Skip to main content

Modeling Social Status and Fertility Decisions Under Differential Mortality

  • Chapter
  • First Online:
Dynamic Economic Problems with Regime Switches

Abstract

Unlike most non-human social animals, the social status of humans does not consistently correlate with higher fertility and in many cases appears to suppress fertility. This discrepancy has been employed as an argument against the use of evolutionary biology to understand human behavior. However, some literature suggests that social status and its implications for survival during high-mortality events may imply that status-seeking at a cost to fertility may be an optimal strategy over the long term. Here, we propose a theoretical model, in which each generation trades-off between social status and fertility under different economic and environmental constraints. To our knowledge, the model we present here is the first to connect individual decisions of generations, strategies to maximize long-term biological fitness, and key environmental and economic conditions in a coherent stylized modeling framework. We use it, in particular, to explicate the conditions, under which the strategy of having a lower number of offspring with higher social status may result in higher biological fitness over the long term. Furthermore, we delineate sets of economic and environmental conditions, for which the dynasty shrinks and grows. As adaptation of individual preferences is costly, limited and may take generations, we argue that a sudden change in environmental or economic conditions may shift a dynasty from a growing to a declining trajectory, which may be irreversible. Also, we show that in some cases, a slight change in environmental conditions can lead to a regime switch of an optimal strategy maximizing biological fitness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is also assumed here that the minimal level of individual’s consumption necessary to survive is already subtracted from the value of s.

References

  1. Adler, N. E., Epel, E. S., Castellazzo, G., & Ickovics, J. R. (2000). Relationship of subjective and objective social status with psychological and physiological functioning: Preliminary data in healthy, White women. Health Psychology, 19, 586–592. https://doi.org/10.1037/0278-6133.19.6.586.

    Article  Google Scholar 

  2. Alvergne, A., & Lummaa, V. (2014). Ecological variation in wealth–fertility relationships in Mongolia: the ‘central theoretical problem of sociobiology’ not a problem after all? Proceedings of the Royal Society of London. Series B: Biological Sciences, 281, 20141733. https://doi.org/10.1098/rspb.2014.1733.

    Article  Google Scholar 

  3. Baker, D. P., Leon, J., Smith Greenaway, E. G., et al. (2011). The education effect on population health: A reassessment. Popul Dev Rev, 37, 307–332. https://doi.org/10.1111/j.1728-4457.2011.00412.x.

    Article  Google Scholar 

  4. Banholzer, S., Kossin, J., & Donner, S. (2014). The impact of climate change on natural disasters. In A. Singh & Z. Zommers (Eds.), Reducing disaster: Early warning systems for climate change (pp. 21–49). Netherlands, Dordrecht: Springer.

    Chapter  Google Scholar 

  5. Barro, R. J., & Becker, G. S. (1989). Fertility choice in a model of economic growth. Econometrica, 57, 481. https://doi.org/10.2307/1912563.

    Article  Google Scholar 

  6. Becker, G. S., & Barro, R. J. (1986). A reformulation of the economic theory of fertility. National Bureau of Economic Research.

    Google Scholar 

  7. Bengtsson, T., Campbell, C., & Lee, J. Z. (2009). Life under pressure: Mortality and living standards in Europe and Asia, 1700–1900. London: The MIT Press, Cambridge, MA.

    Google Scholar 

  8. Bengtsson, T., & Dribe, M. (2006). Deliberate control in a natural fertility population: Southern Sweden, 1766–1864. Demography, 43, 727–746. https://doi.org/10.1353/dem.2006.0030.

    Article  Google Scholar 

  9. Birdsall, N., Kelley, A. C., & Sinding, S. (2003). Population matters: Demographic change, economic growth, and poverty in the developing world. Oxford University Press.

    Google Scholar 

  10. Bollen, K. A., Glanville, J. L., & Stecklov, G. (2002). Economic status proxies in studies of fertility in developing countries: Does the measure matter? Population Study, 56, 81–96. https://doi.org/10.1080/00324720213796.

    Article  Google Scholar 

  11. Boone, J. L., & Kessler, K. L. (1999). More status or more children? Social status, fertility reduction, and long-term fitness. Evolution and Human Behavior, 20, 257–277.

    Article  Google Scholar 

  12. Brown, D. L., Schafft, K. A. (2011). Rural people and communities in the 21st century: Resilience and transformation. Polity.

    Google Scholar 

  13. de la Croix, D., & Doepke, M. (2003). Inequality and growth: Why differential fertility matters. American Economic Review, 93, 1091–1113. https://doi.org/10.1257/000282803769206214.

    Article  Google Scholar 

  14. DeWitt, T. J., Sih, A., & Wilson, D. S. (1998). Costs and limits of phenotypic plasticity. Trends in Ecology & Evolution, 13, 77–81. https://doi.org/10.1016/S0169-5347(97)01274-3.

    Article  Google Scholar 

  15. Doepke, M., & Zilibotti, F. (2007). Occupational choice and the spirit of capitalism. National Bureau of Economic Research.

    Google Scholar 

  16. Dutton. (2012). Arid land resources & their mana. Routledge.

    Google Scholar 

  17. Dyson, T. (2011). Population and development. The demographic transition, 37, 395–397. https://doi.org/10.1111/j.1728-4457.2011.00417.x.

    Article  Google Scholar 

  18. Eide, E. R., & Showalter, M. H. (2011). Estimating the relation between health and education: What do we know and what do we need to know? Economics of Education Review, 30, 778–791.

    Article  Google Scholar 

  19. Fieder, M., & Huber, S. (2007). The effects of sex and childlessness on the association between status and reproductive output in modern society. Evolation of Human Behavior, 28, 392–398. https://doi.org/10.1016/j.evolhumbehav.2007.05.004.

    Article  Google Scholar 

  20. Fieder, M., Huber, S., Bookstein, F. L., et al. (2005). Status and reproduction in humans: new evidence for the validity of evolutionary explanations on basis of a university sample. Ethology, 111, 940–950.

    Article  Google Scholar 

  21. Fink, G., & Redaelli, S. (2005). Understanding bequest motives an empirical analysis of intergenerational transfers. Netherlands Central Bank, Research Department.

    Google Scholar 

  22. Frankenberg, E., Sikoki, B., & Sumantri, C., et al. (2013). Education, vulnerability, and resilience after a natural disaster. Ecology and Society, 18. https://doi.org/10.5751/ES-05377-180216.

  23. Galor, O., & Weil, D. N. (1996). The gender gap, fertility, and growth. American Economic Review, 86, 374–387.

    Google Scholar 

  24. Goodman, A., Koupil, I., & Lawson, D. W. (2012). Low fertility increases descendant socioeconomic position but reduces long-term fitness in a modern post-industrial society. Proceedings of the Royal Society B: Biological Sciences, 279, 4342–4351. https://doi.org/10.1098/rspb.2012.1415.

    Article  Google Scholar 

  25. Gráda, C. Ó. (2011). Famines past, famine’s future. Development and Changes, 42, 49–69. https://doi.org/10.1111/j.1467-7660.2010.01677.x.

    Article  Google Scholar 

  26. Hamilton, W. D. (1964). The genetical evolution of social behaviour. I. The Journal of Theoretical Biology, 7, 1–16. https://doi.org/10.1016/0022-5193(64)90038-4.

    Article  Google Scholar 

  27. Hamilton, W. D. (1964). The genetical evolution of social behaviour. II. The Journal of Theoretical Biology, 7, 17–52. https://doi.org/10.1016/0022-5193(64)90039-6.

    Article  Google Scholar 

  28. Hopcroft, R. L. (2006). Sex, status, and reproductive success in the contemporary United States. Evol Hum Behav, 27, 104–120.

    Article  Google Scholar 

  29. Huber, S., Bookstein, F. L., & Fieder, M. (2010). Socioeconomic status, education, and reproduction in modern women: an evolutionary perspective. American Journal of Human Biology Official J Human Biology Council, 22, 578–587. https://doi.org/10.1002/ajhb.21048.

    Article  Google Scholar 

  30. Kaplan, H. S., Lancaster, J. B., Johnson, S. E., & Bock, J. A. (1995). Does observed fertility maximize fitness among New Mexican men? Human Nature, 6, 325–360.

    Article  Google Scholar 

  31. Lagerlöf, N.-P. (2006). The Galor-Weil model revisited: A quantitative exercise. Review of Economic Dynamics, 9, 116–142. https://doi.org/10.1016/j.red.2005.07.002.

    Article  Google Scholar 

  32. Livi Bacci, M. (1991). Population and nutrition: An essay on European demographic history, english translation. Cambridge University Press, Cambridge.

    Google Scholar 

  33. Mayr, E. (1961). Cause and effect in biology kinds of causes, predictability, and teleology are viewed by a practicing biologist. Science, 134, 1501–1506.

    Article  Google Scholar 

  34. Mitani, J. C., Watts, D. P., & Muller, M. N. (2002). Recent developments in the study of wild chimpanzee behavior. Evolutionary Anthropology Issues News and Reviews, 11, 9–25.

    Article  Google Scholar 

  35. Mukharjee, A. (2012). Food security in Asia. SAGE Publications India.

    Google Scholar 

  36. Nettle, D., & Pollet, T. V. (2008). Natural selection on male wealth in humans. American Naturalist, 172, 658–666.

    Article  Google Scholar 

  37. Newton-Fisher, N. E. (2004). Hierarchy and social status in Budongo chimpanzees. Primates, 45, 81–87.

    Article  Google Scholar 

  38. Nobles, J., Frankenberg, E., & Thomas, D. (2015). The effects of mortality on fertility: population dynamics after a natural disaster. Demography, 52, 15–38. https://doi.org/10.1007/s13524-014-0362-1.

    Article  Google Scholar 

  39. Pachauri, R. K., & Reisinger, A. (2007). IPCC fourth assessment report. IPCC Fourth Assess Rep.

    Google Scholar 

  40. Penn, D. J., & Smith, K. R. (2007). Differential fitness costs of reproduction between the sexes. Proceedings of National Academy of Sciences, 104, 553–558.

    Article  Google Scholar 

  41. von Rueden, C., Gurven, M., & Kaplan, H. (2011). Why do men seek status? Fitness payoffs to dominance and prestige. Proceedings of the Royal Society of London. Series B: Biological Sciences, 278, 2223–2232. https://doi.org/10.1098/rspb.2010.2145.

    Article  Google Scholar 

  42. Sinding, S. (2009). Population, poverty and economic development. Philosophical Transaction of the Royal Society B, 364, 3023–3030.

    Article  Google Scholar 

  43. Skirbekk, V. (2008). Fertility trends by social status. Demographic Research, 18, 145–180. https://doi.org/10.4054/DemRes.2008.18.5.

    Article  Google Scholar 

  44. Smetters, K. (1999). Ricardian equivalence: long-run Leviathan. Journal of Public Economics, 73, 395–421. https://doi.org/10.1016/S0047-2727(99)00011-0.

    Article  Google Scholar 

  45. Surbeck, M., Mundry, R., & Hohmann, G. (2011). Mothers matter! Maternal support, dominance status and mating success in male bonobos (Pan paniscus). Proceedings of the Royal Society of B Biological Sciences, 278, 590–598.

    Article  Google Scholar 

  46. UN (1973). The determinants and consequences of population trends. United Nations, New York, NY.

    Google Scholar 

  47. van Aalst, M. K. (2006). The impacts of climate change on the risk of natural disasters. Disasters, 30, 5–18. https://doi.org/10.1111/j.1467-9523.2006.00303.x.

    Article  Google Scholar 

  48. Vining, D. R. (1986). Social versus reproductive success: The central theoretical problem of human sociobiology. Behavioral and Brain Sciences, 9, 167–187.

    Article  Google Scholar 

  49. de Waal, F. (2007). Chimpanzee politics: power and sex among Apes, 25th anniversary. Baltimore, Md: Johns Hopkins University Press.

    Google Scholar 

  50. de Waal, F., & Lanting, F. (1998). Bonobo: The forgotten ape (1st ed.). Berkeley: University of California Press.

    Book  Google Scholar 

  51. Wilson, C., & Airey, P. (1999). How can a homeostatic perspective enhance demographic transition theory? Popul Stud, 53, 117–128. https://doi.org/10.2307/2584671.

    Article  Google Scholar 

  52. Zhang, J. (1995). Social security and endogenous growth. Journal of Public Economics, 58, 185–213.

    Article  Google Scholar 

  53. Zhang, J., & Zhang, J. (2001). Bequest motives, social security, and economic growth. Economic Inquiry, 39, 453–466. https://doi.org/10.1093/ei/39.3.453.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Heine Strand, Martin Fieder, Warren Sanderson, Brian Fath, and Arkady Kryazhimskiy for their comments through making this project.

Funding statement

S. Orlov acknowledges the support of the Russian Academy of Sciences acting as a Russian National Member Organization at IIASA, which allowed him to participate in the IIASA’s Young Scientist Summer Program (YSSP) in 2014 and carry out a major part of the research presented in this paper. We acknowledge support by a Starting Grant of the European Research Council ERC Grant Agreement No. 241003-COHORT (provided to V. Skirbekk).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Orlov .

Editor information

Editors and Affiliations

Appendix

Appendix

Proof of Theorem 5.3

First, let us show that the optimal preference \(\omega_{C}^{*} = 0\); for that let us assume the opposite. Let set \(\left( {\hat{\omega }_{C} ,\hat{\omega }_{R} ,\hat{\omega }_{E} ,\hat{\omega }_{B} } \right)\), where \(\hat{\omega }_{C} > 0\), be optimal. Then, as one can see from the formula for PGR in Lemma, set \(\left( {\frac{{\hat{\omega }_{C} }}{2},\hat{\omega }_{R} ,\hat{\omega }_{E} ,\hat{\omega }_{B} + \frac{{\hat{\omega }_{C} }}{2}} \right)\) delivers even bigger value to PGR, as both denominators are greater in the latter case. This contradicts with the optimality of \(\left( {\hat{\omega }_{C} ,\hat{\omega }_{R} ,\hat{\omega }_{E} ,\hat{\omega }_{B} } \right)\) and, therefore, \(\omega_{C}^{*} = 0\) is optimal. Hereafter we assume, that \(\omega_{C} = 0\), and, in turn, \(\omega_{B} = 1 - \left( {{\omega }_{R} + {\omega }_{E} } \right)\).

Another observation is that \({{\text{PGR}}}\left( {{\omega }_{C} ,{\omega }_{R} ,{\omega }_{E} ,{\omega }_{B} } \right)\) is not defined for \(\omega_{B} = 1\), or, given the previous assumption, for \({\omega }_{R} = {\omega }_{E} = 0\). So, below we suppose, that \({\omega }_{R} + {\omega }_{E} > 0\). Also, below, when we define optimal sets of preferences, we suppose that \({\omega }_{R}^{*} \ge 0\), \({\omega }_{E}^{*} \ge 0\), \({\omega }_{B}^{*} \ge 0\), and \({\omega }_{R}^{*} + {\omega }_{E}^{*} + {\omega }_{B}^{*} = 1\).

Let us rewrite the long-term population growth rate more explicitly than in Lemma using equalities (5.11), (5.12) as follows:

$$\begin{aligned} & {\text{PGR}}\\&\quad = \left\{ {\begin{array}{*{20}l} {\left( {\frac{{{\omega }_{E} + \beta \left( {{\omega }_{R} + {\omega }_{E} } \right)}}{{{\omega }_{R} - \beta \left( {{\omega }_{R} + {\omega }_{E} } \right)}}\frac{\kappa }{\lambda }} \right)^{\beta } \frac{{{\omega }_{R} - \beta \left( {{\omega }_{R} + {\omega }_{E} } \right)}}{{1 - \omega_{B} }}\frac{{{s} + {r\lambda }\frac{{{\omega }_{E} + \beta \left( {{\omega }_{R} + {\omega }_{E} } \right)}}{{{\omega }_{R} - \beta \left( {{\omega }_{R} + {\omega }_{E} } \right)}}\frac{\kappa }{\lambda }}}{\kappa }} \hfill & {\text{if}\,\frac{{{\omega }_{E} + \beta \left( {{\omega }_{R} + {\omega }_{E} } \right)}}{\lambda } \le \frac{{{\omega }_{R} - \beta \left( {{\omega }_{R} + {\omega }_{E} } \right)}}{\kappa },} \hfill \\ {\frac{{{\omega }_{R} + {\omega }_{E} }}{{1 - \omega_{B} }}\frac{{{s} + {r\lambda }}}{\kappa + \lambda }} \hfill & {\text{if}\,\frac{{{\omega }_{E} + \beta \left( {{\omega }_{R} + {\omega }_{E} } \right)}}{\lambda } > \frac{{{\omega }_{R} - \beta \left( {{\omega }_{R} + {\omega }_{E} } \right)}}{\kappa }.} \hfill \\ \end{array} } \right. \end{aligned}$$

Substituting \(\omega_{B} = 1 - \left( {{\omega }_{R} + {\omega }_{E} } \right)\), we simplify and obtain

$$\begin{aligned}&{\text{PGR}} = {\text{PGR}}\left( {\omega_{R} ,\omega_{E} } \right) \\&\quad= \left\{ {\begin{array}{*{20}l} {\left( {\frac{{{\omega }_{E} + \beta \left( {{\omega }_{R} + {\omega }_{E} } \right)}}{{{\omega }_{R} - \beta \left( {{\omega }_{R} + {\omega }_{E} } \right)}}\frac{\kappa }{\lambda }} \right)^{\beta } \frac{{\left[ {{\omega }_{R} - \beta \left( {{\omega }_{R} + {\omega }_{E} } \right)} \right]\frac{s}{\kappa } + \left[ {{\omega }_{E} + \beta \left( {{\omega }_{R} + {\omega }_{E} } \right)} \right]r}}{{{\omega }_{R} + {\omega }_{E} }}} \hfill & {\text{if}\,\frac{{{\omega }_{E} + \beta \left( {{\omega }_{R} + {\omega }_{E} } \right)}}{\lambda } \le \frac{{{\omega }_{R} - \beta \left( {{\omega }_{R} + {\omega }_{E} } \right)}}{\kappa },} \hfill \\ {\frac{{{s} + {r\lambda }}}{\kappa + \lambda }} \hfill & {\text{if}\,\frac{{{\omega }_{E} + \beta \left( {{\omega }_{R} + {\omega }_{E} } \right)}}{\lambda } > \frac{{{\omega }_{R} - \beta \left( {{\omega }_{R} + {\omega }_{E} } \right)}}{\kappa }.} \hfill \\ \end{array} }\right.\end{aligned}$$

One can easily show that function \({\text{PGR}}\left( { \cdot , \cdot } \right)\) is continuous with respect to \(\omega_{R}\), \(\omega_{E}\) in domain \(\omega_{R} \ge 0\), \(\omega_{E} \ge 0\), \(0 < \omega_{R} + \omega_{E} \le 1\) for any non-negative \(\beta\), positive s, \(\kappa\), \(\lambda\), and an arbitrary r.

In what follows, we derive a maximizer of \({\text{PGR}}\left( {\omega_{R} ,\omega_{E} } \right)\) in the following three different cases: \(\beta \ge \frac{\lambda }{\lambda + \kappa }\), \(\beta = 0\), and \(\beta \in \left( {0,\frac{\lambda }{\lambda + \kappa }} \right)\).

If \(\beta \ge \frac{\lambda }{\lambda + \kappa }\) then, due to \(\frac{\lambda }{\lambda + \kappa } \ge \frac{\lambda }{\lambda + \kappa }\frac{{\omega_{R} }}{{\omega_{R} + \omega_{E} }} \ge \frac{{\lambda \omega_{R} - \kappa \omega_{E} }}{{\left( {\lambda + \kappa } \right)\left( {\omega_{R} + \omega_{E} } \right)}}\), we obtain that \(\beta \ge \frac{{\lambda \omega_{R} - \kappa \omega_{E} }}{{\left( {\lambda + \kappa } \right)\left( {\omega_{R} + \omega_{E} } \right)}}\), which is equivalent to \(\frac{{\omega_{E} + \beta \left( {\omega_{R} + \omega_{E} } \right)}}{\lambda } \ge \frac{{\omega_{R} - \beta \left( {\omega_{R} + \omega_{E} } \right)}}{\kappa }\). In this case \({\text{PGR}}\left( {\omega_{R} ,\omega_{E} } \right) = {\text{PGR}}_{*} \equiv \frac{s + r\lambda }{\kappa + \lambda }\) is constant. Hence, any preferences \(\omega_{R}^{*}\), \(\omega_{E}^{*}\), \(\omega_{B}^{*}\) are optimal and the optimal level of education is \(\alpha_{*} = 1\). This proves case 4.

If \(\beta = 0\), then the formula for \({\text{PGR}}\left( {\omega_{R} ,\omega_{E} } \right)\) has a simpler form which can be obtained by taking the corresponding limit as follows:

$${\text{PGR}}\left( {\omega_{R} ,\omega_{E} } \right) = \left\{ {\begin{array}{*{20}l} {\frac{{{\omega }_{R} \frac{s}{\kappa } + {\omega }_{E} {r}}}{{{\omega }_{R} + {\omega }_{E} }}} \hfill & {\text{if}\,\frac{{{\omega }_{E} }}{\lambda } \le \frac{{{\omega }_{R} }}{\kappa },} \hfill \\ {\frac{{{s} + {r\lambda }}}{\kappa + \lambda }} \hfill & {\text{if}\,\frac{{{\omega }_{E} }}{\lambda } > \frac{{{\omega }_{R} }}{\kappa }.} \hfill \\ \end{array} } \right.$$

Here, we consider three different subcases: \(r = \frac{s}{\kappa }\), \(r > \frac{s}{\kappa }\), \(r < \frac{s}{\kappa }\).

If \(r = \frac{s}{\kappa }\) then \({\text{PGR}}\left( {\omega_{R} ,\omega_{E} } \right) \equiv {{\text{PGR}}}_{*} = r\) is constant. Hence, any preferences \({\omega }_{R}^{*}\), \({\omega }_{E}^{*}\), \({\omega }_{B}^{*}\) are optimal and the optimal level of education in this case is \(\alpha_{*} = \hbox{min} \left( {\frac{{\omega_{E}^{*} }}{{{\omega }_{R}^{*} }}\frac{\kappa }{\lambda },1} \right)\). This proves case 5.

Then, for technical reasons, we fix \({\omega }_{R} + {\omega }_{E} = {c} \in \left( {0,1} \right]\). Then

$${\text{PGR}}\left( {\omega_{R} } \right) = \left\{ {\begin{array}{*{20}l} {\frac{{{\omega }_{R} }}{c}\left( {\frac{s}{\kappa } - {r}} \right) + r} \hfill & {\text{if}\,\frac{\kappa c}{{{\lambda } + {\kappa }}} \le {\omega }_{R} \le c,} \hfill \\ {\frac{{{s} + {r\lambda }}}{\kappa + \lambda }} \hfill & {\text{if}\,0 \le {\omega }_{R} < \frac{\kappa c}{{{\lambda } + {\kappa }}}} \hfill \\ \end{array} } \right.$$

is a piecewise linear function of \(\omega_{R}\).

If \(r < \frac{s}{\kappa }\), then the maximum value of the long-term population growth rate is \({\text{PGR}}\left( {\omega_{R}^{*} } \right) = {{\text{PGR}}}_{*} = \frac{s}{\kappa }\), where \({\omega }_{R}^{*} = {c}\). Then \({\omega }_{E}^{*} = {c} - {\omega }_{R}^{*} = 0\). Thus, thanks to the independence of the maximum value of \({\text{PGR}}\left( \cdot \right)\) from the parameter \(c \in \left( {0,1} \right]\), the optimal preferences are such that \({\omega }_{E}^{*} = 0\) and the optimal level of education is \({\alpha }_{*} = 0\). This proves case 1 (a) and case 1 (b) given \(\beta = 0\).

If \(r > \frac{s}{\kappa }\), then the maximum value of the long-term population growth rate is \({\text{PGR}}\left( {\omega_{R}^{*} } \right) = {{\text{PGR}}}_{*} = \frac{{{s} + {r\lambda }}}{\kappa + \lambda }\), where \({\omega }_{R}^{*} \in \left[ {0,\frac{\kappa c}{{{\lambda } + {\kappa }}}} \right]\). Then \({\omega }_{E}^{*} = {c} - {\omega }_{R}^{*} \in \left[ {\frac{\lambda c}{{\lambda + {\kappa }}},1} \right]\). By returning to the formula of \({\text{PGR}}\left( {\omega_{R} ,\omega_{E} } \right)\) and thanks to the independence of the maximum value of \({\text{PGR}}\left( \cdot \right)\) from parameter \(c \in \left( {0,1} \right]\), we conclude that the optimal preferences are such that \({\omega }_{E}^{*} \ge \frac{\lambda }{\kappa }{\omega }_{R}^{*}\) and the optimal level of education is \({\alpha }_{*} = 1\). This proves case 3 (c).

Let us consider case \(\beta \in \left( {0,\frac{\lambda }{\lambda + \kappa }} \right)\) and let \(\omega_{R} > 0\). Then, we can rewrite the formula for the long-term population growth rate as follows:

$$\begin{aligned}&{\text{PGR}}\left( {\omega_{R} ,\omega_{E} } \right)\\&\quad = \left\{ {\begin{array}{*{20}l} {\left( {\frac{{\frac{{{\omega }_{E} }}{{{\omega }_{R} }} + \beta \left( {1 + \frac{{{\omega }_{E} }}{{{\omega }_{R} }}} \right)}}{{1 - \beta \left( {1 + \frac{{{\omega }_{E} }}{{{\omega }_{R} }}} \right)}}\frac{\kappa }{\lambda }} \right)^{\beta } \frac{{\left[ {1 - \beta \left( {1 + \frac{{{\omega }_{E} }}{{{\omega }_{R} }}} \right)} \right]\frac{s}{\kappa } + \left[ {\frac{{{\omega }_{E} }}{{{\omega }_{R} }} + \beta \left( {1 + \frac{{{\omega }_{E} }}{{{\omega }_{R} }}} \right)} \right]r}}{{\left( {1 + \frac{{{\omega }_{E} }}{{{\omega }_{R} }}} \right)}}} \hfill & {\text{if}\,\frac{{\frac{{{\omega }_{E} }}{{{\omega }_{R} }} + \beta \left( {1 + \frac{{{\omega }_{E} }}{{{\omega }_{R} }}} \right)}}{\lambda } \le \frac{{1 - \beta \left( {1 + \frac{{{\omega }_{E} }}{{{\omega }_{R} }}} \right)}}{\kappa },} \hfill \\ {\frac{{{s} + {r\lambda }}}{\kappa + \lambda }} \hfill & {\text{if}\,\frac{{\frac{{{\omega }_{E} }}{{{\omega }_{R} }} + \beta \left( {1 + \frac{{{\omega }_{E} }}{{{\omega }_{R} }}} \right)}}{\lambda } > \frac{{1 - \beta \left( {1 + \frac{{{\omega }_{E} }}{{{\omega }_{R} }}} \right)}}{\kappa }.} \hfill \\ \end{array} } \right.\end{aligned}$$

Hence, PGR appears to be dependent on \(\frac{{\omega_{E} }}{{\omega_{R} }}\) only. Denoting \(\omega_{ER} = \frac{{{\omega }_{E} }}{{{\omega }_{R} }}\), we have

$$\begin{aligned} &{\text{PGR}}\left( {\omega_{ER} } \right)\\ &\quad= \left\{ {\begin{array}{*{20}l} {\left( {\frac{{\omega_{ER} + \beta \left( {1 + \omega_{ER} } \right)}}{{1 - \beta \left( {1 + \omega_{ER} } \right)}}\frac{\kappa }{\lambda }} \right)^{\beta } \frac{{\left[ {1 - \beta \left( {1 + \omega_{ER} } \right)} \right]\frac{s}{\kappa } + \left[ {\omega_{ER} + \beta \left( {1 + \omega_{ER} } \right)} \right]r}}{{\left( {1 + \omega_{ER} } \right)}}} \hfill & {\text{if}\,0 \le \omega_{ER} \le \frac{{\left( {1 - {\beta }} \right){\lambda } - {\beta \kappa }}}{{\left( {1 + {\beta }} \right){\kappa } + {\beta \lambda }}},} \hfill \\ {\frac{{{s} + {r\lambda }}}{\kappa + \lambda }} \hfill & {\text{if}\,\omega_{ER} > \frac{{\left( {1 - {\beta }} \right){\lambda } - {\beta \kappa }}}{{\left( {1 + {\beta }} \right){\kappa } + {\beta \lambda }}}.} \hfill \\ \end{array} } \right. \end{aligned}$$

Due to the continuity of function \({\text{PGR}}\left( { \cdot } \right)\) and being constant while \(\omega_{{ER}} > \frac{{\left( {1 - {\beta }} \right){\lambda } - {\beta \kappa }}}{{\left( {1 + {\beta }} \right){\kappa } + {\beta \lambda }}}\), it is sufficient to consider the problem of its maximization only on segment \(0 \le \omega_{{ER}} \le \frac{{\left( {1 - {\beta }} \right){\lambda } - {\beta \kappa }}}{{\left( {1 + {\beta }} \right){\kappa } + {\beta \lambda }}}\). The derivative becomes

$$\begin{aligned}&\frac{\partial }{{\partial \omega_{{ER}} }}{\text{PGR}}\left( {\omega_{{ER}} } \right) \\&\quad= \left( {\frac{{\omega_{{ER}} + \beta \left( {1 + \omega_{{ER}} } \right)}}{{1 - \beta \left( {1 + \omega_{{ER}} } \right)}}\frac{\kappa }{\lambda }} \right)^{\beta } \frac{{\beta \frac{s}{\kappa }\left( {\omega_{{ER}} } \right)^{2} + \left[ {\left( {1 + \beta } \right)r - \left( {1 - \beta } \right)\frac{s}{\kappa }} \right]\omega_{{ER}} + \beta r}}{{\left( {\omega_{{ER}} + \beta \left( {1 + \omega_{{ER}} } \right)} \right) \left( {1 - \beta \left( {1 + \omega_{{ER}} } \right)} \right)\left( {1 + \omega_{{ER}} } \right)^{2} }}. \end{aligned}$$
(5.13)

Here, we again will consider three different subcases \({r} \ge \frac{s}{\kappa }\), \(r \le 0\) and \({r} \in \left( {0,\frac{s}{\kappa }} \right)\).

If \({r} \ge \frac{s}{\kappa }\), then \(\left( {1 + \beta } \right)r - \left( {1 - \beta } \right)\frac{s}{\kappa } > 0\) and other multipliers and summands in formula (5.13) are also positive. Hence, \(\frac{\partial }{{\partial \omega_{{ER}} }}{\text{PGR}}\left( {\omega_{{ER}} } \right) > 0\) and so \({\text{PGR}}\left( {\omega_{{ER}} } \right)\) increases monotonically in \(\omega_{{ER}}\). Therefore, \({\text{PGR}}_{*} = {\text{PGR}}\left( {\omega_{{ER}}^{*} } \right) = \frac{{{s} + {r\lambda }}}{\kappa + \lambda }\), where \(\omega_{{ER}}^{*} \ge \frac{{\left( {1 - {\beta }} \right){\lambda } - {\beta \kappa }}}{{\left( {1 + {\beta }} \right){\kappa } + {\beta \lambda }}}\); the optimal preferences are such that \(\omega_{E}^{*} \ge \frac{{\left( {1 - {\beta }} \right){\lambda } - {\beta \kappa }}}{{\left( {1 + {\beta }} \right){\kappa } + {\beta \lambda }}}{\omega }_{R}^{*}\), and the optimal level of education is \(\alpha_{*} = 1\). This proves case 3 (a).

Let us note, that stationary points of \({\text{PGR}}\left( {\omega_{ER} } \right)\) are given by equation:

$$\beta \frac{s}{\kappa }\left( {\omega_{{ER}} } \right)^{2} + \left[ {\left( {1 + \beta } \right)r - \left( {1 - \beta } \right)\frac{s}{\kappa }} \right]\omega_{{ER}} + \beta r = 0,$$
(5.14)

whose roots, if real, are

$$\omega_{{ER}}^{1,2} = \frac{1}{{2\beta \frac{s}{\kappa }}}\left( {\left[ {\left( {1 - \beta } \right)\frac{s}{\kappa } - \left( {1 + \beta } \right)r} \right] \pm \sqrt {\left( {\frac{s}{\kappa } - r} \right)\left[ {\left( {1 - \beta } \right)^{2} \frac{s}{\kappa } - \left( {1 + \beta } \right)^{2} r} \right]} } \right).$$
(5.15)

(subscript 1 corresponds to “−”, subscript 2 corresponds to “+“). As the left-hand side of (5.14) is quadratic with respect to \(\omega_{{ER}}\), and other multipliers in (5.13) are positive, we conclude that \({\text{PGR}}\left( {\omega_{{ER}} } \right)\) increases for \(\omega_{{ER}} \le {\omega }_{{ER}}^{1}\) and decreases for \({\omega }_{{ER}}^{1} \le \omega_{{ER}} \le {\omega }_{{ER}}^{2}\) and then it again increases for \(\omega_{{ER}} \ge {\omega }_{{ER}}^{2}\).

If \(r \le 0\), then \({\omega }_{{ER}}^{1} \le 0\) and \({\omega }_{{ER}}^{2} \ge 1\) and, hence, \({\text{PGR}}\left( {\omega_{{ER}} } \right)\) decreases on segment \(\left[ {0,\frac{{\left( {1 - {\beta }} \right){\lambda } - {\beta \kappa }}}{{\left( {1 + {\beta }} \right){\kappa } + {\beta \lambda }}}} \right]\). Therefore, \({\text{PGR}}_{*} = {\text{PGR}}\left( {\omega_{{ER}}^{*} } \right)\) = \(\left( {\frac{\beta }{1 - \beta }\frac{\kappa }{\lambda }} \right)^{\beta } \left( {\left[ {1 - \beta } \right]\frac{s}{\kappa } + \beta r} \right)\), where \(\omega_{{ER}}^{*} = 0\), with preferences such that \({\omega }_{E}^{*} = 0\) being optimal, and the optimal level of education is \(\alpha_{*} = \frac{\beta }{1 - \beta }\frac{\kappa }{\lambda }\). This proves case 1 (a).

Finally, consider \({r} \in \left( {0,\frac{s}{\kappa }} \right)\). Consider the expression under the square root in (5.15): \(\left( {1 - \beta } \right)^{2} \frac{s}{\kappa } - \left( {1 + \beta } \right)^{2} r\). Its roots are given by \(\beta_{1,2} = \frac{{\left( {\sqrt {\frac{s}{\kappa }} \pm {\sqrt{r}} } \right)^{2} }}{{\frac{s}{\kappa } - {r}}}\). One can prove that \(\beta_{1} = \frac{{\left( {\sqrt {\frac{s}{\kappa }} + {\sqrt{r}} } \right)^{2} }}{{\frac{s}{\kappa } - {r}}} > 1\) and \({\beta }_{2} = \frac{{\left( {\sqrt {\frac{s}{\kappa }} - {\sqrt{r}} } \right)^{2} }}{{\frac{s}{\kappa } - {r}}} < 1\).

If \(\beta \in \left[ {\beta_{2} ,\frac{\lambda }{\lambda + \kappa }} \right)\), then the roots in (5.15) are either imaginary or real and coincide. Hence, due to monotone increasing of \({\text{PGR}}\left( \cdot \right)\) in this case, \({\text{PGR}}_{*} = {\text{PGR}}\left( {\omega_{{ER}}^{*} } \right) = \frac{{{s} + {r\lambda }}}{\kappa + \lambda }\), where \(\omega_{{ER}}^{*} \ge \frac{{\left( {1 - {\beta }} \right){\lambda } - {\beta \kappa }}}{{\left( {1 + {\beta }} \right){\kappa } + {\beta \lambda }}}\); the optimal preferences are such that \(\omega_{E}^{*} \ge \frac{{\left( {1 - {\beta }} \right){\lambda } - {\beta \kappa }}}{{\left( {1 + {\beta }} \right){\kappa } + {\beta \lambda }}}{\omega }_{R}^{*}\), and the optimal level of education is \(\alpha_{*} = 1\). This proves case 3 (b) for \(\beta \in \left[ {\beta_{2} ,\frac{\lambda }{\lambda + \kappa }} \right)\).

Now let us consider \(\beta \in \left( {0,\beta_{2} } \right)\). In this case \({\bar{\omega }}_{{ER}}^{*} = {\omega }_{{ER}}^{1} > 1\) and function \({\text{PGR}}\left( \cdot \right)\) achieves its maximum on segment \(\left[ {0,\frac{{\left( {1 - {\beta }} \right){\lambda } - {\beta \kappa }}}{{\left( {1 + {\beta }} \right){\kappa } + {\beta \lambda }}}} \right]\) either on the border (at \(\omega_{{ER}}^{*} \left( \beta \right) = 0\) or at \(\omega_{{ER}}^{*} \left( \beta \right) = \frac{{\left( {1 - {\beta }} \right){\lambda } - {\beta \kappa }}}{{\left( {1 + {\beta }} \right){\kappa } + {\beta \lambda }}}\)) or at the local maximum point \({\omega }_{{ER}}^{*} \left( {\beta } \right) = {\bar{\omega }}_{{ER}}^{*} \left( {\beta } \right)\) (if \({\bar{\omega }}_{{ER}}^{*} \left( {\beta } \right) \in \left[ {0,\frac{{\left( {1 - {\beta }} \right){\lambda } - {\beta \kappa }}}{{\left( {1 + {\beta }} \right){\kappa } + {\beta \lambda }}}} \right]\)). Note that \({\omega }_{{ER}}^{*} \left( \beta \right) \ne 0\) because \({\text{PGR}}\left( \cdot \right)\) increases for \(0 \le {\omega }_{{ER}} \le {\bar{\omega }}_{{ER}}^{*}\). Let us write the values of \({\text{PGR}}\left( {\omega_{{ER}} } \right)\) at the other two points:

$${\text{PGR}}\left( {\frac{{\left( {1 - {\beta }} \right){\lambda } - {\beta \kappa }}}{{\left( {1 + {\beta }} \right){\kappa } + {\beta \lambda }}}} \right) = \frac{{{s} + {r\lambda }}}{\kappa + \lambda } = d,$$
$$\begin{aligned}&{\text{PGR}}\left( {{\bar{\omega }}_{{ER}}^{*} \left( {\beta } \right)} \right) \\&\quad= \left( {\frac{{{\bar{\omega }}_{{ER}}^{*} + \beta \left( {1 + {\bar{\omega }}_{{ER}}^{*} } \right)}}{{1 - \beta \left( {1 + {\bar{\omega }}_{{ER}}^{*} } \right)}}\frac{\kappa }{\lambda }} \right)^{\beta } \frac{{\left[ {1 - \beta \left( {1 + {\bar{\omega }}_{{ER}}^{*} } \right)} \right]\frac{s}{\kappa } + \left[ {{\bar{\omega }}_{{ER}}^{*} + \beta \left( {1 + {\bar{\omega }}_{{ER}}^{*} } \right)} \right]r}}{{\left( {1 + {\bar{\omega }}_{{ER}}^{*} } \right)}}\\&\quad = {f}\left( {\beta } \right).\end{aligned}$$

Let us consider two subcases: \(\lambda > \sqrt {\frac{s\kappa }{r}}\) and \(\lambda \le \sqrt {\frac{s\kappa }{r}}\).

If \(\lambda > \sqrt {\frac{s\kappa }{r}}\), one can prove that the following inequalities hold: \(f\left( 0 \right) - d > 0\), \(f\left( {\beta_{2} } \right) - d < 0\) and \(f\left( \cdot \right)\) is a monotone decreasing function for \(\beta \in \left( {0,\beta_{2} } \right)\). Then there exists a unique \({\bar{\beta }}_{*} \in \left( {0,\beta_{2} } \right)\) such that \(f\left( {{\bar{\beta }}_{*} } \right) = d\).

Therefore, if \(\beta \in \left( {0,{\bar{\beta }}_{*} } \right)\), then \(f\left( {\beta } \right) > d\) and \({\text{PGR}}_{*} = {\text{PGR}}\left( {\omega_{{ER}}^{*} } \right) = {\text{PGR}}\left( {{\bar{\omega }}_{{ER}}^{*} } \right)\), where \({\omega }_{{ER}}^{*} = {\bar{\omega }}_{ER}^{*}\); the optimal preferences are such that \({\omega }_{E}^{*} = {\bar{\omega }}_{{ER}}^{*} {\omega }_{R}^{*} ,\) and the optimal level of education is \(\alpha_{*} = \frac{{{\bar{\omega }}_{{ER}}^{*} + \beta \left( {1 + {\bar{\omega }}_{{ER}}^{*} } \right)}}{{1 - \beta \left( {1 + {\bar{\omega }}_{{ER}}^{*} } \right)}}\frac{\kappa }{\lambda }\) . This proves case 2 for \(\lambda > \sqrt {\frac{s\kappa }{r}}\).

If \(\beta \in \left[ {{\bar{\beta }}_{*} ,\beta_{2} } \right)\), then \(f\left( {\beta } \right) < d\) and \({\text{PGR}}_{*} = {\text{PGR}}\left( {\omega_{{ER}}^{*} } \right) \equiv \frac{{{s} + {r\lambda }}}{\kappa + \lambda }\), where \(\omega_{{ER}}^{*} \ge \frac{{\left( {1 - {\beta }} \right){\lambda } - {\beta \kappa }}}{{\left( {1 + {\beta }} \right){\kappa } + {\beta \lambda }}}\); the optimal preferences are such that \(\omega_{E}^{*} \ge \frac{{\left( {1 - {\beta }} \right){\lambda } - {\beta \kappa }}}{{\left( {1 + {\beta }} \right){\kappa } + {\beta \lambda }}}{\omega }_{R}^{*}\) and the optimal level of education is \(\alpha_{*} = 1\). This proves case 3 (b) for \(\beta \in \left[ {{\bar{\beta }}_{*} ,\beta_{2} } \right)\) and \(\lambda > \sqrt {\frac{s\kappa }{r}}\).

For the case \(\lambda \le \sqrt {\frac{s\kappa }{r}}\) let us put \({\bar{\beta }}_{*} = \frac{{\lambda \left( {s - r\kappa } \right)}}{{r\lambda^{2} + \left( {s + r\kappa } \right)\lambda + s\kappa }} < \beta_{2}\). One can prove that \(f\left( 0 \right) - d > 0\), \(f\left( {{\bar{\beta }}_{*} } \right) = d\) and the function \(f\left( \beta \right)\) is monotone decreasing for \(\beta \in \left( {0,{\bar{\beta }}_{*} } \right)\).

Hence, if \(\beta \in \left( {0,{\bar{\beta }}_{*} } \right)\), then \({\text{PGR}}_{*} = {\text{PGR}}\left( {\omega_{{ER}}^{*} } \right) = {\text{PGR}}\left( {{\bar{\omega }}_{{ER}}^{*} } \right)\) where \({\omega }_{{ER}}^{*} = {\bar{\omega }}_{ER}^{*}\); the optimal preferences are such that \({\omega }_{E}^{*} = {\bar{\omega }}_{{ER}}^{*} {\omega }_{R}^{*} ,\) and the optimal level of education is \(\alpha_{*} = \frac{{{\bar{\omega }}_{{ER}}^{*} + \beta \left( {1 + {\bar{\omega }}_{{ER}}^{*} } \right)}}{{1 - \beta \left( {1 + {\bar{\omega }}_{{ER}}^{*} } \right)}}\frac{\kappa }{\lambda }\). This proves case 2 for \(\lambda \le \sqrt {\frac{s\kappa }{r}}\).

If \(\beta \in \left[ {{\bar{\beta }}_{*} ,\beta_{2} } \right)\), then \({\bar{\omega }}_{{ER}}^{*} \left( \beta \right) \ge {\bar{\omega }}_{{ER}}^{*} \left( {{\bar{\beta }}^{*} } \right) = \frac{\lambda r}{s} = \frac{{\left( {1 - {\bar{\beta }}^{*} } \right){\lambda } - {\bar{\beta }}^{*} {\kappa }}}{{\left( {1 + {\bar{\beta }}^{*} } \right){\kappa } + {\bar{\beta }}^{*} {\lambda }}} \ge \frac{{\left( {1 - {\beta }} \right){\lambda } - {\beta \kappa }}}{{\left( {1 + {\beta }} \right){\kappa } + {\beta \lambda }}}\) which means that local maximum point is outside the considered segment and, hence, \({\text{PGR}}_{*} = {\text{PGR}}\left( {\omega_{{ER}}^{*} } \right) \equiv \frac{{{s} + {r\lambda }}}{\kappa + \lambda }\), where \(\omega_{{ER}}^{*} \ge \frac{{\left( {1 - {\beta }} \right){\lambda } - {\beta \kappa }}}{{\left( {1 + {\beta }} \right){\kappa } + {\beta \lambda }}}\); the optimal preferences are such that \(\omega_{E}^{*} \ge \frac{{\left( {1 - {\beta }} \right){\lambda } - {\beta \kappa }}}{{\left( {1 + {\beta }} \right){\kappa } + {\beta \lambda }}}{\omega }_{R}^{*}\), and the optimal level of education is \(\alpha_{*} = 1\). This proves case 3 (b) for \(\beta \in \left[ {{\bar{\beta }}_{*} ,\beta_{2} } \right)\) and \(\lambda \le \sqrt {\frac{s\kappa }{r}}\).

The proof is complete.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Orlov, S., Rovenskaya, E., Cantele, M., Stonawski, M., Skirbekk, V. (2021). Modeling Social Status and Fertility Decisions Under Differential Mortality. In: Haunschmied, J.L., Kovacevic, R.M., Semmler, W., Veliov, V.M. (eds) Dynamic Economic Problems with Regime Switches. Dynamic Modeling and Econometrics in Economics and Finance, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-030-54576-5_5

Download citation

Publish with us

Policies and ethics