Africa. Am J Trop Med Hyg. 2007;76(3):405–7. Epub 2007/03/16. PubMed PMID: 17360859.

    Article  Google Scholar 

  48. Sewe M, Rocklov J, Williamson J, Hamel M, Nyaguara A, Odhiambo F, et al. The association of weather variability and under five malaria mortality in KEMRI/CDC HDSS in Western Kenya 2003 to 2008: a time series analysis. Int J Environ Res Public Health. 2015;12(2):1983–97. https://doi.org/10.3390/ijerph120201983. Epub 2015/02/13. PubMed PMID: 25674784; PubMed Central PMCID: PMCPMC4344705.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Sewe MO, Ahlm C, Rocklov J. Remotely sensed environmental conditions and malaria mortality in three malaria endemic regions in Western Kenya. PLoS One. 2016;11(4):e0154204. https://doi.org/10.1371/journal.pone.0154204. Epub 2016/04/27. PubMed PMID: 27115874; PubMed Central PMCID: PMCPMC4845989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ramadona AL, Lazuardi L, Hii YL, Holmner A, Kusnanto H, Rocklov J. Prediction of dengue outbreaks based on disease surveillance and meteorological data. PLoS One. 2016;11(3):e0152688. https://doi.org/10.1371/journal.pone.0152688. Epub 2016/04/01. PubMed PMID: 27031524; PubMed Central PMCID: PMCPMC4816319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chen MJ, Lin CY, Wu YT, Wu PC, Lung SC, Su HJ. Effects of extreme precipitation to the distribution of infectious diseases in Taiwan, 1994–2008. PLoS One. 2012;7(6):e34651. https://doi.org/10.1371/journal.pone.0034651. Epub 2012/06/28. PubMed PMID: 22737206; PubMed Central PMCID: PMCPMC3380951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Johansson MA, Cummings DA, Glass GE. Multiyear climate variability and dengue – El Nino southern oscillation, weather, and dengue incidence in Puerto Rico, Mexico, and Thailand: a longitudinal data analysis. PLoS Med. 2009;6(11):e1000168. https://doi.org/10.1371/journal.pmed.1000168. Epub 2009/11/18. PubMed PMID: 19918363; PubMed Central PMCID: PMCPMC2771282.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Liyanage P, Tissera H, Sewe M, Quam M, Amarasinghe A, Palihawadana P, et al. A spatial hierarchical analysis of the temporal influences of the El Nino-southern oscillation and weather on dengue in Kalutara District, Sri Lanka. Int J Environ Res Public Health. 2016;13(11) https://doi.org/10.3390/ijerph13111087. Epub 2016/11/10. PubMed PMID: 27827943; PubMed Central PMCID: PMCPMC5129297.

  54. Brady OJ, Golding N, Pigott DM, Kraemer MU, Messina JP, Reiner RC Jr, et al. Global temperature constraints on Aedes aegypti and Ae. albopictus persistence and competence for dengue virus transmission. Parasit Vectors. 2014;7:338. https://doi.org/10.1186/1756-3305-7-338. Epub 2014/07/24. PubMed PMID: 25052008; PubMed Central PMCID: PMCPMC4148136.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Paz S. Climate change impacts on West Nile virus transmission in a global context. Philos Trans R Soc Lond B Biol Sci. 2015;370(1665) https://doi.org/10.1098/rstb.2013.0561. Epub 2015/02/18. PubMed PMID: 25688020; PubMed Central PMCID: PMCPMC4342965.

  56. Campbell LP, Luther C, Moo-Llanes D, Ramsey JM, Danis-Lozano R, Peterson AT. Climate change influences on global distributions of dengue and chikungunya virus vectors. Philos Trans R Soc Lond B Biol Sci. 2015;370(1665) https://doi.org/10.1098/rstb.2014.0135. Epub 2015/02/18. PubMed PMID: 25688023; PubMed Central PMCID: PMCPMC4342968.

  57. Gething PW, Van Boeckel TP, Smith DL, Guerra CA, Patil AP, Snow RW, et al. Modelling the global constraints of temperature on transmission of Plasmodium falciparum and P. vivax. Parasit Vectors. 2011;4:92. https://doi.org/10.1186/1756-3305-4-92. Epub 2011/05/28. PubMed PMID: 21615906; PubMed Central PMCID: PMCPMC3115897.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Siraj AS, Santos-Vega M, Bouma MJ, Yadeta D, Ruiz Carrascal D, Pascual M. Altitudinal changes in malaria incidence in highlands of Ethiopia and Colombia. Science (New York, NY). 2014;343(6175):1154–8. https://doi.org/10.1126/science.1244325. Epub 2014/03/08. PubMed PMID: 24604201.

    Article  CAS  Google Scholar 

  59. Servadio JL, Rosenthal SR, Carlson L, Bauer C. Climate patterns and mosquito-borne disease outbreaks in South and Southeast Asia. J Infect Public Health. 2018;11(4):566–71. https://doi.org/10.1016/j.jiph.2017.12.006. Epub 2017/12/25. PubMed PMID: 29274851.

    Article  PubMed  Google Scholar 

  60. Watts DM, Burke DS, Harrison BA, Whitmire RE, Nisalak A. Effect of temperature on the vector efficiency of Aedes aegypti for dengue 2 virus. Am J Trop Med Hyg. 1987;36(1):143–52. https://doi.org/10.4269/ajtmh.1987.36.143. Epub 1987/01/01. PubMed PMID: 3812879.

    Article  CAS  PubMed  Google Scholar 

  61. Liu-Helmersson J, Quam M, Wilder-Smith A, Stenlund H, Ebi K, Massad E, et al. Climate change and Aedes vectors: 21st century projections for dengue transmission in Europe. EBioMedicine. 2016;7:267–77. https://doi.org/10.1016/j.ebiom.2016.03.046. Epub 2016/06/21. PubMed PMID: 27322480; PubMed Central PMCID: PMCPMC4909611.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Béguin A, Hales S, Rocklöv J, Åström C, Louis VR, Sauerborn R. The opposing effects of climate change and socio-economic development on the global distribution of malaria. Glob Environ Chang. 2011;21(4):1209–14. https://doi.org/10.1016/j.gloenvcha.2011.06.001.

    Article  Google Scholar 

  63. Sutherst RW. Global change and human vulnerability to vector-borne diseases. Clin Microbiol Rev. 2004;17(1):136–73. https://doi.org/10.1128/cmr.17.1.136-173.2004. Epub 2004/01/17. PubMed PMID: 14726459; PubMed Central PMCID: PMCPMC321469.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Campbell-Lendrum D, Manga L, Bagayoko M, Sommerfeld J. Climate change and vector-borne diseases: what are the implications for public health research and policy? Philos Trans R Soc Lond Ser B Biol Sci. 2015;370(1665):20130552. https://doi.org/10.1098/rstb.2013.0552. PubMed PMID: 25688013.

    Article  Google Scholar 

  65. Riahi K, van Vuuren DP, Kriegler E, Edmonds J, O’Neill BC, Fujimori S, et al. The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob Environ Chang. 2017;42:153–68. https://doi.org/10.1016/j.gloenvcha.2016.05.009.

    Article  Google Scholar 

  66. Tjaden NB, Suk JE, Fischer D, Thomas SM, Beierkuhnlein C, Semenza JC. Modelling the effects of global climate change on Chikungunya transmission in the 21(st) century. Sci Rep. 2017;7(1):3813. https://doi.org/10.1038/s41598-017-03566-3. Epub 2017/06/21. PubMed PMID: 28630444; PubMed Central PMCID: PMCPMC5476675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Capinha C, Rocha J, Sousa CA. Macroclimate determines the global range limit of Aedes aegypti. EcoHealth. 2014;11(3):420–8. https://doi.org/10.1007/s10393-014-0918-y. Epub 2014/03/20. PubMed PMID: 24643859.

    Article  PubMed  Google Scholar 

  68. Collins M, Knutti R. Long-term climate change: projections, commitments and irreversibility. In: Stocker TF, editor. Climate change 2013: the physical science basis contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press; 2013. p. 1029–136.

    Google Scholar 

  69. O’Neill BC, Kriegler E, Riahi K, Ebi KL, Hallegatte S, Carter TR, et al. A new scenario framework for climate change research: the concept of shared socioeconomic pathways. Clim Chang. 2014;122(3):387–400. https://doi.org/10.1007/s10584-013-0905-2.

    Article  Google Scholar 

  70. Kriegler E, O’Neill BC, Hallegatte S, Kram T, Lempert RJ, Moss RH, et al. The need for and use of socio-economic scenarios for climate change analysis: A new approach based on shared socio-economic pathways. Glob Environ Chang. 2012;22(4):807–22. https://doi.org/10.1016/j.gloenvcha.2012.05.005.

    Article  Google Scholar 

  71. Rocklöv J, Tozan Y. Climate change and the rising infectiousness of dengue. Emerg Top Life Sci. 2019; https://doi.org/10.1042/etls20180123.

  72. Hosking J, Campbell-Lendrum D. How well does climate change and human health research match the demands of policymakers? A scoping review. Environ Health Perspect. 2012;120(8):1076–82. https://doi.org/10.1289/ehp.1104093. Epub 2012/04/13. PubMed PMID: 22504669.

    Article  PubMed  PubMed Central  Google Scholar 

  73. WHO. New World Health Assembly resolution on climate change and health 2008 [May 4, 2019]. Available from: https://www.who.int/globalchange/climate/EB_CChealth_resolution/en/

  74. WHO. COP24 special report: health and climate change. Geneva: World Health Organization; 2018. Available from: http://www.who.int/iris/handle/10665/276405

    Google Scholar 

  75. Jancloes M, Thomson M, Costa MM, Hewitt C, Corvalan C, Dinku T, et al. Climate services to improve public health. Int J Environ Res Public Health. 2014;11(5):4555–9. https://doi.org/10.3390/ijerph110504555. PubMed PMID: 24776719.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Thomson MC. Emerging infectious diseases, vector-borne diseases, and climate change. In: Freedman B, editor. Global environmental change handbook of global environmental pollution, vol. 1. Dordrecht: Springer; 2014.

    Google Scholar 

  77. WHO. Climate change and health projects Geneva. Geneva: World Health Organization; 2019. [May 26, 2019]. Available from: www.who.int/globalchange/projects

    Google Scholar 

  78. Ramirez B. Diseases T-IRIoVB, Climate C. Support for research towards understanding the population health vulnerabilities to vector-borne diseases: increasing resilience under climate change conditions in Africa. Infect Dis Poverty. 2017;6(1):164. https://doi.org/10.1186/s40249-017-0378-z. PubMed PMID: 29228976.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Watts N, Adger WN, Agnolucci P, Blackstock J, Byass P, Cai W, et al. Health and climate change: policy responses to protect public health. Lancet. 2015;386(10006):1861–914. https://doi.org/10.1016/S0140-6736(15)60854-6.

    Article  PubMed  Google Scholar 

  80. Ebi KL, Semenza JC. Community-based adaptation to the health impacts of climate change. Am J Prev Med. 2008;35(5):501–7. https://doi.org/10.1016/j.amepre.2008.08.018. Epub 2008/10/22. PubMed PMID: 18929976.

    Article  PubMed  Google Scholar 

  81. Rosas-Aguirre A, Erhart A, Llanos-Cuentas A, Branch O, Berkvens D, Abatih E, et al. Modelling the potential of focal screening and treatment as elimination strategy for Plasmodium falciparum malaria in the Peruvian Amazon Region. Parasit Vectors. 2015;8:261. https://doi.org/10.1186/s13071-015-0868-4. PubMed PMID: 25948081.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by two research grants from the Swedish Research Council Formas (grants no. 2018-01754 and 2017-01300).

Contributions

YT wrote the initial draft. All authors critically reviewed and made extensive contributions to the final draft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yesim Tozan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tozan, Y., Branch, O.L.H., Rocklöv, J. (2021). Vector-Borne Diseases in a Changing Climate and World. In: Pinkerton, K.E., Rom, W.N. (eds) Climate Change and Global Public Health. Respiratory Medicine. Humana, Cham. https://doi.org/10.1007/978-3-030-54746-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-54746-2_12

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-54745-5

  • Online ISBN: 978-3-030-54746-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics