Skip to main content

Part of the book series: Progress in Biological Control ((PIBC,volume 21))

  • 684 Accesses

Abstract

A considerable gap exist between the current offer in biocontrol solutions and what growers would need to manage important disease problems. The primary requirement of R&I is to enlarge the range of biocontrol solutions through screening for new BCAs suitable for commercial use and engineering new methods. Contributors to the survey have further identified diverse factors currently impeding the development of biocontrol and suggested research approaches to help raise these constraints. These suggestions can be summarised in the following recommendations: (1) invest in the appropriate assessment of biocontrol methods, including both the consideration of their potential unintentional effects and the identification of the contextual factors that determine their performance, in order to improve growers’ guidance on the proper use of biocontrol; (2) devise strategies combining biocontrol methods with other disease management tactics, in the context of IPM or even cropping system management, to help growers integrate biocontrol into their practices; (3) enlarge the scope of biocontrol research to the socioeconomic factors influencing biocontrol adoption, which calls for the development of multidisciplinary projects involving diverse actors throughout the value chain of agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alabouvette C (1986) Fusarium-wilt suppressive soils from the Châteaurenard region: review of a 10-year study. Agronomie 6:273–284

    Article  Google Scholar 

  • Alabouvette C, Olivain C, Migheli Q, Steinberg C (2009) Microbiological control of soil-borne phytopathogenic fungi with special emphasis on wilt-inducing Fusarium oxysporum. New Phytol 184:529–544. https://doi.org/10.1111/j.1469-8137.2009.03014.x

    Article  CAS  PubMed  Google Scholar 

  • Andrews JH, Harris RF (2000) The ecology and biogeography of microorganisms on plant surfaces. Annu Rev Phytopathol 38:145–180

    Article  PubMed  Google Scholar 

  • Anonymous (2009) Directive 2009/128/EC of the European Parliament and of the Council of 21 October 2009 establishing a framework for Community action to achieve the sustainable use of pesticides. Off J Eur Union 309:71–86

    Google Scholar 

  • Baker KF (1987) Evolving concepts of biological control of plant pathogens. Annu Rev Phytopathol 25:67–85

    Article  Google Scholar 

  • Bargmann C, Schönbeck F (1992) Acremonium kiliense as inducer of resistance to wilt diseases on tomatoes. J Plant Dis Protect 99:266–272

    Google Scholar 

  • Benhamou N, Fortin JA, Hamel C, St-Arnaud M, Shatilla A (1994) Resistance responses of mycorrhizal Ri T-DNA-transformed carrot roots to infection by Fusarium oxysporum f. sp. chrysanthemi. Phytopathology 84:958–968

    Article  CAS  Google Scholar 

  • Berg G, Rybakova D, Grube M et al (2016) The plant microbiome explored: implications for experimental botany. J Exp Bot 67:995–1002

    Article  CAS  PubMed  Google Scholar 

  • Berg G, Köberl M, Rybakova D, Müller H, Grosch R, Smalla K (2017) Plant microbial diversity is suggested as the key to future biocontrol and health trends. FEMS Microbiol Ecol 93:fix050

    Article  CAS  Google Scholar 

  • Berling M, Blachere-Lopez C, Soubabere O, Lery X, Bonhomme A, Sauphanor B, Lopez-Ferber M (2009) Cydia pomonella granulovirus genotypes overcome virus resistance in the codling moth and improve virus efficiency by selection against resistant hosts. Appl Environ Microbiol 75:925–930

    Article  CAS  PubMed  Google Scholar 

  • Birch ANE, Begg GS, Squire GR (2011) How agro-ecological research helps to address food security issues under new IPM and pesticide reduction policies for global crop production systems. J Exp Bot 62:3251–3261. https://doi.org/10.1093/jxb/err064. Epub 2011 Jun 8

    Article  CAS  Google Scholar 

  • Bruce TJA, Smart LE, Birch ANE, Blok VC, MacKenzie K, Guerrieri E, Cascone P, Luna E, Ton J (2017) Prospects for plant defence activators and biocontrol in IPM concepts and lessons learnt so far. Crop Prot 97:128–134

    Article  Google Scholar 

  • Buitenhuis R (2014) Systems approach: integrating IPM in the production system. IOBC-WPRS Bull 102:37–43

    Google Scholar 

  • Chet I, Baker R (1981) Isolation and biocontrol potential of Trichoderma hamatum from soil naturally suppressive to Rhizoctonia solani. Phytopathology 71:286–290

    Article  Google Scholar 

  • Conway KE (1996) An overview of the influence of sustainable agricultural systems on plant diseases. Crop Prot 1:223–228

    Article  Google Scholar 

  • Cook RJ (1993) Making greater use of introduced microorganisms for biological control of plant pathogens. Annu Rev Phytopathol 31:53–80

    Article  CAS  PubMed  Google Scholar 

  • Cunniffe NJ, Gilligan CA (2011) A theoretical framework for biological control of soil-borne plant pathogens: identifying effective strategies. J Theor Biol 278(1):32. https://doi.org/10.1016/j.jtbi.2011.02.023

    Article  PubMed  Google Scholar 

  • De Cal A, Pascual S, Melgarejo P (1997) Involvement of resistance induction by Penicillium oxalicum in the biocontrol of tomato wilt. Plant Pathol 46:72–79. https://doi.org/10.1046/j.1365-3059.1997.d01-204.x

    Article  Google Scholar 

  • De Cal A, Garcia-Lepe R, Melgarejo P (2000) Induced resistance by Penicillium oxalicum against Fusarium oxysporum f sp lycopersici: histological studies of infected and induced tomato stems. Phytopathology 90:260–268. https://doi.org/10.1094/PHYTO.2000.90.3.260

    Article  PubMed  Google Scholar 

  • De Cal A, Larena I, Liñán M, Torres R, Lamarca N, Usall J, Domenichini P, Bellini A, Ochoa de Eribe X, Melgarejo P (2009) Population dynamics of Epicoccum nigrum, a biocontrol agent against brown rot in stone fruit. J Appl Microbiol 106:592–605. https://doi.org/10.1111/j.1365-2672.2008.04030.x

    Article  PubMed  Google Scholar 

  • De Deyn GB, Quirk H, Bardgett RD (2011) Plant species richness, identity and productivity differentially influence key groups of microbes in grassland soils of contrasting fertility. Biol Lett 7:75–78. https://doi.org/10.1098/rsbl.2010.0575

    Article  PubMed  Google Scholar 

  • Deketelaere S, Tyvaert L, França SC, Höfte M (2017) Desirable traits of a good biocontrol agent against Verticillium wilt. Front Microbiol 8:1186. https://doi.org/10.3389/fmicb.2017.01186

    Article  PubMed  PubMed Central  Google Scholar 

  • Dennis C, Davis RP (1979) Tolerance of Botrytis cinerea to iprodione and vinclozolin. Plant Pathol 28:131–133

    Article  CAS  Google Scholar 

  • EU Pesticides Database. [Online]. Available: http://ec.europa.eu/sanco_pesticides/public/?event=homepage. [29 August 2019]

  • FAO. Food and Agriculture Organization of the United Nations (2003) Committee on Agriculture. Seventeenth Session. Rome, 31 March−4 April 2003. Development of a Framework for Good Agricultural Practices

    Google Scholar 

  • Ferre J, Real MD, Van Rie J, Jansens S, Peferoen M (1991) Resistance to the Bacillus thuringiensis bioinsecticide in a field population of Plutella xylostella is due to a change in a midgut membrane receptor. Proc Natl Acad Sci U S A 88:5119–5123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gisi U, Leadbeater A (2010) The challenge of chemical control as part of integrated pest management. J Plant Pathol 92(4, Supplement):S4.11–S4.15

    Google Scholar 

  • González-Domínguez E, Caffi T, Ciliberti N, Rossi V (2015) A mechanistic model of Botrytis cinerea on grapevines that includes weather, vine growth stage, and the main infection pathways. PLoS One 10:e0140444

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • González-Domínguez E, Fedele G, Caffi T, Delière L, Sauris P, Gramaje D, Ramos JL, de Ojer S, Díaz-Losada E, Díez-Navajas AM, Bengoa P, Rossi V (2017) A network meta-analysis provides new insight into fungicide scheduling for the control of Botrytis cinerea in vineyards. Pest Manag Sci 75:324–332

    Article  CAS  Google Scholar 

  • Gottstein HD, Kúc J (1989) The induction of systemic resistance to anthracnose in cucumber by phosphates. Phytopathology 79:271–275

    Article  Google Scholar 

  • Guetsky R, Shtienberg D, Elad Y, Dinoor A (2001) Combining biocontrol agents to reduce the variability of biological control. Phytopathology 91:621–627. https://doi.org/10.1094/PHYTO.2001.91.7.621

    Article  CAS  PubMed  Google Scholar 

  • Guijarro B, Melgarejo P, Torres R, Lamarca N, Usal J, De Cal A (2008) Penicillium frequentans population dynamics on peach fruit after its applications against brown rot in orchards. J Appl Microbiol 104:659–671

    Article  CAS  PubMed  Google Scholar 

  • Guijarro B, Larena I, Casals C, Teixidó N, Melgarejo P, De Cal A (2019) Compatibility interactions between the biocontrol agent Penicillium frequentans Pf909 and other existing strategies to brown rot control. Biol Control 129:45–54

    Article  Google Scholar 

  • Guijarro B, Casals C, Teixidó N, Larena I, Melgarejo P, De Cal A (2020) Balance between resilient fruit surface microbial community and population of Monilinia spp. after biopesticide field applications of Penicillium frequentans. Int J Food Microbiol 333:108788

    Google Scholar 

  • Hadar Y, Papadopoulou KK (2012) Suppressive composts: microbial ecology links between abiotic environments and healthy plants. Annu Rev Phytopathol 50:133–153. https://doi.org/10.1146/annurev-phyto-081211-172914

    Article  CAS  PubMed  Google Scholar 

  • Havens K, Jolls CL, Knight TM, Vitt P (2019) Risks and rewards: assessing the effectiveness and safety of classical invasive plant biocontrol by arthropods. Bioscience 69:247–258

    Article  Google Scholar 

  • Heydari A, Pessarakli M (2010) A review on biological control of fungal plant pathogens using microbial antagonists. J Biol Sci 10:273–290. https://doi.org/10.3923/jbs.2010.273.290

    Article  Google Scholar 

  • Hillocks RJ (2012) Farming with fewer pesticides: EU pesticide review and resulting challenges for UK agriculture. Crop Prot 31:85–93

    Article  Google Scholar 

  • Janisiewicz WJ, Korsten L (2002) Biological control of postharvest diseases of fruits. Annu Rev Phytopathol 40:411–441. https://doi.org/10.1146/annurev.phyto.40.120401.130158

    Article  CAS  PubMed  Google Scholar 

  • Jeger MJ, Xu X (2015) Modelling the dynamics of a plant pathogen and a biological control agent in relation to flowering pattern and populations present on leaves. Ecol Model 313:13–28

    Article  Google Scholar 

  • Jeger MJ, Jeffries P, Elad Y, Xu XM (2009) A generic theoretical model for bio-logical control of foliar plant diseases. J Theor Biol 256:201–214

    Article  CAS  PubMed  Google Scholar 

  • Kim DS, Cook RJ, Weller DM (1997) Bacillus sp. L324-92 for biological control of three root diseases of wheat grown with reduced tillage. Phytopathology 87:551–558

    Article  CAS  PubMed  Google Scholar 

  • Köhl J, Postma J, Nicot P, Ruocco M, Blum B (2011) Stepwise screening of microorganisms for commercial use in biological control of plant pathogenic fungi and bacteria. Biol Control 57:1–12. https://doi.org/10.1016/j.biocontrol.2010.12.004

    Article  Google Scholar 

  • Kúc J (1987) Plant immunization and its applicability for disease control. In: Chet I (ed) Innovative approaches to plant disease control. Wiley, New York, pp 225–272

    Google Scholar 

  • Lamichhane JR, Dachbrodt-Saaydeh S, Kudsk P, Messéan A (2016) Toward a reduced reliance on conventional pesticides in European agriculture. Plant Dis 100:10–24. https://doi.org/10.1094/PDIS-05-15-0574-FE

    Article  PubMed  Google Scholar 

  • Lamichhane JR, Dürr C, Schwanck AA, Robin MH, Sarthou JP, Cellier V, Messéan A, Aubertot JN (2017) Integrated management of damping-off diseases. A review. Agron Sustain Dev 37:10, 25 pp. https://doi.org/10.1007/s13593-017-0417-y

  • Larena I, Sabuquillo P, Melgarejo P, De Cal A (2003) Biocontrol of Fusarium and Verticillium wilt of tomato by Penicillium oxalicum under greenhouse and field conditions. J Phytopathol 151:507–512

    Article  Google Scholar 

  • Latif NSA, Wake GC, Reglinski T, Elmer PAG (2014) Modelling induced resistance to plant diseases. J Theor Biol 347:144–150

    Article  PubMed  Google Scholar 

  • Madden LV, Paul PA (2011) Meta-analysis for evidence synthesis in plant pathology: an overview. Phytopathology 101:16–30

    Article  CAS  PubMed  Google Scholar 

  • Matyjaszczyk E (2015a) Prevention methods for pest control and their use in Poland. Pest Manag Sci 71:485–491. https://doi.org/10.1002/ps.3795

    Article  CAS  PubMed  Google Scholar 

  • Matyjaszczyk E (2015b) Products containing microorganisms as a tool in integrated pest management and the rules of their market placement in the European Union. Pest Manag Sci 71:1201–1206

    Article  CAS  PubMed  Google Scholar 

  • McDonald BA (2014) Using dynamic diversity to achieve durable disease resistance in agricultural ecosystems. Trop Plant Pathol 39:191–196. https://doi.org/10.1590/S1982-56762014000300001

    Article  Google Scholar 

  • McDonald BA, Linde C (2002) Pathogen population genetics, evolutionary potential, and durable resistance. Annu Rev Phytopathol 40:349–379. https://doi.org/10.1146/annurev.phyto.40.120501.101443

    Article  CAS  PubMed  Google Scholar 

  • McSpadden Gardener B, Fravel D (2002) Biological control of plant pathogens: research commercialization, and application in the USA. Online. Plant Health Progress. https://doi.org/10.1094/PHP-2002-0510-01-RV

  • Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663

    Article  CAS  PubMed  Google Scholar 

  • Milgroom MG, Cortesi P (2004) Biological control of chestnut blight with hypovirulence: a critical analysis. Annu Rev Phytopathol 42:311–338

    Article  CAS  PubMed  Google Scholar 

  • Nawaz M, Mabubu JI, Hua H (2016) Current status and advancement of biopesticides: microbial and botanical pesticides. J Entomol Zool Stud 4(2):241–246

    Google Scholar 

  • Ngugi HK, Esker PD, Scherm H (2011) Meta-analysis to determine the effects of plant disease management measures: review and case studies on soybean and apple. Phytopathology 101:31–41

    Article  PubMed  Google Scholar 

  • Ojiambo PS, Scherm H (2006) Biological and application-oriented factors influencing plant disease suppression by biological control: a meta-analytical review. Phytopathology 96:1168–1174

    Article  CAS  PubMed  Google Scholar 

  • Pal KK, McSpadden Gardener B (2006) Biological control of plant pathogens. Plant Health Instr. https://doi.org/10.1094/PHI-A-2006-1117-02

  • Perazzolli M, Antonielli L, Storari M, Puopolo G, Pancher M, Giovannini O, Pindo M, Pertot I (2014) Resilience of the natural phyllosphere microbiota of the grapevine to chemical and biological pesticides. Appl Environ Microbiol 80:3585–3596

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Raaijmakers JM, Vlami M, de Souza JT (2002) Antibiotic production by bacterial biocontrol agents. Antonie Van Leeuwenhoek 81:537–547

    Article  CAS  PubMed  Google Scholar 

  • Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moënne-Loccoz Y (2009) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321:341–361. https://doi.org/10.1007/s11104-008-9568-6

    Article  CAS  Google Scholar 

  • Ramette A, Moënne-Loccoz Y, Défago G (2003) Prevalence of fluorescent pseudomonads producing antifungal phloroglucinols and/or hydrogen cyanide in soils naturally suppressive or conducive to tobacco root rot. FEMS Microb Ecol 44:35–43

    Article  CAS  Google Scholar 

  • Schisler DA, Slininger PJ, Bothast RJ (1997) Effects of antagonist cell concentration and two-strain mixtures on biological control of fusarium dry rot of potatoes. Phytopathology 87:177–183

    Article  CAS  PubMed  Google Scholar 

  • Schmid F, Moser G, Müller H et al (2011) Functional and structural microbial diversity in organic and conventional viticulture: organic farming benefits natural biocontrol agents. Appl Environ Microbiol 77:2188–2191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schnitzer SA, Klironomos JN, Hillerislambers J, Kinkel LL, Reich PB, Xiao K, Rillig MC, Sikes BA, Callaway RM, Mangan SA, van Nes EH, Scheffer M (2011) Soil microbes drive the classic plant diversity-productivity pattern. Ecology 92:296–303

    Article  PubMed  Google Scholar 

  • Sessitsch A, Mitter B (2015) 21st century agriculture: integration of plant microbiomes for improved crop production and food security. Microb Biotechnol 8:32–33. https://doi.org/10.1111/1751-7915.12180

    Article  PubMed  Google Scholar 

  • Shtienberg D, Elad Y (1997) Incorporation of weather forecasting in integrated, biological-chemical management of Botrytis cinerea. Phytopathology 87:332–340

    Article  CAS  PubMed  Google Scholar 

  • Siwek K, Harris AR, Scott ES (1997) Mycoparasitism of Pythium ultimum by antagonistic binucleate Rhizoctonia isolates in agar media and on capsicum seeds. J Phytopathol 145:417–423

    Article  Google Scholar 

  • Spence KO, Lewis EE (2010) Biopesticides with complex modes of action: direct and indirect effects of DiTera on Meloidogyne incognita. Nematology 12:835–846

    Article  Google Scholar 

  • Vallad GE, Goodman RM (2005) Systemic acquired resistance and induced systemic resistance in conventional agriculture. Crop Sci 44:1920–1934

    Article  Google Scholar 

  • Wagg C, Jansa J, Schmid B, van der Heijden MG (2011) Belowground biodiversity effects of plant symbionts support aboveground productivity. Ecol Lett 14:1001–1009

    Article  PubMed  Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511

    Article  CAS  PubMed  Google Scholar 

  • Xu XM, Jeger MJ (2013a) Theoretical modeling suggests that synergy mayresult from combined use of two biocontrol agents for controlling foliarpathogens under spatial heterogeneous conditions. Phytopathology 103:768–775

    Article  PubMed  Google Scholar 

  • Xu XM, Jeger MJ (2013b) Combined use of two biocontrol agents with differ-ent biocontrol mechanisms most likely results in less than expected efficacyin controlling foliar pathogens under fluctuating conditions: a modeling study. Phytopathology 103:108–116

    Article  PubMed  Google Scholar 

  • Xu XM, Salama N, Jeffries P, Jeger MJ (2010) Numerical studies of biocontrol efficacies of foliar plant pathogens in relation to the characteristics of a biocontrol agent. Phytopathology 100:814–821

    Article  PubMed  Google Scholar 

  • Xu XM, Jeffries P, Pautasso M, Jeger MJ (2011) A numerical study of combined use of two biocontrol agents with different biocontrol mechanisms in controlling foliar pathogens. Phytopathology 101:1032–1044

    Article  PubMed  Google Scholar 

  • Zinsstag J, Schelling E, Waltner-Toews D, Tanner M (2011) From “one medicine” to “one health” and systemic approaches to health and well-being. Prev Vet Med 101:148–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonieta De Cal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

De Cal, A., Guijarro, B., Larena, I., Melgarejo, P. (2020). Which Biocontrol Strategies Best Fit with Other IPM System Components?. In: De Cal, A., Melgarejo, P., Magan, N. (eds) How Research Can Stimulate the Development of Commercial Biological Control Against Plant Diseases. Progress in Biological Control, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-030-53238-3_14

Download citation

Publish with us

Policies and ethics