Skip to main content

Local Mechanical Properties at the Dendrite Scale of Ni-Based Superalloys Studied by Advanced High Temperature Indentation Creep and Micropillar Compression Tests

  • Conference paper
  • First Online:
Superalloys 2020

Abstract

Chemical inhomogenities due to dendritic solidification of Ni-based superalloys result in different local microstructures with varying mechanical properties. New indentation creep test methods allow probing of the local creep properties at the dendrite scale at high temperatures. The as-cast single crystalline Ni-based superalloy ERBO1A (a derivative alloy of CMSX–4) was investigated and electron-probe microanalysis (EPMA) measurements revealed strong segregation of, e.g., Re and W in the dendritic region and, e.g., Ta in the interdendritic region. Indentation creep experiments at 750 °C and micropillar compression tests at 785 °C were conducted in both regions, and a higher creep strength was found in the dendritic region compared to the interdendritic region. Theoretical models for solid solution hardening as well as γ′ precipitation hardening confirm these results, since they predict a higher strength in the dendritic region than in the interdendritic region. Compared with the fully heat treated state, a smaller difference in the local mechanical properties or even a reverse strength ratio of the dendritic and interdendritic region can be expected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Neumeier S, Pyczak F, Göken M (2011) Influence of rhenium and ruthenium on the local mechanical properties of the γ and γ′ phases in nickel-base superalloys. Philos Mag 91:4187–4199. https://doi.org/10.1080/14786435.2011.607139.

  2. Rehman H ur, Durst K, Neumeier S, Parsa AB, Kostka A, Eggeler G, Göken M (2015) Nanoindentation studies of the mechanical properties of the μ phase in a creep deformed Re containing nickel-based superalloy. Mater Sci Eng A 634:202–208. https://doi.org/10.1016/j.msea.2015.03.045.

  3. Göken M, Kempf M (1999) Microstructural properties of superalloys investigated by nanoindentations in an atomic force microscope. Acta Mater 47:1043–1052. https://doi.org/10.1016/s1359-6454(98)00377-2.

  4. Chu SNG, Li JCM (1977) Impression creep; a new creep test. J Mater Sci 12:2200–2208. https://doi.org/10.1007/bf00552241.

  5. Trenkle JC, Packard CE, Schuh CA (2010) Hot nanoindentation in inert environments. Rev Sci Instrum 81:073901. https://doi.org/10.1063/1.3436633.

  6. Korte S, Stearn RJ, Wheeler JM, Clegg WJ (2012) High temperature microcompression and nanoindentation in vacuum. J Mater Res 27:167–176. https://doi.org/10.1557/jmr.2011.268.

  7. Dorner D, Röller K, Skrotzki B, Stöckhert B, Eggeler G (2003) Creep of a TiAl alloy: a comparison of indentation and tensile testing. Mater Sci Eng A 357:346–354. https://doi.org/10.1016/s0921-5093(03)00205-3.

  8. Mathew MD, Naveena, Vijayanand D (2013) Impression Creep Behavior of 316LN Stainless Steel. J Mater Eng Perform 22:492–497. https://doi.org/10.1007/s11665-012-0290-4.

  9. Sundar RS, Kutty TRG, Sastry DH (2000) Hot hardness and creep of Fe3Al-based alloys. Intermetallics 8:427–437. https://doi.org/10.1016/s0966-9795(99)00118-1.

  10. Cross GLW, O′Connell BS, Pethica JB, Rowland H, King WP (2008) Variable temperature thin film indentation with a flat punch. Rev Sci Instrum 79:013904. https://doi.org/10.1063/1.2830028.

  11. Rowland HD, King WP, Cross GLW, Pethica JB (2008) Measuring Glassy and Viscoelastic Polymer Flow in Molecular-Scale Gaps Using a Flat Punch Mechanical Probe. ACS Nano 2:419–428. https://doi.org/10.1021/nn700211g.

  12. Chu SNG, Li JCM (1979) Impression creep of β-tin single crystals. Mater Sci Eng 39:1–10. https://doi.org/10.1016/0025-5416(79)90164-2.

  13. Durst K, Göken M (2004) Micromechanical characterisation of the influence of rhenium on the mechanical properties in nickel-base superalloys. Mater Sci Eng A 387–389:312–316. https://doi.org/10.1016/j.msea.2004.03.079.

  14. Matschkal-Amberger D, Kolb M, Neumeier S, Gao S, Hartmaier A, Durst K, Göken M (2019) New flat-punch indentation creep testing approach for characterizing the local creep properties at high temperatures. Mater Des 183:108090. https://doi.org/10.1016/j.matdes.2019.108090.

  15. Parsa AB, Wollgramm P, Buck H, Somsen C, Kostka A, Povstugar I, Choi P-P, Raabe D, Dlouhy A, Müller J, Spiecker E, Demtroder K, Schreuer J, Neuking K, Eggeler G (2015) Advanced Scale Bridging Microstructure Analysis of Single Crystal Ni-Base Superalloys: Advanced Scale Bridging Microstructure Analysis. Adv Eng Mater 17:216–230. https://doi.org/10.1002/adem.201400136.

  16. Greer JR, De Hosson JThM (2011) Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect. Prog Mater Sci 56:654–724. https://doi.org/10.1016/j.pmatsci.2011.01.005.

  17. Conte M, Mohanty G, Schwiedrzik JJ, Wheeler JM, Bellaton B, Michler J, Randall NX (2019) Novel high temperature vacuum nanoindentation system with active surface referencing and non-contact heating for measurements up to 800 °C. Rev Sci Instrum 90:045105. https://doi.org/10.1063/1.5029873.

  18. Wheeler JM, Brodard P, Michler J (2012) Elevated temperature, in situ indentation with calibrated contact temperatures. Philos Mag 92:3128–3141. https://doi.org/10.1080/14786435.2012.674647.

  19. Koßmann J, Zenk CH, Lopez-Galilea I, Neumeier S, Kostka A, Huth S, Theisen W, Göken M, Drautz R, Hammerschmidt T (2015) Microsegregation and precipitates of an as-cast Co-based superalloy – microstructural characterization and phase stability modelling. J Mater Sci 50:6329–6338. https://doi.org/10.1007/s10853-015-9177-8.

  20. Karunaratne MSA, Cox DC, Carter P, Reed RC (2000) Modelling of the Microsegregation in CMSX-4 Superalloy and its Homogenisation During Heat Treatment. In: Green K, Kissinger R, Pollock TM (eds) Superalloys 2000. The Minerals, Metals & Materials Society, Warrendale PA, pp 263–272.

    Google Scholar 

  21. Ganesan M, Dye D, Lee PD (2005) A technique for characterizing microsegregation in multicomponent alloys and its application to single-crystal superalloy castings. Metall Mater Trans A 36:2191–2204. https://doi.org/10.1007/s11661-005-0338-2.

  22. Wollgramm P, Bürger D, Parsa AB, Neuking K, Eggeler G (2016) The effect of stress, temperature and loading direction on the creep behaviour of Ni-base single crystal superalloy miniature tensile specimens. Mater High Temp 33:346–360. https://doi.org/10.1080/09603409.2016.1186414.

  23. Xue F, Zenk CH, Freund LP, Hoelzel M, Neumeier S, Göken M (2018) Double minimum creep in the rafting regime of a single-crystal Co-base superalloy. Scr Mater 142:129–132. https://doi.org/10.1016/j.scriptamat.2017.08.039.

  24. Wu X, Wollgramm P, Somsen C, Dlouhy A, Kostka A, Eggeler G (2016) Double minimum creep of single crystal Ni-base superalloys. Acta Mater 112:242–260. https://doi.org/10.1016/j.actamat.2016.04.012.

  25. Shade PA, Uchic MD, Dimiduk DM, Viswanathan GB, Wheeler R, Fraser HL (2012) Size-affected single-slip behavior of René N5 microcrystals. Mater Sci Eng A 535:53–61. https://doi.org/10.1016/j.msea.2011.12.041.

  26. Rehman H ur (2016) Solid Solution Strengthening and Difusion in Nickel- and Cobalt-based Superalloys. Ph.D. thesis, Friedrich-Alexander Universität Erlangen-Nürnberg.

    Google Scholar 

  27. Tromas C, Arnoux M, Milhet X (2012) Hardness cartography to increase the nanoindentation resolution in heterogeneous materials: Application to a Ni-based single-crystal superalloy. Scr Mater 66:77–80. https://doi.org/10.1016/j.scriptamat.2011.09.042.

  28. Gypen LA, Deruyttere A (1977) Multi-component solid solution hardening: Part 1 Proposed model. J Mater Sci 12:1028–1033. https://doi.org/10.1007/bf00540987.

  29. Labusch R (1970) A Statistical Theory of Solid Solution Hardening. Phys Status Solidi B 41:659–669. https://doi.org/10.1002/pssb.19700410221.

  30. Roth HA, Davis CL, Thomson RC (1997) Modeling solid solution strengthening in nickel alloys. Metall Mater Trans A 28:1329–1335. https://doi.org/10.1007/s11661-997-0268-2.

  31. Mishima Y, Ochiai S, Hamao N, Yodogawa M, Suzuki T (1986) Solid Solution Hardening of Nickel – Role of Transition Metal and B-subgroup Solutes. Trans Jpn Inst Met 27:656–664. https://doi.org/10.2320/matertrans1960.27.656.

  32. Diologent F, Caron P (2004) On the creep behavior at 1033 K of new generation single-crystal superalloys. Mater Sci Eng A 385:245–257. https://doi.org/10.1016/s0921-5093(04)00925-6.

  33. Cottrell AH (1965) Dislocation and plastic flow in crystals. Clarendon Press, Oxford.

    Google Scholar 

  34. Galindo-Nava EI, Connor LD, Rae CMF (2015) On the prediction of the yield stress of unimodal and multimodal γ′ Nickel-base superalloys. Acta Mater 98:377–390. https://doi.org/10.1016/j.actamat.2015.07.048.

  35. Pottebohm H, Neite G, Nembach E (1983) Elastic properties (the stiffness constants, the shear modulus and the dislocation line energy and tension) of Ni-Al solid solutions and of the Nimonic alloy PE16. Mater Sci Eng 60:189–194. https://doi.org/10.1016/0025-5416(83)90001-0.

  36. Demtröder K, Eggeler G, Schreuer J (2015) Influence of microstructure on macroscopic elastic properties and thermal expansion of nickel-base superalloys ERBO/1 and LEK94. Mater Sci Eng Technol 46:563–576. https://doi.org/10.1002/mawe.201500406.

  37. Nembach E, Neite G (1985) Precipitation hardening of superalloys by ordered γ′-particles. Prog Mater Sci 29:177–319. https://doi.org/10.1016/0079-6425(85)90001-5.

  38. Crudden DJ, Mottura A, Warnken N, Raeisinia B, Reed RC (2014) Modelling of the influence of alloy composition on flow stress in high-strength nickel-based superalloys. Acta Mater 75:356–370. https://doi.org/10.1016/j.actamat.2014.04.075.

  39. Laplanche G, Wieczorek N, Fox F, Berglund S, Pfetzing-Micklich J, Kishida K, Inui H, Eggeler G (2018) On the influence of crystallography and dendritic microstructure on micro shear behavior of single crystal Ni-based superalloys. Acta Mater 160:173–184. https://doi.org/10.1016/j.actamat.2018.08.052.

Download references

Acknowledgements

The authors gratefully acknowledge funding by the Deutsche Forschungsgemeinschaft (DFG) through projects A6 of the Collaborative Research Center SFB/TR 103 “From Atoms to Turbine Blades—a Scientific Approach for Developing the Next Generation of Single Crystal Superalloys” and thank S. Giese and C. Schunk from the Institute I: General Materials Properties at FAU for their support for milling the micropillars. Furthermore, the authors thank Siwen Gao from the Interdisciplinary Center for Advanced Materials Simulation of the Ruhr University Bochum for the FE simulation image.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukas Haußmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Haußmann, L. et al. (2020). Local Mechanical Properties at the Dendrite Scale of Ni-Based Superalloys Studied by Advanced High Temperature Indentation Creep and Micropillar Compression Tests. In: Tin, S., et al. Superalloys 2020. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-51834-9_26

Download citation

Publish with us

Policies and ethics