Skip to main content

The Climate Model: An ARCPATH Tool to Understand and Predict Climate Change

  • Chapter
  • First Online:
Nordic Perspectives on the Responsible Development of the Arctic: Pathways to Action

Abstract

Climate models are sophisticated computer programs that simulate the mathematical equations representing the known physics of the climate system, which includes the atmosphere, ocean, land surface and ice. Climate models are used for a variety of purposes from studying the dynamics, interactions and feedbacks in the climate system, quantifying the climate variability in the past and present, to predicting and projecting future climate change. The overall objective of ARCPATH is to combine improved regional climate predictions with enhanced understanding of environmental, societal, and economic interactions in order to supply new knowledge on potential “pathways to action”. In ARCPATH climate modelling is one of the most important methods applied to understand how climate in the Arctic affects, and is affected by, the rest of the global climate system. Here we introduce the basic concept of climate modelling with examples from the two models used in the ARCPARTH project: the Norwegian Earth System Model (NorESM) and the European Earth System Model (EC-Earth).

ARCPATH applies decadal climate prediction and regional high-resolution models to provide more accurate information on climate change in the Arctic and Nordic Seas over the next few years. Decadal climate prediction is a new research area that uses advanced statistical methods and ocean and sea ice measurements to better synchronize climate models to observed climate for obtaining reliable climate forecasts. We present the ARCPATH research in these new fields aimed to better meet society demands for local and regional adaptation measures such as fishery, shipping and whale-watching tourism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akperov, M., Rinke, A., Mokhov, I. I., Matthes, H., Semenov, V. A., Adakudlu, M., Cassano, J., Christensen, J. H., Dembitskaya, M. A., Dethloff, K., Fettweiss, X., Glisan, J., Gutjahr, O., Heinemann, G., Koenigk, T., Koldunov, N. V., Laprise, R., Mottram, R., Nikiéma, O., Scinocca, J. F., Sein, D., Sobolowski, S., Winger, K., & Zhang, W. (2018). Cyclone activity in the Arctic from an ensemble of regional climate models (Arctic CORDEX). JGR-Atmospheres, 123. https://doi.org/10.1002/2017JD027703.

  • Akperov, M., Gutjahr, O., Koldunov, N., Boberg, F., Adakudlu, M., Koenigk, T., Sobolowski, S., Fettweis, X., Parfenova, M., Sein, D., Zhang, W., Mottram, R., Rinke, A., Mokhov, I., Dethloff, K., Nikiéma, O., Heinemann, G., Winger, K., Dembitskaya, M., Semenov, V., Matthes, H., Christrensen, J., & Laprise, R. (2019). Future projections of cyclone activity in the Arctic for the 21st century from regional climate models (Arctic-CORDEX). Global and Planetary Change, 182. https://doi.org/10.1016/j.gloplacha.2019.103005.

  • Bentsen, M., Bethke, I., Debernard, J. B., Iversen, T., Kirkevåg, A., Seland, Ø., Drange, H., Seierstad, I. A., Hoose, C., & Kristjansson. (2013). The Norwegian earth system model, NorESM1-M – Part 1: Description and basic evaluation of the physical climate. Geoscientific Model Development, 6, 687–720. https://doi.org/10.5194/gmd-6-687-2013.

    Article  Google Scholar 

  • Boer, G. J., Smith, D. M., Cassou, C., Doblas-Reyes, F., Danabasoglu, G., Kirtman, B., Kushnir, Y., Kimoto, M., Meehl, G. A., Msadek, R., & Mueller, W. A. (2016). The decadal climate prediction project (DCPP) contribution to CMIP6. Geoscientific Model Development, 9(10). https://www.geosci-model-dev.net/9/3751/2016/.

  • Counillon, F., Keenlyside, N., Bethke, I., Wang, Y., Billeau, S., Shen, M. L., & Bentsen, M. (2016). Flow-dependent assimilation of sea surface temperature in isopycnal coordinates with the Norwegian climate prediction model. Tellus A: Dynamic Meteorology and Oceanography, 68(1), 32437.

    Article  Google Scholar 

  • Carrassi, A., Bocquet, M., Bertino, L., & Evensen, G. (2018). Data assimilation in the geosciences: An overview of methods, issues, and perspectives. Wiley Interdisciplinary Reviews: Climate Change, 9(5), e535.

    Google Scholar 

  • Cess, R. D., et al. (1989). Interpretation of cloud-climate feedback as produced by 14 atmospheric general circulation models. Science, 245, 513–516.

    Article  Google Scholar 

  • Dai, P., Gao, Y., Counillon, F., Wang, Y., Kimmritz, M., & Langehaug, H. (2020). Seasonal and decadal predictions of regional Arctic sea ice by assimilating sea surface temperature in the Norwegian Climate Prediction Model. Climate Dynamics.

    Google Scholar 

  • Delworth, T. L., Zeng, F., Vecchi, G. A., Yang, X., Zhang, L., & Zhang, R. (2016). The North Atlantic oscillation as a driver of rapid climate change in the northern hemisphere. Nature Geoscience, 9, 509–512.

    Article  Google Scholar 

  • Döscher, R., & Koenigk, T. (2013). Arctic rapid sea ice loss events in regional coupled climate scenario experiments. Ocean Science, os-2012-65. https://doi.org/10.5194/os-9-217-2013.

  • Döscher, R., et al. (2020). The community earth system model EC-earth for collaborative climate research, in preparation. To be submitted to Geoscientific Model Development.

    Google Scholar 

  • Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S. C., Collins, W., Cox, P., Driouech, F., Emori, S., Eyring, V., Forest, C., Gleckler, P., Guilyardi, E., Jakob, C., Kattsov, V., Reason, C., & Rummukainen, M. (2013). Evaluation of climate models. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge, UK/New York: Cambridge University Press.

    Google Scholar 

  • Francis, J. A., & Vavrus, S. J. (2012). Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophysical Research Letters, 39, L06801.

    Article  Google Scholar 

  • Giorgi, F. (2019). Thirty years of regional climate modeling: Where are we and where are we going next? Journal of Geophysical Research: Atmospheres, 124, 5696–5723. https://doi.org/10.1029/2018JD030094.

    Article  Google Scholar 

  • IPCC. (2001). Climate change 2001: The scientific basis. In J. T. Houghton, Y. Ding, D. J. Griggs, M. Noquer, P. J. van der Linden, X. Dai, K. Maskell, & C. A. Johnson (Eds.), Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge, UK/New York: Cambridge University Press, 881 pp.

    Google Scholar 

  • IPCC. (2007). Climate Change 2007: The Physical Science Basis. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, & H. L. Miller (Eds.), Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge: Cambridge University Press, 996 pp.

    Google Scholar 

  • IPCC. (2013). Climate change 2013: The physical science basis. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge, UK/New York: Cambridge University Press, 1535 pp.

    Google Scholar 

  • Keenlyside, N. S., & Ba, J. (2010). Prospects for decadal climate prediction. Wiley Interdisciplinary Reviews: Climate Change, 1, 627–635.

    Google Scholar 

  • Keenlyside, N. S., et al. (2014). In Climate change: Multidecadal and beyond eds Chih-Pei Chang, Michael Ghil, Mojib Latif, & Mike Wallace Ch. 9, World Scientific Publishing.

    Google Scholar 

  • Kimmritz, M., Counilon, F., Smedsrud, L. H., Bethke, I., Keenlyside, N., Ogawa, F., & Wang, Y. (2019). Impact of ocean and sea ice initialisation on seasonal prediction skill in the Arctic. Journal of Advances in Modeling Earth Systems. https://doi.org/10.1029/2019MS001825.

  • Koenigk, T., Döscher, R., & Nikulin, G. (2011). Arctic future scenario experiments with a coupled regional climate model. Tellus. 63A, (1), 69–86. https://doi.org/10.1111/j.1600-0870.2010.00474.

  • Koenigk, T., Berg, P., & Döscher, R. (2015). Arctic climate change in an ensemble of regional CORDEX simulations. Polar Research, 34, 24603. https://doi.org/10.3402/polar.v34.24603.

    Article  Google Scholar 

  • Langehaug, H. R., Sandø, A. B., Årthun, M., & Ilıcak, M. (2018). Variability along the Atlantic water pathway in the forced Norwegian earth system model. Climate Dynamics.

    Google Scholar 

  • Lawrence, I. R., Tsamados, M. C., Stroeve, J. C., Armitage, T. W., & Ridout, A. L. (2018). Estimating snow depth over Arctic Sea ice from calibrated dual-frequency radar freeboards. The Cryosphere, 12(11), 3551–3564.

    Article  Google Scholar 

  • Lien, V. S., Hjøllo, S. S., Skogen, M. D., Svendsen, E., Wehde, H., Bertino, L., Counillon, F., Chevallier, M., & Garric, G. (2016). An assessment of the added value from data assimilation on modelled Nordic Seas hydrography and ocean transports. Ocean Modelling, 99, 43–59.

    Article  Google Scholar 

  • Masson-Delmotte, V., Schulz, M., Abe-Ouchi, A., Beer, J., Ganopolski, A., González Rouco, J. F., Jansen, E., Lambeck, K., Luterbacher, J., Naish, T., Osborn, T., Otto-Bliesner, B., Quinn, T., Ramesh, R., Rojas, M., Shao, X., & Timmermann, A. (2013). Information from Paleoclimate archives. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge, UK/New York: Cambridge University Press.

    Google Scholar 

  • Onarheim, I. H., Eldevik, T., Årthun, M., Ingvaldsen, R. B., & Smedsrud, L. H. (2015). Skillful prediction of Barents Sea ice cover. Geophysical Research Letters, 42, 5364–5371.

    Article  Google Scholar 

  • O’Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J.-F., Lowe, J., Meehl, G. A., Moss, R., Riahi, K., & Sanderson, B. M. (2016). The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geoscientific Model Development, 9, 3461–3482. https://doi.org/10.5194/gmd-9-3461-2016.

    Article  Google Scholar 

  • Penny, S. G., Akella, S., Buehner, M., Chevallier, M., Counillon, F., Draper, C., Frolov, S., Fujii, Y., Karspeck, A., & Kumar, A. (2017). Coupled data assimilation for integrated earth system analysis and prediction: Goals, challenges, and recommendations.

    Google Scholar 

  • Penny, S. G., Akella, S., Balmaseda, M. A., Browne, P., Carton, J. A., Chevallier, M., Counillon, F., Domingues, C., Frolov, S., Heimbach, P., & Hogan, P. (2019). Observational needs for improving ocean and coupled reanalysis, S2S prediction, and decadal prediction. Frontiers in Marine Science, 6, 391.

    Article  Google Scholar 

  • Riser, S. C., et al. (2016). Fifteen years of ocean observations with the global Argo array. Nature Climate Change, 6(2), 145–153. https://doi.org/10.1038/nclimate2872.

    Article  Google Scholar 

  • Semenov, V. A., & Latif, M. (2012). The early twentieth century warming and winter Arctic Sea ice. The Cryosphere, 6, 1231–1237.

    Article  Google Scholar 

  • Senior, C. A., & Mitchell, J. F. B. (1993). Carbon dioxide and climate: The impact of cloud parameterization. Journal of Climate, 6, 393–418.

    Article  Google Scholar 

  • Smith, G. C., Allard, R., Babin, M., Bertino, L., Chevallier, M., Corlett, G., Crout, J., Davidson, F., Delille, B., Gille, S. T., & Hebert, D. (2019). Polar Ocean observations: A critical gap in the observing system and its effect on environmental predictions from hours to a season. Frontiers in Marine Science, 6, 429.

    Article  Google Scholar 

  • Svendsen, L., Keenlyside, N., Bethke, I., Gao, Y., & Omrani, N.-E. (2018). Pacific contribution to the early twentieth-century warming in the Arctic. Nature Climate Change, 8, 793–797.

    Article  Google Scholar 

  • Svendsen, L., Kosaka, Y., Taguchi, B., Keenlyside, N. (2020). Pacific versus Atlantic Contributions to Multidecadal Variability in the Arctic: A Multi-Model Intercomparison. Ocean Sciences Meeting 2020, AGU

    Google Scholar 

  • Toole, J. M., Krishfield, R. A., Timmermans, M. L., & Proshutinsky, A. (2011). The ice-tethered profiler: Argo of the Arctic. Oceanography, 24(3), 126–135.

    Article  Google Scholar 

  • Yang, S., & Christensen, J. H. (2012). Arctic Sea ice reduction and European cold winters in CMIP5 climate change experiments. Geophysical Research Letters, L20707. https://doi.org/10.1029/2012GL053338.

  • Yeager, S. G., Danabasoglu, G., Rosenbloom, N. A., Strand, W., Bates, S. C., Meehl, G. A., Karspeck, A. R., Lindsay, K., Long, M. C., Teng, H., & Lovenduski, N. S. (2018). Predicting near-term changes in the earth system: A large Ensemble of Initialized Decadal Prediction Simulations Using the community earth system model. Bulletin of the American Meteorological Society, 99, 1867–1886.

    Article  Google Scholar 

  • Yeager, S. G., & Robson, J. I. (2017). Recent progress in understanding and predicting Atlantic decadal climate variability. Current Climate Change Reports, 3(2), 112–127.

    Article  Google Scholar 

  • Årthun, M., Eldevik, T., Viste, E., Drange, H., Furevik, T., Johnson, H. L., & Keenlyside, N. S. (2017). Skillful prediction of northern climate provided by the ocean. Nature Communications, 8, 15875.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuting Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yang, S., Gao, Y., Torben, K., Keenlyside, N., Counillon, F. (2021). The Climate Model: An ARCPATH Tool to Understand and Predict Climate Change. In: Nord, D.C. (eds) Nordic Perspectives on the Responsible Development of the Arctic: Pathways to Action. Springer Polar Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-52324-4_8

Download citation

Publish with us

Policies and ethics