Skip to main content

Anti-deSitter Space and Confinement

  • Chapter
  • First Online:
An Introduction to the Confinement Problem

Part of the book series: Lecture Notes in Physics ((LNP,volume 972))

  • 748 Accesses

Abstract

A qualitative introduction to the duality between gauge theories and string theory in anti-deSitter space. Calculation of the string tension in a confining gauge theory from the properties of a black hole horizon in AdS space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Which is really U(1) × SU(N) gauge theory, since one gauge boson decouples from the rest.

References

  1. B. Zwiebach, A First Course in String Theory (Cambridge University Press, New York, 2009)

    Book  Google Scholar 

  2. K. Becker, M. Becker, J.H. Schwarz, String Theory and M-Theory: A Modern Introduction (Cambridge University Press, New York, 2007)

    MATH  Google Scholar 

  3. E. Kiritsis, String Theory in a Nutshell (Princeton University Press, Princeton, 2007)

    MATH  Google Scholar 

  4. O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri, Y. Oz, Large N field theories, string theory and gravity. Phys. Rept. 323, 183 (2000). [arXiv:hep-th/9905111]

    Article  ADS  MathSciNet  Google Scholar 

  5. G.T. Horowitz, J. Polchinski, Gauge/gravity duality (2006). arXiv:gr-qc/0602037

    Google Scholar 

  6. D. Mateos, String theory and quantum chromodynamics. Class. Quant. Grav. 24, S713 (2007). [arXiv:0709.1523 [hep-th]]

    Google Scholar 

  7. R.G. Leigh, Dirac-Born-Infeld action from Dirichlet sigma model. Mod. Phys. Lett. A4, 2767 (1989)

    Article  ADS  Google Scholar 

  8. J.M. Maldacena, The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231 (1998). [Int. J. Theor. Phys. 38, 1113 (1999)]. [arXiv:hep-th/9711200]

    Google Scholar 

  9. J.M. Maldacena, Wilson loops in large N field theories. Phys. Rev. Lett. 80, 4859 (1998). [arXiv:hep-th/9803002]

    Article  ADS  MathSciNet  Google Scholar 

  10. E. Witten, Anti-de sitter space, thermal phase transition, and confinement in gauge theories. Adv. Theor. Math. Phys. 2, 505 (1998). [arXiv:hep-th/9803131]

    Article  MathSciNet  Google Scholar 

  11. S.W. Hawking, D. Page, Thermodynamics of black holes in anti-DeSitter space. Comm. Math. Phys. 87, 577 (1983)

    Article  ADS  Google Scholar 

  12. A. Brandhuber, N. Itzhaki, J. Sonnenschein, S. Yankielowicz, Wilson loops, confinement, and phase transitions in large N gauge theories from supergravity. J. High Energy Phys. 9806, 001 (1998). [arXiv:hep-th/9803263]

    Article  ADS  MathSciNet  Google Scholar 

  13. J. Polchinski, M.J. Strassler, The string dual of a confining four-dimensional gauge theory (2000). arXiv:hep-th/0003136

    Google Scholar 

  14. I.R. Klebanov, M.J. Strassler, Supergravity and a confining gauge theory: duality cascades and χSB-resolution of naked singularities. J. High Energy Phys. 0008, 052 (2000). [arXiv:hep-th/0007191]

    Article  ADS  MathSciNet  Google Scholar 

  15. J.M. Maldacena, C. Nunez, Towards the large N limit of pure N = 1 super Yang Mills. Phys. Rev. Lett. 86, 588 (2001). [arXiv:hep-th/0008001]

    Article  ADS  MathSciNet  Google Scholar 

  16. P. Di Vecchia, A. Liccardo, R. Marotta, F. Pezzella, The gauge/gravity correspondence for non-supersymmetric theories. Fortsch. Phys. 53, 450 (2005). [arXiv:hep-th/0412234]

    Article  ADS  MathSciNet  Google Scholar 

  17. T. Sakai, S. Sugimoto, Low energy hadron physics in holographic QCD. Prog. Theor. Phys. 113, 843 (2005). [arXiv:hep-th/0412141]

    Article  ADS  Google Scholar 

  18. J. Erlich, How well does AdS/QCD describe QCD? (2009). arXiv:0908.0312 [hep-ph]

    Google Scholar 

  19. C. Csaki, M. Reece, J. Terning, The AdS/QCD correspondence: still undelivered. J. High Energy Phys. 0905, 067 (2009). [arXiv:0811.3001 [hep-ph]]

    Google Scholar 

  20. G.F. de Teramond, H.G. Dosch, S.J. Brodsky, Baryon spectrum from superconformal quantum mechanics and its light-front holographic embedding. Phys. Rev. D 91(4), 045040 (2015). [arXiv:1411.5243 [hep-ph]]

    Google Scholar 

  21. O. Aharony, E. Karzbrun, On the effective action of confining strings. J. High Energy Phys. 0906, 012 (2009). [arXiv:0903.1927 [hep-th]]

    Google Scholar 

  22. G. Policastro, D.T. Son, A.O. Starinets, The shear viscosity of strongly coupled N = 4 supersymmetric Yang-Mills plasma. Phys. Rev. Lett. 87, 081601 (2001). [arXiv:hep-th/0104066]

    Article  ADS  Google Scholar 

  23. E. Shuryak, Why does the quark gluon plasma at RHIC behave as a nearly ideal fluid? Prog. Part. Nucl. Phys. 53, 273 (2004). [arXiv:hep-ph/0312227]

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Greensite, J. (2020). Anti-deSitter Space and Confinement. In: An Introduction to the Confinement Problem. Lecture Notes in Physics, vol 972. Springer, Cham. https://doi.org/10.1007/978-3-030-51563-8_14

Download citation

Publish with us

Policies and ethics