Skip to main content

Mirror Symmetric Weak Force and Neutrino Mass

  • Chapter
  • First Online:
The Neutrino Story: One Tiny Particle’s Grand Role in the Cosmos
  • 534 Accesses

Abstract

The mirror symmetric theory of neutrino mass (or left–right symmetric theories as they are called in the literature) was proposed in 1974 and 1975 to understand the origin of mirror symmetry breaking by the weak force. Its connection to neutrino mass came later in 1979. Why was it necessary to think along these lines when the standard model is so successful? Sometimes, speculations about the next level of physics are not determined by experimental facts, but rather by expectations based on aesthetic considerations and conceptual shortcomings. For example, a huge amount of activity right now focuses on the attempts to understand why the mass of the Higgs boson does not become arbitrarily large due to quantum corrections, although from a strictly experimental point of view, there is no need for such thinking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 37.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This author started calling the first two seesaw types already being discussed in the 1990s as type I and II seesaw, following the nomenclature in superconductivity and supernovae, and the names seem to have stuck.

References

  1. K. Agashe, P. Du, M. Ekhterachian, C.S. Fong, S. Hong, L. Vecchi, Natural seesaw and leptogenesis from hybrid of high-scale type I and TeV-scale inverse. JHEP 1904, 029 (2019); F. Bazzocchi, D.G. Cerdeno, C. Munoz, J.W.F. Valle, Calculable inverse-seesaw neutrino masses in supersymmetry. Phys. Rev. D 81, 051701 (2010)

    Google Scholar 

  2. A. Atre, T. Han, S. Pascoli, B. Zhang, The search for heavy Majorana neutrinos. JHEP 0905, 030 (2009); J.C. Helo, M. Hirsch, Z.S. Wang, Heavy neutral fermions at the high-luminosity LHC. JHEP 1807, 056 (2018); M. Chrzaszcz, M. Drewes, T.E. Gonzalo, J. Harz, S. Krishnamurthy, C. Weniger, A frequentist analysis of three right-handed neutrinos with GAMBIT. ArXiv: 1908.02302

    Google Scholar 

  3. R.L. Awasthi, M.K. Parida, S. Patra, Neutrinoless double beta decay and pseudo-Dirac neutrino mass predictions through inverse seesaw mechanism. arXiv:1301.4784 [hep-ph]; JHEP 1308, 122 (2013)

    Google Scholar 

  4. K.S. Babu, C.N. Leung, Classification of effective neutrino mass operators. Nucl. Phys. B 619, 667 (2001); A. de Gouvea, J. Jenkins, A survey of lepton number violation via effective operators. Phys. Rev. D 77, 013008 (2008); G. Anamiati, O. Castillo-Felisola, R.M. Fonseca, J.C. Helo, M. Hirsch, High-dimensional neutrino masses. JHEP 1812, 066 (2018); Some models that apply these considerations to understand small neutrino masses out of quantum effects are: A. Zee, A theory of lepton number violation, neutrino Majorana mass, and oscillation. Phys. Lett. 93B, 389 (1980). Erratum: [Phys. Lett. 95B, 461 (1980)]; K.S. Babu, Model of ‘Calculable’ Majorana neutrino masses. Phys. Lett. B 203, 132 (1988); L.M. Krauss, S. Nasri, M. Trodden, A model for neutrino masses and dark matter. Phys. Rev. D 67, 085002 (2003); E. Ma, Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006); K.S. Babu, S. Nandi, Z. Tavartkiladze, New mechanism for neutrino mass generation and triply charged Higgs Bosons at the LHC. Phys. Rev. D 80, 071702 (2009)

    Google Scholar 

  5. F.F. Deppisch, P.S. Bhupal Dev, A. Pilaftsis, Neutrinos and collider physics. New J. Phys. 17(7), 075019 (2015); M. Drewes, Phenomenology of right handed neutrinos. Int. J. Mod. Phys. E 22, 1330019 (2013); P. Fileviez Perez, T. Han, G. y. Huang, T. Li, K. Wang, Neutrino masses and the CERN LHC: testing type II seesaw. Phys. Rev. D 78, 015018 (2008)

    Google Scholar 

  6. G. Dvali, L. Funcke, Small neutrino masses from gravitational θ-term. Phys. Rev. D93, 113002 (2016); G. Barenboim, J. Turner, Y.L. Zhou, Light neutrino masses from gravitational condensation: the Schwinger-Dyson approach. arXiv:1909.04675 [hep-ph]

    Google Scholar 

  7. For a description of Majorana’s scientific contributions, see E. Recami, Ettore Majorana: his work and his life. Int. J. Mod. Phys. D 23, 1444009 (2014)

    Google Scholar 

  8. B. Holstein, The mysterious disappearance of Ettore Majorana. J. Phys. Conf. Ser. 173, 012019 (2009)

    Article  Google Scholar 

  9. W.Y. Keung, G. Senjanović, Majorana neutrinos and the production of the right-handed charged Gauge Boson. Phys. Rev. Lett. 50, 1427 (1983); For a more recent analysis with more details, see M. Mitra, R. Ruiz, D.J. Scott, M. Spannowsky, Neutrino jets from high-mass W R Gauge Bosons in TeV-scale left-right symmetric models. Phys. Rev. D 94(9), 095016 (2016)

    Google Scholar 

  10. M. Magg, C. Wetterich, Phys. Lett. B 94, 61 (1980); R.E. Marshak, R.N. Mohapatra, VPI-HEP-80-02, C80-01-14-3; J. Schechter, J.W.F. Valle, Phys. Rev. D 22, 2227 (1980); G. Lazarides, Q. Shafi, C. Wet-terich, Nucl. Phys. B 181, 287 (1981); R.N. Mohapatra, G. Senjanović, Phys. Rev. D 23, 165 (1981)

    Google Scholar 

  11. P. Minkowski, μ →  at a Rate of One Out of 109 Muon Decays?. Phys. Lett. B 67, 421 (1977); R.N. Mohapatra, G. Senjanović, Neutrino mass and spontaneous parity violation. Phys. Rev. Lett. 44, 912 (1980); T. Yanagida, Neutrino mass and horizontal symmetry. Conf. Proc. C 7902131, 95 (1979); M. Gell-Mann, P. Ramond, R. Slansky, Complex spinors and unified theories. Conf. Proc. C 790927, 315 (1979) [arXiv:1306.4669 [hep-th]]; S.L. Glashow, The future of elementary particle physics. NATO Sci. Ser. B 61, 687 (1980)

    Google Scholar 

  12. R.N. Mohapatra, Mechanism for understanding small neutrino mass in superstring theories. Phys. Rev. Lett. 56, 561 (1986); R.N. Mohapatra, J.W.F. Valle, Neutrino mass and baryon number nonconservation in superstring models. Phys. Rev. D 34, 1642 (1986)

    Google Scholar 

  13. A.G. Reiss et al., Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astrophys. J. 116, 1009–1038 (1998)

    Google Scholar 

  14. J. Schechter, J.W.F. Valle, Neutrinoless double beta decay in SU(2) × U(1) theories. Phys. Rev. D 25, 2951 (1982)

    Article  ADS  Google Scholar 

  15. Some Current and future double beta decay search experiments are summarized in: A.S. Barabash, Double beta decay experiments: present and future. J. Phys. Conf. Ser. 1390(1), 012048 (2019); A.S. Barabash, Possibilities of future double beta decay experiments to investigate inverted and normal ordering region of neutrino mass. Front. Phys. 6, 160 (2019)

    Google Scholar 

  16. Some experiments which have been searching for these processes are: C. Wiesinger, GERDA Collaboration, Recent results from GERDA phase II. PoS NOW 2018, 069 (2018); R. Arnold et al., NEMO-3 Collaboration, Measurement of the 2νββ decay half-life and search for the 0νββ decay of 116Cd with the NEMO-3 detector. Phys. Rev. D 95(1), 012007 (2017) D. Chiesa, CUORE Collaboration, Results from the CUORE experiment. J. Phys. Conf. Ser. 1137(1), 012052 (2019). A. Gando et al., KamLAND-Zen Collaboration, Precision measurement of the 136Xe two-neutrino ββ spectrum in KamLAND-Zen and its impact on the quenching of nuclear matrix elements. Phys. Rev. Lett. 122(19), 192501 (2019)

    Google Scholar 

  17. See for example A.M. Sirunyan et al., CMS Collaboration, Search for heavy Majorana neutrinos in same-sign dilepton channels in proton-proton collisions at \( \sqrt {s}=13 \) TeV. JHEP 1901, 122 (2019); M. Aaboud et al., ATLAS Collaboration, Search for heavy Majorana or Dirac neutrinos and right-handed W gauge bosons in final states with two charged leptons and two jets at \( \sqrt {s}=13 \) TeV with the ATLAS detector. JHEP 1901, 016 (2019)

    Google Scholar 

  18. S. Weinberg, Baryon and lepton non-conserving processes. Phys. Rev. Lett. 43, 1566 (1979)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mohapatra, R.N. (2021). Mirror Symmetric Weak Force and Neutrino Mass. In: The Neutrino Story: One Tiny Particle’s Grand Role in the Cosmos. Springer, Cham. https://doi.org/10.1007/978-3-030-51846-2_21

Download citation

Publish with us

Policies and ethics