Skip to main content

Looking Past Orthotopic Liver Transplantation: A Review of Emerging Strategies for Managing Acute and Acute-on-Chronic Liver Failure

  • Chapter
  • First Online:
Liver Failure

Abstract

Acute liver failure (ALF) and acute-on-chronic liver failure (ACLF) are both characterized by an acute insult leading to dysfunction of the liver and often other organs. Acute liver failure is defined by coagulopathy (INR > 1.5) and hepatic encephalopathy in the context of a new hepatic insult within the past 26 weeks [1]. It is relatively rare, with approximately 2000 cases per year diagnosed in the United States [2]. ACLF refers to an acute decompensation of chronic liver disease, but lacks a single clear definition [1]; the definitions used the most in studies discussed herein are reviewed in Table 17.1. Orthotopic liver transplant (OLT) is a valuable therapy for both conditions, but as with chronic liver failure, the demand for organs exceeds the supply. In the absence of liver transplant, the mortality of ALF has been estimated at >80% in some studies [1]. While the inconsistent definition makes ACLF mortality difficult to determine, a review based on the Asian Pacific Association for the Study of the Liver (APASL) and the European Foundation for the Study of Chronic Liver Failure (EASL-CLIF) definitions found a 90-day transplant-free mortality of about 50% [5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Polson J, Lee WM, American Association for the Study of Liver Disease. AASLD position paper: the management of acute liver failure. Hepatology. 2005;41(5):1179–97.

    Article  PubMed  Google Scholar 

  2. Bower WA, et al. Population-based surveillance for acute liver failure. Am J Gastroenterol. 2007;102(11):2459–63.

    Article  PubMed  Google Scholar 

  3. Sarin SK, et al. Acute-on-chronic liver failure: consensus recommendations of the Asian Pacific Association for the Study of the Liver (APASL) 2014. Hepatol Int. 2014;8(4):453–71.

    Article  PubMed  Google Scholar 

  4. Moreau R, et al. Acute-on-chronic liver failure is a distinct syndrome that develops in patients with acute decompensation of cirrhosis. Gastroenterology. 2013;144(7):1426–37.

    Article  PubMed  Google Scholar 

  5. Mahmud N, et al. Incidence and mortality of acute-on-chronic liver failure using two definitions in patients with compensated cirrhosis. Hepatology. 2019;69(5):2150–63.

    Article  PubMed  Google Scholar 

  6. Struecker B, Raschzok N, Sauer IM. Liver support strategies: cutting-edge technologies. Nat Rev Gastroenterol Hepatol. 2014;11(3):166–76.

    Article  CAS  PubMed  Google Scholar 

  7. Kobashi-Margáin RA, et al. Albumin dialysis with molecular adsorbent recirculating system (MARS) for the treatment of hepatic encephalopathy in liver failure. Ann Hepatol. 2011;10:S70–6.

    Article  PubMed  Google Scholar 

  8. Osco, Albumin dialysis circuit, A.d. circuit.jpg, Editor. 2013; Wikimedia Commons.

    Google Scholar 

  9. Mitzner SR, et al. Extracorporeal detoxification using the molecular adsorbent recirculating system for critically ill patients with liver failure. J Am Soc Nephrol. 2001;12(Suppl 17):S75–82.

    CAS  PubMed  Google Scholar 

  10. Laleman W, et al. Effect of the molecular adsorbent recirculating system and Prometheus devices on systemic haemodynamics and vasoactive agents in patients with acute-on-chronic alcoholic liver failure. Crit Care. 2006;10(4):R108.

    Article  PubMed  Google Scholar 

  11. Patel P, Okoronkwo N, Pyrsopoulos NT. Future approaches and therapeutic modalities for acute liver failure. Clin Liver Dis. 2018;22(2):419–27.

    Article  PubMed  Google Scholar 

  12. 510(k) Summary of Safety and Effectiveness. 2005: FDA Website.

    Google Scholar 

  13. 510(k) Safety and effectiveness for the Molecular Adsorbent Recirculating System (MARS). 2012: FDA Website.

    Google Scholar 

  14. Banares R, et al. Extracorporeal albumin dialysis with the molecular adsorbent recirculating system in acute-on-chronic liver failure: the RELIEF trial. Hepatology. 2013;57(3):1153–62.

    Article  CAS  PubMed  Google Scholar 

  15. Gerth HU, et al. Molecular adsorbent recirculating system can reduce short-term mortality among patients with acute-on-chronic liver failure—a retrospective analysis. Crit Care Med. 2017;45(10):1616–24.

    Article  CAS  PubMed  Google Scholar 

  16. Saliba F, et al. Albumin dialysis with a noncell artificial liver support device in patients with acute liver failure: a randomized. Ann Internal Med\. 2013;159(8):522–31.

    Article  Google Scholar 

  17. Gerth HU, et al. Molecular adsorbent recirculating system (MARS) in acute liver injury and graft dysfunction: results from a case-control study. PLoS One. 2017;12(4):e0175529.

    Article  CAS  PubMed  Google Scholar 

  18. Faybik P, et al. Molecular adsorbent recirculating system and hemostasis in patients at high risk of bleeding: an observational study. Crit Care. 2006;10(1):R24.

    Article  PubMed  Google Scholar 

  19. Kribben A, et al. Effects of fractionated plasma separation and adsorption on survival in patients with acute-on-chronic liver failure. Gastroenterology. 2012;142(4):782–9. e3

    Article  CAS  PubMed  Google Scholar 

  20. Senturk E, et al. The treatment of acute liver failure with fractionated plasma separation and adsorption system: experience in 85 applications. J Clin Apher. 2010;25(4):195–201.

    Article  PubMed  Google Scholar 

  21. Sponholz C, et al. Molecular adsorbent recirculating system and single-pass albumin dialysis in liver failure—a prospective, randomised crossover study. Crit Care. 2016;20:2.

    Article  PubMed  Google Scholar 

  22. Holle J, et al. Single-pass albumin dialysis in the treatment of children with liver failure. Blood Purif. 2019:1–8.

    Google Scholar 

  23. Tsipotis E, Shuja A, Jaber BL. Albumin dialysis for liver failure: a systematic review. Adv Chronic Kidney Dis. 2015;22(5):382–90.

    Article  PubMed  Google Scholar 

  24. Gislason GT, et al. A treatment system for implementing an extracorporeal liver assist device. Artif Organs. 1994;18(5):385–9.

    Article  CAS  PubMed  Google Scholar 

  25. Thompson J, et al. Extracorporeal cellular therapy (ELAD) in severe alcoholic hepatitis: a multinational, prospective, controlled, randomized trial. Liver Transpl. 2018;24(3):380–93.

    Article  PubMed  Google Scholar 

  26. Duan Z, et al. Comparison of extracorporeal cellular therapy (ELAD(®)) vs standard of care in a randomized controlled clinical trial in treating Chinese subjects with acute-on-chronic liver failure. Hepat Med. 2018;10:139–52.

    Article  PubMed  Google Scholar 

  27. Vital Therapies I. Assess safety and efficacy of ELAD (extracorporeal liver assist system) in subjects with alcohol-induced liver failure. 2015.

    Google Scholar 

  28. He YT, et al. Bioartificial liver support systems for acute liver failure: a systematic review and meta-analysis of the clinical and preclinical literature. World J Gastroenterol. 2019;25(27):3634–48.

    Article  PubMed  Google Scholar 

  29. Demetriou AA, et al. Prospective, randomized, multicenter, controlled trial of a bioartificial liver in treating acute liver failure. Ann Surg. 2004;239(5):660–7. discussion 667-70

    Article  PubMed  Google Scholar 

  30. Iansante V, et al. Human hepatocyte transplantation for liver disease: current status and future perspectives. Pediatr Res. 2018;83(1):232–40.

    Article  CAS  PubMed  Google Scholar 

  31. National Library of Medicine. Ornithine transcarbamylase deficiency. Genetics Home Reference [Internet] 2019. Available from https://ghr.nlm.nih.gov/condition/ornithine-transcarbamylase-deficiency.

  32. Meyburg J, et al. One liver for four children: first clinical series of liver cell transplantation for severe neonatal urea cycle defects. Transplantation. 2009;87(5):636–41.

    Article  PubMed  Google Scholar 

  33. National Library of Medicine. Crigler-Najjar syndrome. Genetics Home Reference [Internet] 2019. Available from https://ghr.nlm.nih.gov/condition/crigler-najjar-syndrome.

  34. Lysy PA, et al. Liver cell transplantation for Crigler-Najjar syndrome type I: update and perspectives. World J Gastroenterol. 2008;14(22):3464–70.

    Article  PubMed  Google Scholar 

  35. Cardoso L, et al. Domino hepatocyte transplantation: a therapeutic alternative for the treatment of acute liver failure. Can J Gastroenterol Hepatol. 2018;2018:2593745.

    Article  PubMed  Google Scholar 

  36. Wang F, et al. Monitoring of intrasplenic hepatocyte transplantation for acute-on-chronic liver failure: a prospective five-year follow-up study. Transpl Proc. 2014;46(1):192–8.

    Article  CAS  Google Scholar 

  37. Wu DB, Chen EQ, Tang H. Stem cell transplantation for the treatment of end-stage liver disease. World J Hepatol. 2018;10(12):907–10.

    Article  CAS  PubMed  Google Scholar 

  38. Xue R, et al. The assessment of multipotent cell transplantation in acute-on-chronic liver failure: a systematic review and meta-analysis. Transl Res. 2018;200:65–80.

    Article  Google Scholar 

  39. Xue R, et al. Clinical performance of stem cell therapy in patients with acute-on-chronic liver failure: a systematic review and meta-analysis. J Transl Med. 2018;16(1):126.

    Article  CAS  PubMed  Google Scholar 

  40. Yuan S, et al. The role of bone marrow mesenchymal stem cells in the treatment of acute liver failure. Biomed Res Int. 2013;2013:251846.

    PubMed  Google Scholar 

  41. Cai Y, et al. Bone marrow-derived mesenchymal stem cells inhibits hepatocyte apoptosis after acute liver injury. Int J Clin Exp Pathol. 2015;8(1):107–16.

    CAS  PubMed  Google Scholar 

  42. Huang YJ, et al. Protection against acetaminophen-induced acute liver failure by omentum adipose tissue derived stem cells through the mediation of Nrf2 and cytochrome P450 expression. J Biomed Sci. 2016;23:5.

    Article  CAS  PubMed  Google Scholar 

  43. Shi D, et al. Quantitative evaluation of human bone mesenchymal stem cells rescuing fulminant hepatic failure in pigs. Gut. 2017;66(5):955–64.

    Article  CAS  PubMed  Google Scholar 

  44. Wang YH, et al. Progress in mesenchymal stem cell-based therapy for acute liver failure. Stem Cell Res Ther. 2018;9(1):227.

    Article  CAS  PubMed  Google Scholar 

  45. Yu Y, Wang X, Nyberg SL. Potential and challenges of induced pluripotent stem cells in liver diseases treatment. J Clin Med. 2014;3(3):997–1017.

    Article  CAS  PubMed  Google Scholar 

  46. Chavez-Tapia NC, et al. Granulocyte-colony stimulating factor for acute-on-chronic liver failure: systematic review and meta-analysis. Ann Hepatol. 2015;14(5):631–41.

    Article  CAS  Google Scholar 

  47. Singh V, et al. Granulocyte colony-stimulating factor in severe alcoholic hepatitis: a randomized pilot study. Am J Gastroenterol. 2014;109(9):1417–23.

    Article  CAS  PubMed  Google Scholar 

  48. Singh V, et al. Efficacy of granulocyte colony-stimulating factor and N-acetylcysteine therapies in patients with severe alcoholic hepatitis. Clin Gastroenterol Hepatol. 2018;16(10):1650–6. e2

    Article  CAS  PubMed  Google Scholar 

  49. Shasthry SM, et al. Efficacy of granulocyte colony-stimulating factor in the management of steroid-nonresponsive severe alcoholic hepatitis: a double-blind randomized controlled trial. Hepatology. 2019;70(3):802–11.

    Article  CAS  PubMed  Google Scholar 

  50. Zhang L, et al. Granulocyte colony-stimulating factor treatment ameliorates liver injury and improves survival in rats with D-galactosamine-induced acute liver failure. Toxicol Lett. 2011;204(1):92–9.

    Article  CAS  PubMed  Google Scholar 

  51. Ahmadi AR, et al. Stem cell mobilization is lifesaving in a large animal preclinical model of acute liver failure. Ann Surg. 2018;268(4):620–31.

    Article  PubMed  Google Scholar 

  52. Larsen FS, et al. High-volume plasma exchange in patients with acute liver failure: an open randomised controlled trial. J Hepatol. 2016;64(1):69–78.

    Article  PubMed  Google Scholar 

  53. Bernuau J. High volume plasma exchange in patients with acute liver failure. J Hepatol. 2016;65(3):646–7.

    Article  PubMed  Google Scholar 

  54. Griffith LG, Naughton G. Tissue engineering—current challenges and expanding opportunities. Science. 2002;295(5557):1009–14.

    Article  CAS  PubMed  Google Scholar 

  55. Traore MA, George SC. Tissue engineering the vascular tree. Tissue Eng B Rev. 2017;23(6):505–14.

    Article  CAS  Google Scholar 

  56. Uygun BE, et al. Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat Med. 2010;16(7):814–20.

    Article  CAS  PubMed  Google Scholar 

  57. Rossi EA, et al. Advances in hepatic tissue bioengineering with decellularized liver bioscaffold. Stem Cells Int. 2019;2019:2693189.

    Article  CAS  PubMed  Google Scholar 

  58. Baptista PM, et al. The use of whole organ decellularization for the generation of a vascularized liver organoid. Hepatology. 2011;53(2):604–17.

    Article  CAS  PubMed  Google Scholar 

  59. Bernard MP, et al. Structure of a cDNA for the Pro Alpha 2 chain of human type I procollagen. Comparison with chick cDNA for Pro Alpha 2(I) identifies structurally conserved features of the protein and the gene. Biochemistry. 1983;22(5):1139–45.

    Article  CAS  PubMed  Google Scholar 

  60. Jiang WC, et al. Cryo-chemical decellularization of the whole liver for mesenchymal stem cells-based functional hepatic tissue engineering. Biomaterials. 2014;35(11):3607–17.

    Article  CAS  PubMed  Google Scholar 

  61. Naeem EM, et al. Decellularized liver transplant could be recellularized in rat partial hepatectomy model. J Biomed Mater Res A. 2019;107(11):2576–88.

    Article  CAS  PubMed  Google Scholar 

  62. Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32(8):773–85.

    Article  CAS  PubMed  Google Scholar 

  63. Mazza G, et al. Liver tissue engineering: from implantable tissue to whole organ engineering. Hepatol Commun. 2018;2(2):131–41.

    Article  PubMed  Google Scholar 

  64. Hiller T, et al. Generation of a 3D liver model comprising human extracellular matrix in an alginate/gelatin-based bioink by extrusion bioprinting for infection and transduction studies. Int J Mol Sci. 2018;19(10):3129.

    Article  CAS  Google Scholar 

  65. Zhong C, et al. Human hepatocytes loaded in 3D bioprinting generate mini-liver. Hepatobiliary Pancreat Dis Int. 2016;15(5):512–8.

    Article  PubMed  Google Scholar 

  66. Kizawa H, et al. Scaffold-free 3D bio-printed human liver tissue stably maintains metabolic functions useful for drug discovery. Biochem Biophys Rep. 2017;10:186–91.

    PubMed  Google Scholar 

  67. Rogozhnikov D, et al. Generation of a Scaffold-free three-dimensional liver tissue via a rapid cell-to-cell click assembly process. Bioconjug Chem. 2016;27(9):1991–8.

    Article  CAS  PubMed  Google Scholar 

  68. Ong CS, et al. 3D bioprinting using stem cells. Pediatr Res. 2018;83(1):223–31.

    Article  CAS  PubMed  Google Scholar 

  69. Takebe T, et al. Generation of a vascularized and functional human liver from an iPSC-derived organ bud transplant. Nat Protoc. 2014;9(2):396–409.

    Article  CAS  PubMed  Google Scholar 

  70. Takebe T, et al. Massive and reproducible production of liver buds entirely from human pluripotent stem cells. Cell Rep. 2017;21(10):2661–70.

    Article  CAS  PubMed  Google Scholar 

  71. Hernaez R, et al. Acute-on-chronic liver failure: an update. Gut. 2017;66(3):541–53.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyedehsan Navabi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brumer, R., Navabi, S., Pyrsopoulos, N. (2020). Looking Past Orthotopic Liver Transplantation: A Review of Emerging Strategies for Managing Acute and Acute-on-Chronic Liver Failure. In: Pyrsopoulos, N. (eds) Liver Failure. Springer, Cham. https://doi.org/10.1007/978-3-030-50983-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-50983-5_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-50982-8

  • Online ISBN: 978-3-030-50983-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics