Skip to main content

Microbial Technologies for Biorefineries: Current Research and Future Applications

  • Chapter
  • First Online:
Biofuels Production – Sustainability and Advances in Microbial Bioresources

Part of the book series: Biofuel and Biorefinery Technologies ((BBT,volume 11))

  • 561 Accesses

Abstract

Conventional resources becoming limited due to the increase in population and energy demand. This rise in energy demand has increased consumer prices and pressure on the environment. This prompted researchers to take care of sustainable energy resources. In this case, biomass is only environmentally friendly renewable resource which is used for the production of chemicals and fuels. A system similar to a petroleum refinery is required to produce fuels and useful chemicals from biomass and is known as a biorefinery. Biorefineries have been subdivided into various categories on the basis of technology and biomass used. In this chapter, types of biorefineries and microbes which are used for the production of valuable products are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Almeida JR, Modig T, Petersson A, Hähn-Hägerdal B, Lidén G, Gorwa-Grauslund MF (2007) Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysatesby Saccharomyces cerevisiae. J Chem Technol Biotechnol 82:340–349

    CAS  Google Scholar 

  • Almeida JRM, Bertilsson M, Hahn-Hägerdal B, Lidén G, Gorwa-Grauslund M-F (2009) Carbon fluxes of xylose-consuming Saccharomyces cerevisiae strains are affected differently by NADH and NADPH usage in HMF reduction. Appl Microbiol Biotechnol 84:751–761

    CAS  PubMed  Google Scholar 

  • Almeida JRM, Röder A, Modig T, Laadan B, Lidén G, Gorwa-Grauslund M-F (2008) NADH- vs NADPH-coupled reduction of 5-hydroxymethyl furfural (HMF) and its implications on product distribution in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 78:939–945

    CAS  PubMed  Google Scholar 

  • Almeida JRM, Runquist D, Sànchez i Nogué V, Lidén G, Gorwa-Grauslund MF (2011) Stress-related challenges in pentose fermentation to ethanol by the yeast Saccharomyces cerevisiae. Biotechnol J 6:286–299

    Google Scholar 

  • Alper H, Stephanopoulos G (2007) Global transcription machinery engineering: a new approach for improving cellular phenotype. Metab Eng 9:258–267

    CAS  PubMed  Google Scholar 

  • Alsaker K, Spitzer T, Papoutsakis E (2004) Transcriptional analysis of spo0A overexpression in clostridium acetobutylicum and its effect on the cell’s response to butanol stress. J Bacteriol 186:1959–1971

    CAS  PubMed  PubMed Central  Google Scholar 

  • Amore A, Faraco V (2012) Potential of fungi as category I Consolidated BioProcessing organisms for cellulosic ethanol production. Renew Sustain Energy Rev 16(5):3286–3301

    Google Scholar 

  • Andre A, Diamantopoulou P, Philippoussis A, Sarris D, Komaitis M, Papanikolaou S (2010) Biotechnological conversions of bio-diesel derived waste glycerol into added-value compounds by higher fungi: production of biomass, single cell oil and oxalic acid. Ind Crop Prod 31:407–416

    CAS  Google Scholar 

  • Blankschien MD, Clomburg JM, Gonzalez R (2010) Metabolic engineering of Escherichia coli for the production of succinate from glycerol. Metab Eng 12:409–419

    CAS  PubMed  Google Scholar 

  • Botella C, Diaz AB, Wang R, Koutinas A, Webb C (2009) Particulate bioprocessing: a novel process strategy for biorefineries. Process Biochem 44(5):546–555

    Google Scholar 

  • Causey TB, Zhou S, Shanmugam KT, Ingram LO (2003) Engineering the metabolism of Escherichia coli W3110 for the conversion of sugar to redox-neutral and oxidized products: homoacetate production. Proc Natl Acad Sci USA 100:825–832

    CAS  PubMed  Google Scholar 

  • Celinska E (2010) Debottlenecking the 1,3-propanediol pathway by metabolic engineering. Biotechnol Adv 28:519–530

    CAS  PubMed  Google Scholar 

  • Chen X, Zhang DJ, Qi WT, Gao SJ, Xiu ZL, Xu P (2003) Microbial fed-batc production of 1,3-propanediol by Klebsiella pneumoniae under micro-aerobic conditions. Appl Microbiol Biotechnol 63:143–146

    CAS  PubMed  Google Scholar 

  • de Jong E, Jungmeier G (2015) Biorefinery concepts in comparison to petrochemical refineries. In: Industrial biorefineries & white biotechnology. Elsevier, pp 3–33

    Google Scholar 

  • Dharmadi Y, Murarka A, Gonzalez R (2006) Anaerobic fermentation of glycerol by Escherichia coli: a new platform for metabolic engineering. Biotechnol Bioeng 94(5):821–829

    Google Scholar 

  • Durnin G, Clomburg J, Yeates Z, Alvarez PJJ, Zygourakis K, Campbell P, Gonzalez R (2009) Understanding and harnessing the microaerobic metabolism of glycerol in Escherichia coli. Biotechnol Bioeng 103:148–161

    CAS  PubMed  Google Scholar 

  • Ferreira-Leitão V, Perrone CC, Rodrigues J, Franke APM, Macrelli S, Zacchi G (2010) An approach to the utilisation of CO2 as impregnating agent in steam pretreatment of sugar cane bagasse and leaves for ethanol production. Biotechnol Biofuels 3:7

    PubMed  PubMed Central  Google Scholar 

  • Habe H, Shimada Y, Yakushi T, Hattori H, Ano Y, Fukuoka T, Kitamoto D, Itagaki M, Watanabe K, Yanagishita H (2009) Microbial production of glyceric acid, an organic acid that can be mass produced from glycerol. Appl Environ Microb 75:7760–7766

    CAS  Google Scholar 

  • Hahn-Hägerdal B, Karhumaa K, Fonseca C, Spencer-Martins I, Gorwa-Grauslund MF (2007) Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol 74:937–953

    PubMed  Google Scholar 

  • Harvey BG, Meylemans HA (2011) The role of butanol in the development of sustainable fuel technologies. J Chem Technol Biotechnol 86(1):2–9

    Google Scholar 

  • Heer D, Sauer U (2008) Identification of furfural as a key toxin in lignocellulosichydrolysates and evolution of a tolerant yeast strain. Microb Biotechnol 1:497–506

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hong AA, Cheng KK, Peng F, Zhou S, Sun Y, Liu CM, Liu DH (2009) Strain isolation and optimization of process parameters for bioconversion of glycerol to lactic acid. J Chem Technol Biot 84:1576–1581

    CAS  Google Scholar 

  • Hong WK, Kim CH, Heo SY, Luo LH, Oh BR, Seo JW (2010) Enhanced production of ethanol from glycerol by engineered Hansenula polymorpha expressing pyruvate decarboxylase and aldehyde dehydrogenase genes from Zymomonas mobilis. Biotechnol Lett 32(8):1077–1082

    Google Scholar 

  • Hu ZC, Liu ZQ, Zheng YG, Shen YC (2010) Production of 1,3-Dihydroxyacetone from Glycerol by Gluconobacter oxydans ZJB09112. J Microbiol Biotechnol 20:340–345

    CAS  PubMed  Google Scholar 

  • Hughes SR, Gibbons WR, Bang SS, Pinkelman R, Bischoff KM, Slininger PJ, Qureshi N, Kurtzman CP, Liu S, Saha BC, Jackson JS, Cotta M, Rich JO, Javers JE (2012) Random UV-C mutagenesis of Scheffersomyces (formerly Pichia) stipitis NRRL Y-7124 to improve anaerobic growth on lignocellulosic sugars. J Ind Microbiol Biotechnol 39:163–173

    CAS  PubMed  Google Scholar 

  • Ibrahim MHA, Steinbuchel A (2009) Poly(3-Hydroxybutyrate) Production from Glycerol by Zobellella denitrificans MW1 via High-Cell-Density Fed-Batch fermentation and simplified solvent extraction. Appl Environ Microb 75:6222–6231

    CAS  Google Scholar 

  • Inui M, Suda M, Kimura S, Yasuda K, Suzuki H, Toda H, Yamamoto S, Okino S, Suzuki N, Yukawa H (2008) Expression of Clostridium acetobutylicumbutanol synthetic genes in Escherichia coli. Appl Microbiol Biotechnol 77:1305–1316

    CAS  PubMed  Google Scholar 

  • Ji XJ, Huang H, Ouyang PK (2011) Microbial 2,3-butanediol production: A state-of-the -art review. Biotechnol Adv 29:351–364

    CAS  PubMed  Google Scholar 

  • Jiang Y, Xu C, Dong F, Yang Y, Jiang W, Yang S (2009) Disruption of the acetoacetate decarboxylase gene in solvent-producing Clostridium acetobutylicum increases the butanol ratio. Metab Eng 11:284–291

    CAS  PubMed  Google Scholar 

  • Karhumaa K, Garcia Sanchez R, Hahn-Hägerdal B, Gorwa-Grauslund M-F (2007) Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae. Microb Cell Fact 6:5

    PubMed  PubMed Central  Google Scholar 

  • Khan A, Bhide A, Gadre R (2009) Mannitol production from glycerol by resting cells of Candida magnoliae. Bioresour Technol 100:4911–4913

    CAS  PubMed  Google Scholar 

  • Koganti S, Kuo TM, Kurtzman CP, Smith N, Ju LK (2011) Production of arabitol from glycerol: strain screening and study of factors affecting production yield. Appl Microbiol Biotechnol 90:257–267

    CAS  PubMed  Google Scholar 

  • Kour D, Rana KL, Yadav N, Yadav AN, Rastegari AA, Singh C et al (2019a) Technologies for biofuel production: current development, challenges, and future prospects. In: Rastegari AA, Yadav AN, Gupta A (eds) Prospects of renewable bioprocessing in future energy systems. Springer International Publishing, Cham, pp 1–50. https://doi.org/10.1007/978-3-030-14463-0_1

  • Kour D, Rana KL, Yadav N, Yadav AN, Singh J, Rastegari AA et al (2019b) Agriculturally and industrially important fungi: current developments and potential biotechnological applications. In: Yadav AN, Singh S, Mishra S, Gupta A (eds) Recent advancement in white biotechnology through fungi, Volume 2: Perspective for Value-Added Products and Environments. Springer International Publishing, Cham, pp 1–64. https://doi.org/10.1007/978-3-030-14846-1_1

  • Koutinas AA, Xu Y, Wang R, Webb C (2007) Polyhydroxybutyrate production from a novel feedstock derived from a wheat-based biorefinery. Enzyme Microb Technol 40(5):1035–1044

    Google Scholar 

  • Kumar S, Sharma S, Thakur S, Mishra T, Negi P, Mishra S et al (2019) Bioprospecting of microbes for biohydrogen production: current status and future challenges. In: Molina G, Gupta VK, Singh BN, Gathergood N (eds) Bioprocessing for biomolecules production. Wiley, USA, pp 443–471

    Google Scholar 

  • Kuyper M, Harhangi H, Stave A, Winkler A, Jetten M, Delaat W, Denridder J, Opdencamp H, Vandijken J, Pronk J (2003) High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by? FEMS Yeast Res 4:69–78

    CAS  PubMed  Google Scholar 

  • Lange L (2017) Fungal enzymes and yeasts for conversion of plant biomass to bioenergy and high‐value products. In: The Fungal Kingdom, pp 1027–1048

    Google Scholar 

  • Lee SJ, Song H, Lee SY (2006) Genome-based metabolic engineering of mannheimia succiniciproducens for succinic acid production. Appl Environ Microbiol 72:1939–1948

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Valdehuesa KNG, Nisola GM, Ramos KRM, Chung W-J (2012) High yield production of D-xylonic acid from D-xylose using engineered Escherichia coli. Bioresour Technol 115:244–248

    CAS  PubMed  Google Scholar 

  • Liu HJ, Xu YZ, Zheng ZM, Liu DH (2010) 1,3-Propanediol and its copolymers: research, development and industrialization. Biotechnol J 5:1137–1148

    CAS  PubMed  Google Scholar 

  • Liu ZL, Slininger PJ, Dien BS, Berhow MA, Kurtzman CP, Gorsich SW (2004) Adaptive response of yeasts to furfural and 5-hydroxymethylfurfural and new chemical evidence for HMF conversion to 2,5-bis-hydroxymethylfuran. J Ind Microbiol Biotechnol 31:345–352

    CAS  PubMed  Google Scholar 

  • Liu HJ, Zhang DJ, Xu YH, Mu Y, Sun YQ, Xiu ZL (2007) Microbial production of 1, 3-propanediol from glycerol by Klebsiella pneumoniae under micro-aerobic conditions up to a pilot scale. Biotechnol Lett 29(8):1281–1285

    Google Scholar 

  • Mazumdar S, Clomburg JM, Gonzalez R (2010) Escherichia coli strains engineered for homofermentative production of D-lactic acid from glycerol. Appl Environ Microbiol 76:4327–4336

    CAS  PubMed  PubMed Central  Google Scholar 

  • Menon V, Rao M (2012) Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. Prog Energy Combust Sci 38(4): 522–550

    Google Scholar 

  • Mojzita D, Wiebe M, Hilditch S, Boer H, Penttilä M, Richard P (2010) Metabolic engineering of fungal strains for conversion of D-galacturonate to meso-galactarate. Appl Environ Microbiol 76:169–175

    CAS  PubMed  Google Scholar 

  • Mussatto SI, Dragone G, Guimarães PM, Silva JPA, Carneiro LM, Roberto IC, Teixeira JA (2010) Technological trends, global market, and challenges of bio-ethanol production. Biotechnol Adv 28(6): 817–830

    Google Scholar 

  • Nikel PI, Pettinari MJ, Galvagno MA, Mendez BS (2008) Poly(3 hydroxybutyrate) synthesis from glycerol by a recombinan Escherichia coli arcA mutant in fed-batch microaerobic cultures. Appl Microbiol Biotechnol 77:1337–1343

    PubMed  Google Scholar 

  • Nissen TL, Kielland-Brandt MC, Nielsen J, Villadsen J (2000) Optimization of ethanol production in Saccharomyces cerevisiae by metabolic engineering of the ammonium assimilation. Metab Eng 2:69–77

    CAS  PubMed  Google Scholar 

  • Nygård Y, Toivari MH, Penttilä M, Ruohonen L, Wiebe MG (2011) Bioconversion of D-xylose to D-xylonate with Kluyveromyces lactis. Metab Eng 13:383–391

    PubMed  Google Scholar 

  • O’Connor D (2011) Report T39-T3. Biodiesel GHG emissions, pas, present, and future. A report to IEA Bioenergy Task 39. In: Commercializing liquid biofuels from biomass.: International Energy Agency (IEA); www.ieabioenergy.com/Liblinks.aspx

  • Okano K, Zhang Q, Shinkawa S, Yoshida S, Tanaka T, Fukuda H, Kondo A (2009) Efficient production of optically pure D-lactic acid from raw corn starch by using a genetically modified L-lactate dehydrogenase gene-deficient and alpha-amylase-secreting Lactobacillus plantarum strain. Appl Environ Microbiol 75:462–467

    CAS  PubMed  Google Scholar 

  • Pandey A, Soccol CR, Mitchell D (2000) New developments in solid state fermentation: I-bioprocesses and products. Process Biochem 35(10):1153–1169

    Google Scholar 

  • Papanikolaou S, Fakas S, Fick M, Chevalot I, Galiotou-Panayotou M, Komaitis M, Marc I, Aggelis G (2008) Biotechnological valorisation of raw glycerol discharged after bio-diesel (fatty acid methyl esters) manufacturing process: production of 1,3-propanediol, citric acid and single cell oil. Biomass Bioenerg 32:60–71

    CAS  Google Scholar 

  • Petrov K, Petrova P (2009) High production of 2, 3-butanediol from glycerol by Klebsiella pneumoniae G31. Appl Microbiol Biotechnol 84(4):659–665

    Google Scholar 

  • Rahardjo YS, Tramper J, Rinzema A (2006) Modeling conversion and transport phenomena in solid-state fermentation: a review and perspectives. Biotechnol Adv 24(2):161–179

    Google Scholar 

  • Rastegari AA, Yadav AN, Yadav N (2020) New and future developments in microbial biotechnology and bioengineering: Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam

    Google Scholar 

  • Rastegari AA, Yadav AN, Gupta A (2019a) Prospects of renewable bioprocessing in future energy systems. Springer International Publishing, Cham

    Google Scholar 

  • Rastegari AA, Yadav AN, Yadav N (2019b) Genetic manipulation of secondary metabolites producers. In: Gupta VK, Pandey A (eds) New and future developments in microbial biotechnology and bioengineering. Elsevier, Amsterdam, pp 13–29. https://doi.org/10.1016/B978-0-444-63504-4.00002-5

  • Rastegari AA, Yadav AN, Yadav N, Tataei Sarshari N (2019c) Bioengineering of secondary metabolites. In: Gupta VK, Pandey A (eds) New and future developments in microbial biotechnology and bioengineering. Elsevier, Amsterdam, pp 55–68. https://doi.org/10.1016/B978-0-444-63504-4.00004-9

  • Rymowicz W, Fatykhova AR, Kamzolova SV, Rywinska A, Morgunov IG (2010) Citric acid production from glycerol-containing waste of biodiesel industry by Yarrowia lipolytica in batch, repeated batch, and cell recycle regimes. Appl Microbiol Biotechnol 87:971–979

    CAS  PubMed  Google Scholar 

  • Rymowicz W, Rywinska A, Marcinkiewicz M (2009) High-yield production of erythritol from raw glycerol in fed-batch cultures of Yarrowia lipolytica. Biotechnol Lett 31:377–380

    CAS  PubMed  Google Scholar 

  • Steen EJ, Chan R, Prasad N, Myers S, Petzold CJ, Redding A, Ouellet M, Keasling JD (2008) Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol. Microb Cell Fact 7:36

    PubMed  PubMed Central  Google Scholar 

  • Steen EJ, Kang Y, Bokinsky G, Hu Z, Schirmer A, McClure A, Del Cardayre SB, Keasling JD (2010) Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 463:559–562

    CAS  PubMed  Google Scholar 

  • Syu MJ (2001) Biological production of 2,3-butanediol. Appl Microbiol Biotechnol 55:10–18

    CAS  PubMed  Google Scholar 

  • Taconi KA, Venkataramanan KP, Johnson DT (2009) Growth and solvent production by Clostridium pasteurianum ATCC (R) 6013 (TM) utilizing biodiesel-derived crude glycerol as the sole carbon source. Environ Prog Sustain Energy 28:100–110

    CAS  Google Scholar 

  • Tang X, Tan Y, Zhu H, Zhao K, Shen W (2009a) Microbial conversion of glycerol to 1,3-propanediol by an engineered strain of Escherichia coli. Appl Environ Microbiol 75:1628–1634

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tang XM, Tan YS, Zhu H, Zhao K, Shen W (2009b) Microbial conversion of glycerol to 1,3-Propanediol by an engineered strain of Escherichia coli. Appl Environ Microb 75:1628–1634

    CAS  Google Scholar 

  • Toivari MH, Ruohonen L, Richard P, Penttilä M, Wiebe MG (2010) Saccharomyces cerevisiae engineered to produce D-xylonate. Appl Microbiol Biotechnol 88:751–760

    CAS  PubMed  Google Scholar 

  • Vijayendran B (2010) Bio products from bio refineries-trends, challenges and opportunities. J Bus Chem 7(3)

    Google Scholar 

  • Viniegra-Gonzàlez G (1997) Solid state fermentation: definition, characteristics, limitations and monitoring. In: Advances in solid state fermentation. Springer, Dordrecht, pp 5–22

    Google Scholar 

  • Wang X, Miller EN, Yomano LP, Zhang X, Shanmugam KT, Ingram LO (2011) Increased furfural tolerance due to overexpression of NADH-dependent oxidoreductase FucO in Escherichia coli strains engineered for the production of ethanol and lactate. Appl Environ Microbiol 77:5132–5140

    CAS  PubMed  PubMed Central  Google Scholar 

  • Werpy T, Petersen G, Aden A, Bozell J (2004) Top value added chemicals from biomass. Volume 1-Results of screening for potential candidates from sugars and synthesis gas

    Google Scholar 

  • Xu YZ, Guo NN, Zheng ZM, Ou XJ, Liu HJ, Liu DH (2009) Metabolism in 1,3- propanediol fed-batch fermentation by a D-lactate deficient mutant of Klebsiella pneumoniae. Biotechnol Bioeng 104:965–972

    CAS  PubMed  Google Scholar 

  • Yadav AN, Kumar R, Kumar S, Kumar V, Sugitha T, Singh B et al (2017) Beneficial microbiomes: biodiversity and potential biotechnological applications for sustainable agriculture and human health. J Appl Biol Biotechnol 5:45–57

    CAS  Google Scholar 

  • Yadav AN, Rastegari AA, Yadav N (2020) Microbiomes of extreme environments: biodiversity and biotechnological applications. CRC Press, Taylor & Francis, Boca Raton, USA

    Google Scholar 

  • Yadav AN, Singh S, Mishra S, Gupta A (2019) Recent advancement in white biotechnology through fungi. In: Perspective for value-added products and environments, vol 2. Springer International Publishing, Cham

    Google Scholar 

  • Yazdani SS, Gonzalez R (2007) Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry. Curr Opin Biotech 18:213–219

    CAS  PubMed  Google Scholar 

  • Yomano LP, York SW, Shanmugam KT, Ingram LO (2009) Deletion of methylglyoxal synthase gene (mgsA) increased sugar co-metabolism in ethanol-producing Escherichia coli. Biotechnol Lett 31:1389–1398

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yuzbashev TV, Yuzbasheva EY, Sobolevskaya TI, Laptev IA, Vybornaya TV, Larina AS, Matsui K, Fukui K, Sineoky SP (2010) Production of succinic acid at low pH by a recombinant strain of the aerobic yeast Yarrowia lipolytica. Biotechnol Bioeng 107:673–682

    CAS  PubMed  Google Scholar 

  • Zhang Y-HP (2011) What is vital (and not vital) to advance economically competitive biofuels production. Process Biochem 46(11):2091–2110

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Director, DEI, for his continuous support and encouragement. SM is grateful to Dayalbagh Educational Institute, Deemed University, Agra, for sanctioning the Research Project, DEI/Minor Project/2017-18 (iv), as a start-up grant. DG is thankful to DST-INSPIRE for providing the fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepika Goyal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Goyal, D., Mishra, S., Dantu, P.K. (2020). Microbial Technologies for Biorefineries: Current Research and Future Applications. In: Yadav, A.N., Rastegari, A.A., Yadav, N., Gaur, R. (eds) Biofuels Production – Sustainability and Advances in Microbial Bioresources. Biofuel and Biorefinery Technologies, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-030-53933-7_11

Download citation

Publish with us

Policies and ethics