Skip to main content

Epidemiology of Bone and Soft Tissue Sarcomas

  • Chapter
  • First Online:
Sarcomas of Bone and Soft Tissues in Children and Adolescents

Part of the book series: Pediatric Oncology ((PEDIATRICO))

Abstract

Bone and soft tissue sarcomas collectively make up 12% of all pediatric malignancies. While there have been significant improvements in treatment for these sarcomas, mortality and morbidity are still high. There is also a substantial heterogeneity in the etiologies and biology of bone and soft tissue sarcomas, making these malignancies difficult to study from an epidemiologic perspective. Our understanding of risk factors for the development of these sarcomas remains limited to a few environmental exposures and well-described hereditary cancer predisposition syndromes. However, these factors are not consistent across all bone and soft tissue sarcomas. In this chapter, we review the epidemiology of bone and soft tissue sarcomas, including a discussion of the roles of environmental risk factors, established predisposing syndromes, and other suspected risk factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bacci G, Ferrari S, Rosito P, et al (1992) [Ewing’s sarcoma of the bone. Anatomoclinical study of 424 cases]. Minerva Pediatr 44:345–59

    Google Scholar 

  • Bajor J (2009) [Gastrointestinal stromal tumors in neurofibromatosis type 1]. Orv Hetil 150:149–53

    Google Scholar 

  • Balarajan R, Acheson ED (1984) Soft tissue sarcomas in agriculture and forestry workers. J Epidemiol Community Health 38:113–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barbanti-Brodano G, Martini F, De Mattei M, Lazzarin L, Corallini A, Tognon M (1998) BK and JC human polyomaviruses and simian virus 40: natural history of infection in humans, experimental oncogenicity, and association with human tumors. Adv Virus Res 50:69–99

    Article  CAS  PubMed  Google Scholar 

  • Bassin EB, Wypij D, Davis RB, Mittleman MA (2006) Age-specific fluoride exposure in drinking water and osteosarcoma (United States). Cancer Causes Control 17:421–428

    Article  PubMed  Google Scholar 

  • Basta NO, James PW, Craft AW, McNally RJ (2010) Season of birth and diagnosis for childhood cancer in Northern England, 1968-2005. Paediatr Perinat Epidemiol 24:309–318

    Article  PubMed  Google Scholar 

  • Beck R, Monument MJ, Watkins WS et al (2012) EWS/FLI-responsive GGAA microsatellites exhibit polymorphic differences between European and African populations. Cancer Genet 205:304–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhatia K, Shiels MS, Berg A, Engels EA (2012) Sarcomas other than Kaposi sarcoma occurring in immunodeficiency: interpretations from a systematic literature review. Curr Opin Oncol 24:537–546

    Article  PubMed  PubMed Central  Google Scholar 

  • Blakey K, Feltbower RG, Parslow RC et al (2014) Is fluoride a risk factor for bone cancer? Small area analysis of osteosarcoma and Ewing sarcoma diagnosed among 0-49-year-olds in Great Britain, 1980-2005. Int J Epidemiol 43:224–234

    Article  PubMed  PubMed Central  Google Scholar 

  • Buckley JD, Pendergrass TW, Buckley CM et al (1998) Epidemiology of osteosarcoma and Ewing’s sarcoma in childhood: a study of 305 cases by the Children’s Cancer Group. Cancer 83:1440–1448

    Article  CAS  PubMed  Google Scholar 

  • Burningham Z, Hashibe M, Spector L, Schiffman JD (2012) The epidemiology of sarcoma. Clin Sarcoma Res 2:14

    Article  PubMed  PubMed Central  Google Scholar 

  • Carbone M, Rizzo P, Procopio A et al (1996) SV40-like sequences in human bone tumors. Oncogene 13:527–535

    CAS  PubMed  Google Scholar 

  • Carney JA, Stratakis CA (2002) Familial paraganglioma and gastric stromal sarcoma: a new syndrome distinct from the Carney triad. Am J Med Genet 108:132–139

    Article  PubMed  Google Scholar 

  • Carney JA, Sheps SG, Go VL, Gordon H (1977) The triad of gastric leiomyosarcoma, functioning extra-adrenal paraganglioma and pulmonary chondroma. N Engl J Med 296:1517–1518

    Article  CAS  PubMed  Google Scholar 

  • Carroll-Pankhurst C, Engels EA, Strickler HD, Goedert JJ, Wagner J, Mortimer EA Jr (2001) Thirty-five year mortality following receipt of SV40- contaminated polio vaccine during the neonatal period. Br J Cancer 85:1295–1297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chow EJ, Puumala SE, Mueller BA et al (2010) Childhood cancer in relation to parental race and ethnicity: a 5-state pooled analysis. Cancer 116:3045–3053

    Article  PubMed  Google Scholar 

  • Comba P, Ascoli V, Belli S et al (2003) Risk of soft tissue sarcomas and residence in the neighbourhood of an incinerator of industrial wastes. Occup Environ Med 60:680–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooley DM, Beranek BC, Schlittler DL, Glickman NW, Glickman LT, Waters DJ (2002) Endogenous gonadal hormone exposure and bone sarcoma risk. Cancer Epidemiol Biomarkers Prev 11:1434–1440

    CAS  PubMed  Google Scholar 

  • Cope JU, Tsokos M, Helman LJ, Gridley G, Tucker MA (2000) Inguinal hernia in patients with Ewing sarcoma: a clue to etiology. Med Pediatr Oncol 34:195–199

    Article  CAS  PubMed  Google Scholar 

  • Corless CL, Fletcher JA, Heinrich MC (2004) Biology of gastrointestinal stromal tumors. J Clin Oncol 22:3813–3825

    Article  CAS  PubMed  Google Scholar 

  • Cotterill SJ, Ahrens S, Paulussen M et al (2000) Prognostic factors in Ewing’s tumor of bone: analysis of 975 patients from the European Intergroup Cooperative Ewing’s Sarcoma Study Group. J Clin Oncol 18:3108–3114

    Article  CAS  PubMed  Google Scholar 

  • Diamandopoulos GT (1973) Induction of lymphocytic leukemia, lymphosarcoma, reticulum cell sarcoma, and osteogenic sarcoma in the Syrian golden hamster by oncogenic DNA simian virus 40. J Natl Cancer Inst 50:1347–1365

    Article  CAS  PubMed  Google Scholar 

  • Diller L, Sexsmith E, Gottlieb A, Li FP, Malkin D (1995) Germline p53 mutations are frequently detected in young children with rhabdomyosarcoma. J Clin Invest 95:1606–1611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dillon P, Maurer H, Jenkins J et al (1992) A prospective study of nonrhabdomyosarcoma soft tissue sarcomas in the pediatric age group. J Pediatr Surg 27:241–244; discussion 4–5

    Article  CAS  PubMed  Google Scholar 

  • Dockerty JD, Draper G, Vincent T, Rowan SD, Bunch KJ (2001) Case-control study of parental age, parity and socioeconomic level in relation to childhood cancers. Int J Epidemiol 30:1428–1437

    Article  CAS  PubMed  Google Scholar 

  • Doros L, Yang J, Dehner L et al (2012) DICER1 mutations in embryonal rhabdomyosarcomas from children with and without familial PPB-tumor predisposition syndrome. Pediatr Blood Cancer 59:558–560

    Article  PubMed  Google Scholar 

  • Dryja TP, Morrow JF, Rapaport JM (1997) Quantification of the paternal allele bias for new germline mutations in the retinoblastoma gene. Hum Genet 100:446–449

    Article  CAS  PubMed  Google Scholar 

  • Eltom MA, Jemal A, Mbulaiteye SM, Devesa SS, Biggar RJ (2002) Trends in Kaposi’s sarcoma and non-Hodgkin’s lymphoma incidence in the United States from 1973 through 1998. J Natl Cancer Inst 94:1204–1210

    Article  PubMed  Google Scholar 

  • Engels EA, Katki HA, Nielsen NM et al (2003) Cancer incidence in Denmark following exposure to poliovirus vaccine contaminated with simian virus 40. J Natl Cancer Inst 95:532–539

    Article  CAS  PubMed  Google Scholar 

  • Estep AL, Tidyman WE, Teitell MA, Cotter PD, Rauen KA (2006) HRAS mutations in Costello syndrome: detection of constitutional activating mutations in codon 12 and 13 and loss of wild-type allele in malignancy. Am J Med Genet A 140:8–16

    Article  PubMed  CAS  Google Scholar 

  • Fanning E (1998) Introduction to simian virus 40: getting by with more than a little help from its host cell. Dev Biol Stand 94:3–8

    CAS  PubMed  Google Scholar 

  • Fernandez MP, Krejci-Manwaring J, Davis TL (2010) Epstein-Barr virus is not associated with angioleiomyomas, or other cutaneous smooth muscle tumors in immunocompetent individuals. J Cutan Pathol 37:507–510

    Article  PubMed  Google Scholar 

  • Finkelstein MM (1994) Radium in drinking water and the risk of death from bone cancer among Ontario youths. CMAJ 151:565–571

    CAS  PubMed  PubMed Central  Google Scholar 

  • Finkelstein MM, Kreiger N (1996) Radium in drinking water and risk of bone cancer in Ontario youths: a second study and combined analysis. Occup Environ Med 53:305–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fisher SG, Weber L, Carbone M (1999) Cancer risk associated with simian virus 40 contaminated polio vaccine. Anticancer Res 19:2173–2180

    CAS  PubMed  Google Scholar 

  • Fraumeni JF (1967) Stature and malignant tumors of bone in childhood and adolescence. Cancer 20:967–973

    Article  PubMed  Google Scholar 

  • Fraumeni JF, Glass AG (1970) Rarity of Ewing’s sarcoma among U.S. Negro children. Lancet (London, England) 1:366–367

    Article  Google Scholar 

  • Fry SA (1998) Studies of U.S. radium dial workers: an epidemiological classic. Radiat Res 150:S21–S29

    Article  CAS  PubMed  Google Scholar 

  • Gangwal K, Sankar S, Hollenhorst PC et al (2008) Microsatellites as EWS/FLI response elements in Ewing’s sarcoma. Proc Natl Acad Sci U S A 105:10149–10154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gelberg KH, Fitzgerald EF, Hwang SA, Dubrow R (1995) Fluoride exposure and childhood osteosarcoma: a case-control study. Am J Public Health 85:1678–1683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gelberg KH, Fitzgerald EF, Hwang S, Dubrow R (1997) Growth and development and other risk factors for osteosarcoma in children and young adults. Int J Epidemiol 26:272–278

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez KD, Noltner KA, Buzin CH et al (2009) Beyond Li Fraumeni syndrome: clinical characteristics of families with p53 germline mutations. J Clin Oncol 27:1250–1256

    Article  CAS  PubMed  Google Scholar 

  • Goto M, Miller RW, Ishikawa Y, Sugano H (1996) Excess of rare cancers in Werner syndrome (adult progeria). Cancer Epidemiol Biomarkers Prev 5:239–246

    CAS  PubMed  Google Scholar 

  • Grufferman S, Wang HH, DeLong ER, Kimm SY, Delzell ES, Falletta JM (1982) Environmental factors in the etiology of rhabdomyosarcoma in childhood. J Natl Cancer Inst 68:107–113

    CAS  PubMed  Google Scholar 

  • Grufferman S, Delzell E, Delong ER (1984) An approach to conducting epidemiologic research within cooperative clinical trials groups. J Clin Oncol 2:670–675

    Article  CAS  PubMed  Google Scholar 

  • Grufferman S, Schwartz AG, Ruymann FB, Maurer HM (1993) Parents’ use of cocaine and marijuana and increased risk of rhabdomyosarcoma in their children. Cancer Causes Control 4:217–224

    CAS  PubMed  Google Scholar 

  • Grufferman S, Ruymann F, Ognjanovic S, Erhardt EB, Maurer HM (2009) Prenatal X-ray exposure and rhabdomyosarcoma in children: a report from the Children’s Oncology Group. Cancer Epidemiol Biomarkers Prev 18:1271–1276

    Article  PubMed  PubMed Central  Google Scholar 

  • Grufferman S, Lupo PJ, Vogel RI, Danysh HE, Erhardt EB, Ognjanovic S (2014) Parental military service, agent orange exposure, and the risk of rhabdomyosarcoma in offspring. J Pediatr 165(6):1216–1221

    Article  PubMed  PubMed Central  Google Scholar 

  • Grünewald TGP, Bernard V, Gilardi-Hebenstreit P et al (2015) Chimeric EWSR1-FLI1 regulates the Ewing sarcoma susceptibility gene EGR2 via a GGAA microsatellite. Nat Genet 47:1073–1078

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guse CE, Marbella AM, George V, Layde PM (2002) Radium in Wisconsin drinking water: an analysis of osteosarcoma risk. Arch Environ Health 57:294–303

    Article  CAS  PubMed  Google Scholar 

  • Gustafson P (1994) Soft tissue sarcoma. Epidemiology and prognosis in 508 patients. Acta Orthop Scand Suppl 259:1–31

    CAS  PubMed  Google Scholar 

  • Hansen MF, Koufos A, Gallie BL et al (1985) Osteosarcoma and retinoblastoma: a shared chromosomal mechanism revealing recessive predisposition. Proc Natl Acad Sci U S A 82:6216–6220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartley AL, Birch JM, McKinney PA et al (1988a) The inter-regional epidemiological study of childhood cancer (IRESCC): case control study of children with bone and soft tissue sarcomas. Br J Cancer 58:838–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartley AL, Birch JM, Marsden HB, Harris M, Blair V (1988b) Neurofibromatosis in children with soft tissue sarcoma. Pediatr Hematol Oncol 5:7–16

    Article  CAS  PubMed  Google Scholar 

  • Hatano M, Takada H, Nomura A et al (2006) Epstein-Barr virus-associated bronchial leiomyoma in a boy with cellular immunodeficiency. Pediatr Pulmonol 41:371–373

    Article  PubMed  Google Scholar 

  • Hawkins MM, Wilson LM, Burton HS et al (1996) Radiotherapy, alkylating agents, and risk of bone cancer after childhood cancer. J Natl Cancer Inst 88:270–278

    Article  CAS  PubMed  Google Scholar 

  • Herzog CE (2005) Overview of sarcomas in the adolescent and young adult population. J Pediatr Hematol Oncol 27:215–218

    Article  PubMed  Google Scholar 

  • Holly EA, Aston DA, Ahn DK, Kristiansen JJ (1992) Ewing’s bone sarcoma, paternal occupational exposure, and other factors. Am J Epidemiol 135:122–129

    Article  CAS  PubMed  Google Scholar 

  • Hoppin JA, Tolbert PE, Flanders WD et al (1999) Occupational risk factors for sarcoma subtypes. Epidemiology 10:300–306

    Article  CAS  PubMed  Google Scholar 

  • Howlader N, Noone AM, Krapcho M et al (eds) (2015) SEER Cancer statistics review, 1975–2012. National Cancer Institute, Bethesda

    Google Scholar 

  • Hum L, Kreiger N, Finkelstein MM (1998) The relationship between parental occupation and bone cancer risk in offspring. Int J Epidemiol 27:766–771

    Article  CAS  PubMed  Google Scholar 

  • Jawad MU, Cheung MC, Min ES, Schneiderbauer MM, Koniaris LG, Scully SP (2009) Ewing sarcoma demonstrates racial disparities in incidence-related and sex-related differences in outcome: an analysis of 1631 cases from the SEER database, 1973-2005. Cancer 115:3526–3536

    Article  PubMed  Google Scholar 

  • Johnson KJ, Carozza SE, Chow EJ et al (2009) Parental age and risk of childhood cancer. Epidemiology 20:475–483

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim FM, Hayes C, Williams PL et al (2011) An assessment of bone fluoride and osteosarcoma. J Dent Res 90:1171–1176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleinerman RA, Tucker MA, Abramson DH, Seddon JM, Tarone RE, Fraumeni JF Jr (2007) Risk of soft tissue sarcomas by individual subtype in survivors of hereditary retinoblastoma. J Natl Cancer Inst 99:24–31

    Article  PubMed  Google Scholar 

  • Kratz CP, Rapisuwon S, Reed H, Hasle H, Rosenberg PS (2011) Cancer in Noonan, Costello, cardiofaciocutaneous and LEOPARD syndromes. Am J Med Genet C Semin Med Genet 157C:83–89

    Article  PubMed  Google Scholar 

  • Lahat G, Lazar A, Lev D (2008) Sarcoma epidemiology and etiology: potential environmental and genetic factors. Surg Clin North Am 88:451–481, v

    Article  PubMed  Google Scholar 

  • Leonard A, Craft AW, Moss C, Malcolm AJ (1996) Osteogenic sarcoma in the Rothmund-Thomson syndrome. Med Pediatr Oncol 26:249–253

    Article  CAS  PubMed  Google Scholar 

  • Levi F, La Vecchia C, Randimbison L, Te VC (1999) Descriptive epidemiology of soft tissue sarcomas in Vaud, Switzerland. Eur J Cancer 35:1711–1716

    Article  CAS  PubMed  Google Scholar 

  • Levy M, Leclerc BS (2012) Fluoride in drinking water and osteosarcoma incidence rates in the continental United States among children and adolescents. Cancer Epidemiol 36:e83–e88

    Article  CAS  PubMed  Google Scholar 

  • Li FP, Fraumeni JF Jr (1969) Rhabdomyosarcoma in children: epidemiologic study and identification of a familial cancer syndrome. J Natl Cancer Inst 43:1365–1373

    CAS  PubMed  Google Scholar 

  • Li FP, Fraumeni JF Jr, Mulvihill JJ et al (1988) A cancer family syndrome in twenty-four kindreds. Cancer Res 48:5358–5362

    CAS  PubMed  Google Scholar 

  • Lupo PJ, Zhou R, Skapek SX et al (2014a) Allergies, atopy, immune-related factors and childhood rhabdomyosarcoma: a report from the Children’s Oncology Group. Int J Cancer 134:431–436

    Article  PubMed  CAS  Google Scholar 

  • Lupo PJ, Danysh HE, Skapek SX et al (2014b) Maternal and birth characteristics and childhood rhabdomyosarcoma: a report from the Children’s Oncology Group. Cancer Causes Control 25:905–913

    Article  PubMed  PubMed Central  Google Scholar 

  • Lupo PJ, Danysh HE, Plon SE et al (2015) Family history of cancer and childhood rhabdomyosarcoma: a report from the Children’s Oncology Group and the Utah population database. Cancer Med 4:781–790

    Article  PubMed  PubMed Central  Google Scholar 

  • Matyakhina L, Bei TA, McWhinney SR et al (2007) Genetics of carney triad: recurrent losses at chromosome 1 but lack of germline mutations in genes associated with paragangliomas and gastrointestinal stromal tumors. J Clin Endocrinol Metab 92:2938–2943

    Article  CAS  PubMed  Google Scholar 

  • McGuire SM, Vanable ED, McGuire MH, Buckwalter JA, Douglass CW (1991) Is there a link between fluoridated water and osteosarcoma? J Am Dent Assoc 122:38–45

    Article  CAS  PubMed  Google Scholar 

  • McNally RJ, Alexander FE, Bithell JF (2006) Space-time clustering of childhood cancer in great Britain: a national study, 1969-1993. Int J Cancer 118:2840–2846

    Article  CAS  PubMed  Google Scholar 

  • McNally RJ, Blakey K, Parslow RC et al (2012) Small-area analyses of bone cancer diagnosed in Great Britain provide clues to aetiology. BMC Cancer 12:270

    Article  PubMed  PubMed Central  Google Scholar 

  • McWhinney SR, Pasini B, Stratakis CA (2007) Familial gastrointestinal stromal tumors and germ-line mutations. N Engl J Med 357:1054–1056

    Article  CAS  PubMed  Google Scholar 

  • Mendoza SM, Konishi T, Miller CW (1998) Integration of SV40 in human osteosarcoma DNA. Oncogene 17:2457–2462

    Article  CAS  PubMed  Google Scholar 

  • Menu-Branthomme A, Rubino C, Shamsaldin A et al (2004) Radiation dose, chemotherapy and risk of soft tissue sarcoma after solid tumours during childhood. Int J Cancer 110:87–93

    Article  CAS  PubMed  Google Scholar 

  • Miettinen M, Sobin LH, Lasota J (2005) Gastrointestinal stromal tumors of the stomach: a clinicopathologic, immunohistochemical, and molecular genetic study of 1765 cases with long-term follow-up. Am J Surg Pathol 29:52–68

    Article  PubMed  Google Scholar 

  • Miller CW, Aslo A, Won A, Tan M, Lampkin B, Koeffler HP (1996) Alterations of the p53, Rb and MDM2 genes in osteosarcoma. J Cancer Res Clin Oncol 122:559–565

    Article  CAS  PubMed  Google Scholar 

  • Mirabello L, Troisi RJ, Savage SA (2009) International osteosarcoma incidence patterns in children and adolescents, middle ages and elderly persons. Int J Cancer 125:229–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirabello L, Pfeiffer R, Murphy G et al (2011a) Height at diagnosis and birth-weight as risk factors for osteosarcoma. Cancer Causes Control 22:899–908

    Article  PubMed  PubMed Central  Google Scholar 

  • Mirabello L, Yu K, Berndt SI et al (2011b) A comprehensive candidate gene approach identifies genetic variation associated with osteosarcoma. BMC Cancer 11:209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirabello L, Yeager M, Mai PL et al (2015a) Germline TP53 variants and susceptibility to osteosarcoma. J Natl Cancer Inst 107:djv101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mirabello L, Koster R, Moriarity BS et al (2015b) A genome-wide scan identifies variants in NFIB associated with metastasis in patients with osteosarcoma. Cancer Discov 5:920–931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monument MJ, Johnson KM, McIlvaine E et al (2014) Clinical and biochemical function of polymorphic NR0B1 GGAA-microsatellites in Ewing sarcoma: a report from the Children’s Oncology Group. PLoS One 9:e104378

    Article  PubMed  PubMed Central  Google Scholar 

  • Moss ME, Kanarek MS, Anderson HA, Hanrahan LP, Remington PL (1995) Osteosarcoma, seasonality, and environmental factors in Wisconsin, 1979-1989. Arch Environ Health 50:235–241

    Article  CAS  PubMed  Google Scholar 

  • Musselman JR, Bergemann TL, Ross JA et al (2012) Case-parent analysis of variation in pubertal hormone genes and pediatric osteosarcoma: a Children’s Oncology Group (COG) study. Int J Mol Epidemiol Genet 3:286–293

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nannini M, Biasco G, Astolfi A, Pantaleo MA (2013) An overview on molecular biology of KIT/PDGFRA wild type (WT) gastrointestinal stromal tumours (GIST). J Med Genet 50:653–661

    Article  CAS  PubMed  Google Scholar 

  • Nishijo K, Nakayama T, Aoyama T et al (2004) Mutation analysis of the RECQL4 gene in sporadic osteosarcomas. Int J Cancer 111:367–372

    Article  CAS  PubMed  Google Scholar 

  • Ognjanovic S, Linabery AM, Charbonneau B, Ross JA (2009) Trends in childhood rhabdomyosarcoma incidence and survival in the United States, 1975-2005. Cancer 115:4218–4226

    Article  PubMed  Google Scholar 

  • Ognjanovic S, Olivier M, Bergemann TL, Hainaut P (2012) Sarcomas in TP53 germline mutation carriers: a review of the IARC TP53 database. Cancer 118:1387–1396

    Article  CAS  PubMed  Google Scholar 

  • Olin P, Giesecke J (1998) Potential exposure to SV40 in polio vaccines used in Sweden during 1957: no impact on cancer incidence rates 1960 to 1993. Dev Biol Stand 94:227–233

    CAS  PubMed  Google Scholar 

  • Olson JM, Breslow NE, Beckwith JB (1993) Wilms’ tumour and parental age: a report from the National Wilms’ Tumour Study. Br J Cancer 67:813–818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Operskalski EA, Preston-Martin S, Henderson BE, Visscher BR (1987) A case-control study of osteosarcoma in young persons. Am J Epidemiol 126:118–126

    Article  CAS  PubMed  Google Scholar 

  • Pappo AS, Janeway KA (2009) Pediatric gastrointestinal stromal tumors. Hematol Oncol Clin North Am 23:15–34, vii

    Article  PubMed  Google Scholar 

  • Pappo AS, Pratt CB (1997) Soft tissue sarcomas in children. Cancer Treat Res 91:205–222

    Article  CAS  PubMed  Google Scholar 

  • Plon SE, Malkin D (2010) Childhood cancer and heredity. In: Pizzo PA, Poplack DG (eds) Principles and practice of pediatric oncology, 6th edn. Lippincott Williams & Wilkins, Philadelphia, p 1600

    Google Scholar 

  • Pollack IF, Mulvihill JJ (1997) Neurofibromatosis 1 and 2. Brain Pathol 7:823–836

    Article  CAS  PubMed  Google Scholar 

  • Postel-Vinay S, Veron AS, Tirode F et al (2012) Common variants near TARDBP and EGR2 are associated with susceptibility to Ewing sarcoma. Nat Genet 44:323–327

    Article  CAS  PubMed  Google Scholar 

  • Price CH (1958) Primary bone-forming tumours and their relationship to skeletal growth. J Bone Joint Surg Br 40-B:574–593

    Article  CAS  PubMed  Google Scholar 

  • Pui CH, Dodge RK, George SL, Green AA (1987) Height at diagnosis of malignancies. Arch Dis Child 62:495–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pukkala E, Martinsen JI, Lynge E et al (2009) Occupation and cancer—follow-up of 15 million people in five Nordic countries. Acta Oncol 48:646–790

    Article  CAS  PubMed  Google Scholar 

  • Ries LA, Smith MA, Gurney JG et al (1999) Cancer incidence and survival among children and adolescents: United States SEER program 1975–1995. National Cancer Institute, SEER Program, Bethesda. Report No.: 99-4649

    Google Scholar 

  • Ross JA, Severson RK, Davis S, Brooks JJ (1993) Trends in the incidence of soft tissue sarcomas in the United States from 1973 through 1987. Cancer 72:486–490

    Article  CAS  PubMed  Google Scholar 

  • Ross JA, Severson RK, Swensen AR, Pollock BH, Gurney JG, Robison LL (1999) Seasonal variations in the diagnosis of childhood cancer in the United States. Br J Cancer 81:549–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubino C, Shamsaldin A, Le MG et al (2005) Radiation dose and risk of soft tissue and bone sarcoma after breast cancer treatment. Breast Cancer Res Treat 89:277–288

    Article  PubMed  Google Scholar 

  • Ruza E, Sotillo E, Sierrasesumaga L, Azcona C, Patino-Garcia A (2003) Analysis of polymorphisms of the vitamin D receptor, estrogen receptor, and collagen Ialpha1 genes and their relationship with height in children with bone cancer. J Pediatr Hematol Oncol 25:780–786

    Article  PubMed  Google Scholar 

  • Savage SA, Modi WS, Douglass CW, Hoover RN, Chanock SJ (2006) Identification of a haplotype block in IGF2R associated with increased risk for osteosarcoma. American Association of Cancer Research Annual Meeting, Washington, DC

    Google Scholar 

  • Savage SA, Mirabello L, Wang Z et al (2013) Genome-wide association study identifies two susceptibility loci for osteosarcoma. Nat Genet 45:799–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuz J, Forman MR (2007) Birthweight by gestational age and childhood cancer. Cancer Causes Control 18:655–663

    Article  PubMed  Google Scholar 

  • Shern JF, Chen L, Chmielecki J et al (2014) Comprehensive genomic analysis of rhabdomyosarcoma reveals a landscape of alterations affecting a common genetic axis in fusion-positive and fusion-negative tumors. Cancer Discov 4:216–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silcocks PB, Murrells T (1987) Space-time clustering and bone tumours: application of Knox’s method to data from a population-based cancer registry. Int J Cancer 40:769–771

    Article  CAS  PubMed  Google Scholar 

  • Slade I, Bacchelli C, Davies H et al (2011) DICER1 syndrome: clarifying the diagnosis, clinical features and management implications of a pleiotropic tumour predisposition syndrome. J Med Genet 48:273–278

    Article  CAS  PubMed  Google Scholar 

  • Sredni ST, Tomita T (2015) Rhabdoid tumor predisposition syndrome. Pediatr Dev Pathol 18:49–58

    Article  PubMed  Google Scholar 

  • Stiller CA, McKinney PA, Bunch KJ, Bailey CC, Lewis IJ (1991) Childhood cancer and ethnic group in Britain: a United Kingdom Children’s Cancer Study Group (UKCCSG) study. Br J Cancer 64:543–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Storm HH (1994) Cancers of the soft tissues. Cancer Surv 19–20:197–217

    PubMed  Google Scholar 

  • Strickler HD, Rosenberg PS, Devesa SS, Hertel J, Fraumeni JF Jr, Goedert JJ (1998) Contamination of poliovirus vaccines with simian virus 40 (1955-1963) and subsequent cancer rates. JAMA 279:292–295

    Article  CAS  PubMed  Google Scholar 

  • Sultan I, Qaddoumi I, Yaser S, Rodriguez-Galindo C, Ferrari A (2009) Comparing adult and pediatric rhabdomyosarcoma in the surveillance, epidemiology and end results program, 1973 to 2005: an analysis of 2,600 patients. J Clin Oncol 27:3391–3397

    Article  PubMed  Google Scholar 

  • Tirode F, Surdez D, Ma X et al (2014) Genomic landscape of Ewing sarcoma defines an aggressive subtype with co-association of STAG2 and TP53 mutations. Cancer Discov 4:1342–1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tjalma RA (1966) Canine bone sarcoma: estimation of relative risk as a function of body size. J Natl Cancer Inst 36:1137–1150

    CAS  PubMed  Google Scholar 

  • Toro JR, Travis LB, Wu HJ, Zhu K, Fletcher CD, Devesa SS (2006) Incidence patterns of soft tissue sarcomas, regardless of primary site, in the surveillance, epidemiology and end results program, 1978-2001: an analysis of 26,758 cases. Int J Cancer 119:2922–2930

    Article  CAS  PubMed  Google Scholar 

  • Tran T, Davila JA, El-Serag HB (2005) The epidemiology of malignant gastrointestinal stromal tumors: an analysis of 1,458 cases from 1992 to 2000. Am J Gastroenterol 100:162–168

    Article  PubMed  Google Scholar 

  • Troisi R, Stephansson O, Jacobsen J et al (2014) Perinatal characteristics and bone cancer risk in offspring—a Scandinavian population-based study. Acta Oncol 53:830–838

    Article  PubMed  Google Scholar 

  • Tucker MA, D’Angio GJ, Boice JD Jr et al (1987) Bone sarcomas linked to radiotherapy and chemotherapy in children. N Engl J Med 317:588–593

    Article  CAS  PubMed  Google Scholar 

  • UK CR (2008–2010) Soft tissue sarcoma incidence statistics. https://www.cancerresearchukorg/health-professional/cancer-statistics/statistics-by-cancer-type/soft-tissue-sarcoma/incidence

  • Valery PC, McWhirter W, Sleigh A, Williams G, Bain C (2002) Farm exposures, parental occupation, and risk of Ewing’s sarcoma in Australia: a national case-control study. Cancer Causes Control 13:263–270

    Article  PubMed  Google Scholar 

  • Valery PC, McWhirter W, Sleigh A, Williams G, Bain C (2003) A national case-control study of Ewing’s sarcoma family of tumours in Australia. Int J Cancer 105:825–830

    Article  CAS  PubMed  Google Scholar 

  • Valery PC, Holly EA, Sleigh AC, Williams G, Kreiger N, Bain C (2005) Hernias and Ewing’s sarcoma family of tumours: a pooled analysis and meta-analysis. Lancet Oncol 6:485–490

    Article  PubMed  Google Scholar 

  • Viel JF, Arveux P, Baverel J, Cahn JY (2000) Soft-tissue sarcoma and non-Hodgkin’s lymphoma clusters around a municipal solid waste incinerator with high dioxin emission levels. Am J Epidemiol 152:13–19

    Article  CAS  PubMed  Google Scholar 

  • Virtanen A, Pukkala E, Auvinen A (2006) Incidence of bone and soft tissue sarcoma after radiotherapy: a cohort study of 295,712 Finnish cancer patients. Int J Cancer 118:1017–1021

    Article  CAS  PubMed  Google Scholar 

  • Wang LL, Gannavarapu A, Kozinetz CA et al (2003) Association between osteosarcoma and deleterious mutations in the RECQL4 gene in Rothmund-Thomson syndrome. J Natl Cancer Inst 95:669–674

    Article  CAS  PubMed  Google Scholar 

  • Wibmer C, Leithner A, Zielonke N, Sperl M, Windhager R (2010) Increasing incidence rates of soft tissue sarcomas? A population-based epidemiologic study and literature review. Ann Oncol 21:1106–1111

    Article  CAS  PubMed  Google Scholar 

  • Wingren G, Fredrikson M, Brage HN, Nordenskjold B, Axelson O (1990) Soft tissue sarcoma and occupational exposures. Cancer 66:806–811

    Article  CAS  PubMed  Google Scholar 

  • Winn DM, Li FP, Robison LL, Mulvihill JJ, Daigle AE, Fraumeni JF (1992) A case-control study of the etiology of Ewing’s sarcoma. Cancer Epidemiol Biomarkers Prev 1:525–532

    CAS  PubMed  Google Scholar 

  • Wong FL, Boice JD Jr, Abramson DH et al (1997) Cancer incidence after retinoblastoma. Radiation dose and sarcoma risk. JAMA 278:1262–1267

    Article  CAS  PubMed  Google Scholar 

  • Wu XC, Chen VW, Steele B et al (2003) Cancer incidence in adolescents and young adults in the United States, 1992-1997. J Adolesc Health 32:405–415

    Article  PubMed  Google Scholar 

  • Yamamoto H, Nakayama T, Murakami H et al (2000) High incidence of SV40-like sequences detection in tumour and peripheral blood cells of Japanese osteosarcoma patients. Br J Cancer 82:1677–1681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang P, Grufferman S, Khoury MJ et al (1995) Association of childhood rhabdomyosarcoma with neurofibromatosis type I and birth defects. Genet Epidemiol 12:467–474

    Article  CAS  PubMed  Google Scholar 

  • Yip BH, Pawitan Y, Czene K (2006) Parental age and risk of childhood cancers: a population-based cohort study from Sweden. Int J Epidemiol 35:1495–1503

    Article  PubMed  Google Scholar 

  • Zahm SH, Fraumeni JF Jr (1997) The epidemiology of soft tissue sarcoma. Semin Oncol 24:504–514

    CAS  PubMed  Google Scholar 

  • Zhang J, Walsh MF, Wu G et al (2015) Germline mutations in predisposition genes in pediatric cancer. N Engl J Med 373:2336–2346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zucman-Rossi J, Batzer MA, Stoneking M, Delattre O, Thomas G (1997) Interethnic polymorphism of EWS intron 6: genome plasticity mediated by Alu retroposition and recombination. Hum Genet 99:357–363

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This chapter is dedicated to our dear friend and colleague, Schuyler O’Brien (1991-2019). Schuyler was a committed scientist who worked tirelessly with the conviction that all data had the potential to become an important stepping-stone in cancer research. He was not content to make just a small contribution to the field of cancer research. Rather, he was singularly intent on dedicating all of himself to finding a cure, specifically a cure for Ewing sarcoma, a cancer he began battling at 12 years old that relapsed multiple times during his short lifetime. Facing so many relapses gave Schuyler a unique perspective, and he enjoyed gently and insightfully challenging his peers to work harder and better to understand the origins of childhood cancer. Somehow, despite years of physical suffering and intellectual exertion, Schuyler maintained a bewildering optimism and steadfast confidence in the power of science and in his ability to push through any difficulty to achieve his goals. Even though Schuyler was often—silently and unflinchingly—in pain from his multiple cancer treatments, he masterfully conducted his work over the years with an obsessive and somehow joyful passion. Schuyler never hesitated to patiently listen or lend a helping hand to his colleagues and friends. We are honored to have shared in his good-natured scientific zeal and marvel at his ability to conduct his life, like most cancer patients do, with simultaneous cynicism and hope, agony and joy. We dedicate this chapter, which Schuyler helped to write, to this young scientist who continues to serve as inspiration to all who knew him.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip J. Lupo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lupo, P.J., Spector, L.G., O’Brien, S., Schiffman, J.D., Hettmer, S. (2021). Epidemiology of Bone and Soft Tissue Sarcomas. In: Arndt, C.A.S. (eds) Sarcomas of Bone and Soft Tissues in Children and Adolescents. Pediatric Oncology. Springer, Cham. https://doi.org/10.1007/978-3-030-51160-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-51160-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-51158-6

  • Online ISBN: 978-3-030-51160-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics