Skip to main content

Novel Biomarkers of Invasive IPMN

  • Chapter
  • First Online:
Translational Pancreatic Cancer Research

Part of the book series: Molecular and Translational Medicine ((MOLEMED))

  • 372 Accesses

Abstract

Purpose: With the increased utilization of cross-sectional imaging, pancreatic cystic lesions (PCL) are common incidental findings, detected in up to 20% of abdominal MRI scans in adults. While PCL, especially mucinous PCL, have the capacity to develop into invasive carcinoma, it is increasingly being recognized that their malignant potential is neither uniform nor certain. Indeed, while data from long-term cohorts of PCL have identified a small but ongoing risk to the development of carcinoma, this must be balanced against the increasing data demonstrating low yield and high potential morbidity of surgical intervention in elderly patients with non-worrisome PCL. Furthermore, ongoing surveillance of PCL of little or no risk represents a large cost and strain on healthcare systems. Current guidelines that rely on clinical and imaging criteria to stratify risk of malignancy while sensitive, are highly non-specific. Given the morbidity and mortality associated with pancreatic resections, there remains an unmet need for molecular tools to stratify high-risk/malignant from low-risk lesions.

The biomarkers currently in clinical practice are CEA and cytology. Cyst fluid CEA has utility in differentiating mucinous from nonmucinous cysts but has little use in detecting advanced neoplasia in IPMN. Cytology has high specificity in detecting advanced neoplasia, but sensitivity is low due to hypocellular cyst fluid aspirates and high operator dependence. Over the last 20 years, there has been a large number of studies examining various potential biomarkers which are difficult to critically assess due to heterogeneity in definitions of “high-risk” lesions, application of evolving clinical guideline criteria, lack of large pathologically validated cohorts (and the biases associated with these cohorts), and lack of prospective validation. Several DNA-based biomarkers (DNA quantity, loss of heterozygosity, as well as mutations in KRAS, GNAS, TP53, P16, PI3K, PTEN, SMAD4, and BRG1) have been suggested to identify high-risk pancreatic cysts. In addition, promising studies have been reported with microRNAs (miRNA-21, miRNA-155, miRNA-221, miRNA-101, miRNA-216, miRNA-217) and several proteins (MUC proteins, plectin 1, amphiregulin, prostaglandin E2, cytokines (IL5, IL8, and IL1β), mAb Das-1). In addition to cyst fluid analysis, a few studies have examined analyses of blood, circulating cells, and pancreatic juice with preliminary, promising results. We review these studies systematically in the following chapter.

The risk stratification of pancreatic cystic lesions remains a clinical challenge. However, a number of promising biomarkers, DNA, RNA, and protein based, are being developed to aid in segregating high- and low-risk lesions. In conjunction with clinical and imaging parameters and validated in large, prospective cohorts, these biomarkers are poised to improve clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. de Oliveira PB, Puchnick A, Szejnfeld J, et al. Prevalence of incidental pancreatic cysts on 3 tesla magnetic resonance. PLoS One. 2015;10:e0121317.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Zhang XM, Mitchell DG, Dohke M, et al. Pancreatic cysts: depiction on single-shot fast spin-echo MR images. Radiology. 2002;223:547–53.

    Article  PubMed  Google Scholar 

  3. Laffan TA, Horton KM, Klein AP, et al. Prevalence of unsuspected pancreatic cysts on MDCT. AJR Am J Roentgenol. 2008;191:802–7.

    Article  PubMed  PubMed Central  Google Scholar 

  4. de Jong K, Nio CY, Hermans JJ, et al. High prevalence of pancreatic cysts detected by screening magnetic resonance imaging examinations. Clin Gastroenterol Hepatol. 2010;8:806–11.

    Article  PubMed  Google Scholar 

  5. Tanno S, Nakano Y, Sugiyama Y, et al. Incidence of synchronous and metachronous pancreatic carcinoma in 168 patients with branch duct intraductal papillary mucinous neoplasm. Pancreatology. 2010;10:173–8.

    Article  PubMed  Google Scholar 

  6. Lawrence SA, Attiyeh MA, Seier K, et al. Should patients with cystic lesions of the pancreas undergo long-term radiographic surveillance?: results of 3024 patients evaluated at a single institution. Ann Surg. 2017;266:536–44.

    Article  PubMed  Google Scholar 

  7. Kwok K, Chang J, Duan L, et al. Competing risks for mortality in patients with asymptomatic pancreatic cystic neoplasms: implications for clinical management. Am J Gastroenterol. 2017;112:1330–6.

    Article  PubMed  Google Scholar 

  8. Crippa S, Bassi C, Salvia R, et al. Low progression of intraductal papillary mucinous neoplasms with worrisome features and high-risk stigmata undergoing non-operative management: a mid-term follow-up analysis. Gut. 2017;66:495–506.

    Article  PubMed  Google Scholar 

  9. Ho CK, Kleeff J, Friess H, et al. Complications of pancreatic surgery. HPB (Oxford). 2005;7:99–108.

    Article  PubMed Central  Google Scholar 

  10. Al-Haddad M, El H II, Eloubeidi MA. Endoscopic ultrasound for the evaluation of cystic lesions of the pancreas. JOP. 2010;11:299–309.

    PubMed  Google Scholar 

  11. Brugge WR, Lauwers GY, Sahani D, et al. Cystic neoplasms of the pancreas. N Engl J Med. 2004;351:1218–26.

    Article  CAS  PubMed  Google Scholar 

  12. Stark A, Donahue TR, Reber HA, et al. Pancreatic cyst disease: a review. JAMA. 2016;315:1882–93.

    Article  CAS  PubMed  Google Scholar 

  13. Crippa S, Fernandez-Del Castillo C, Salvia R, et al. Mucin-producing neoplasms of the pancreas: an analysis of distinguishing clinical and epidemiologic characteristics. Clin Gastroenterol Hepatol. 2010;8:213–9.

    Article  PubMed  Google Scholar 

  14. Mino-Kenudson M, Fernandez-del Castillo C, Baba Y, et al. Prognosis of invasive intraductal papillary mucinous neoplasm depends on histological and precursor epithelial subtypes. Gut. 2011;60:1712–20.

    Article  PubMed  Google Scholar 

  15. Scheiman JM, Hwang JH, Moayyedi P. American gastroenterological association technical review on the diagnosis and management of asymptomatic neoplastic pancreatic cysts. Gastroenterology. 2015;148:824–48 e22.

    Article  PubMed  Google Scholar 

  16. Tanaka M, Fernandez-del Castillo C, Adsay V, et al. International consensus guidelines 2012 for the management of IPMN and MCN of the pancreas. Pancreatology. 2012;12:183–97.

    Article  PubMed  Google Scholar 

  17. Vege SS, Ziring B, Jain R, et al. American gastroenterological association institute guideline on the diagnosis and management of asymptomatic neoplastic pancreatic cysts. Gastroenterology. 2015;148:819–22; quize12-3.

    Article  PubMed  Google Scholar 

  18. Tanaka M, Chari S, Adsay V, et al. International consensus guidelines for management of intraductal papillary mucinous neoplasms and mucinous cystic neoplasms of the pancreas. Pancreatology. 2006;6:17–32.

    Article  PubMed  Google Scholar 

  19. Brugge WR, Lewandrowski K, Lee-Lewandrowski E, et al. Diagnosis of pancreatic cystic neoplasms: a report of the cooperative pancreatic cyst study. Gastroenterology. 2004;126:1330–6.

    Article  PubMed  Google Scholar 

  20. Tanaka M, Fernandez-Del Castillo C, Kamisawa T, et al. Revisions of international consensus Fukuoka guidelines for the management of IPMN of the pancreas. Pancreatology. 2017;17:738–53.

    Article  PubMed  Google Scholar 

  21. Singhi AD, Zeh HJ, Brand RE, et al. American Gastroenterological Association guidelines are inaccurate in detecting pancreatic cysts with advanced neoplasia: a clinicopathologic study of 225 patients with supporting molecular data. Gastrointest Endosc. 2016;83:1107–1117 e2.

    Article  PubMed  Google Scholar 

  22. Goh BK, Lin Z, Tan DM, et al. Evaluation of the Fukuoka Consensus Guidelines for intraductal papillary mucinous neoplasms of the pancreas: results from a systematic review of 1,382 surgically resected patients. Surgery. 2015;158:1192–202.

    Article  PubMed  Google Scholar 

  23. Tang RS, Weinberg B, Dawson DW, et al. Evaluation of the guidelines for management of pancreatic branch-duct intraductal papillary mucinous neoplasm. Clin Gastroenterol Hepatol. 2008;6:815–9; quiz 719.

    Article  PubMed  Google Scholar 

  24. Xu MM, Yin S, Siddiqui AA, et al. Comparison of the diagnostic accuracy of three current guidelines for the evaluation of asymptomatic pancreatic cystic neoplasms. Medicine (Baltimore). 2017;96:e7900.

    Article  PubMed Central  Google Scholar 

  25. Ma GK, Goldberg DS, Thiruvengadam N, et al. Comparing American Gastroenterological Association Pancreatic Cyst Management Guidelines with Fukuoka consensus guidelines as predictors of advanced neoplasia in patients with suspected pancreatic cystic neoplasms. J Am Coll Surg. 2016;223:729–737 e1.

    Article  PubMed  Google Scholar 

  26. Hruban RH, Goggins M, Parsons J, et al. Progression model for pancreatic cancer. Clin Cancer Res. 2000;6:2969–72.

    CAS  PubMed  Google Scholar 

  27. Bartsch DK, Dietzel K, Bargello M, et al. Multiple small "imaging" branch-duct type intraductal papillary mucinous neoplasms (IPMNs) in familial pancreatic cancer: indicator for concomitant high grade pancreatic intraepithelial neoplasia? Familial Cancer. 2013;12:89–96.

    Article  CAS  PubMed  Google Scholar 

  28. Maitra A, Fukushima N, Takaori K, et al. Precursors to invasive pancreatic cancer. Adv Anat Pathol. 2005;12:81–91.

    Article  PubMed  Google Scholar 

  29. Salvia R, Crippa S, Falconi M, et al. Branch-duct intraductal papillary mucinous neoplasms of the pancreas: to operate or not to operate? Gut. 2007;56:1086–90.

    Article  PubMed  Google Scholar 

  30. Traverso LW. Surgical treatment of intraductal papillary mucinous neoplasms of the pancreas: the aggressive approach. J Gastrointest Surg. 2002;6:662–3.

    Article  PubMed  Google Scholar 

  31. McPhee JT, Hill JS, Whalen GF, et al. Perioperative mortality for pancreatectomy: a national perspective. Ann Surg. 2007;246:246–53.

    Article  PubMed  PubMed Central  Google Scholar 

  32. La Torre M, Nigri G, Ferrari L, et al. Hospital volume, margin status, and long-term survival after pancreaticoduodenectomy for pancreatic adenocarcinoma. Am Surg. 2012;78:225–9.

    Article  PubMed  Google Scholar 

  33. European Study Group on Cystic Tumours of the P. European evidence-based guidelines on pancreatic cystic neoplasms. Gut. 2018;67:789–804.

    Article  Google Scholar 

  34. Wang KX, Ben QW, Jin ZD, et al. Assessment of morbidity and mortality associated with EUS-guided FNA: a systematic review. Gastrointest Endosc. 2011;73:283–90.

    Article  PubMed  Google Scholar 

  35. Thornton GD, McPhail MJ, Nayagam S, et al. Endoscopic ultrasound guided fine needle aspiration for the diagnosis of pancreatic cystic neoplasms: a meta-analysis. Pancreatology. 2013;13:48–57.

    Article  CAS  PubMed  Google Scholar 

  36. Rogart JN, Loren DE, Singu BS, et al. Cyst wall puncture and aspiration during EUS-guided fine needle aspiration may increase the diagnostic yield of mucinous cysts of the pancreas. J Clin Gastroenterol. 2011;45:164–9.

    Article  PubMed  Google Scholar 

  37. Scourtas A, Dudley JC, Brugge WR, et al. Preoperative characteristics and cytological features of 136 histologically confirmed pancreatic mucinous cystic neoplasms. Cancer Cytopathol. 2017;125:169–77.

    Article  CAS  PubMed  Google Scholar 

  38. Yagi Y, Masuda A, Zen Y, et al. Predictive value of low serum pancreatic enzymes in invasive intraductal papillary mucinous neoplasms. Pancreatology. 2016;16:893–9.

    Article  CAS  PubMed  Google Scholar 

  39. Gaddam S, Ge PS, Keach JW, et al. Suboptimal accuracy of carcinoembryonic antigen in differentiation of mucinous and nonmucinous pancreatic cysts: results of a large multicenter study. Gastrointest Endosc. 2015;82:1060–9.

    Article  PubMed  Google Scholar 

  40. Jin DX, Small AJ, Vollmer CM, et al. A lower cyst fluid CEA cut-off increases diagnostic accuracy in identifying mucinous pancreatic cystic lesions. JOP J Pancreas. 2015;16:271–7.

    Google Scholar 

  41. van der Waaij LA, van Dullemen HM, Porte RJ. Cyst fluid analysis in the differential diagnosis of pancreatic cystic lesions: a pooled analysis. Gastrointest Endosc. 2005;62:383–9.

    Article  PubMed  Google Scholar 

  42. Maire F, Voitot H, Aubert A, et al. Intraductal papillary mucinous neoplasms of the pancreas: performance of pancreatic fluid analysis for positive diagnosis and the prediction of malignancy. Am J Gastroenterol. 2008;103:2871–7.

    Article  PubMed  Google Scholar 

  43. Correa-Gallego C, Warshaw AL, Fernandez-del Castillo C. Fluid CEA in IPMNs: a useful test or the flip of a coin? Am J Gastroenterol. 2009;104:796–7.

    PubMed  Google Scholar 

  44. Kucera S, Centeno BA, Springett G, et al. Cyst fluid carcinoembryonic antigen level is not predictive of invasive cancer in patients with intraductal papillary mucinous neoplasm of the pancreas. JOP. 2012;13:409–13.

    PubMed  Google Scholar 

  45. Ngamruengphong S, Bartel MJ, Raimondo M. Cyst carcinoembryonic antigen in differentiating pancreatic cysts: a meta-analysis. Dig Liver Dis. 2013;45:920–6.

    Article  CAS  PubMed  Google Scholar 

  46. Kaplan JH, Gonda TA. The use of biomarkers in the risk stratification of cystic neoplasms. Gastrointest Endosc Clin N Am. 2018;28:549–68.

    Article  PubMed  Google Scholar 

  47. Al-Rashdan A, Schmidt CM, Al-Haddad M, et al. Fluid analysis prior to surgical resection of suspected mucinous pancreatic cysts. A single centre experience. J Gastrointest Oncol. 2011;2:208–14.

    PubMed  PubMed Central  Google Scholar 

  48. Moris D, Damaskos C, Spartalis E, et al. Updates and critical evaluation on novel biomarkers for the malignant progression of intraductal papillary mucinous neoplasms of the pancreas. Anticancer Res. 2017;37:2185–94.

    Article  CAS  PubMed  Google Scholar 

  49. Fritz S, Hackert T, Hinz U, et al. Role of serum carbohydrate antigen 19-9 and carcinoembryonic antigen in distinguishing between benign and invasive intraductal papillary mucinous neoplasm of the pancreas. Br J Surg. 2011;98:104–10.

    Article  CAS  PubMed  Google Scholar 

  50. Ballehaninna UK, Chamberlain RS, Serum CA. 19-9 as a biomarker for pancreatic cancer-a comprehensive review. Indian J Surg Oncol. 2011;2:88–100.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Pais SA, Attasaranya S, Leblanc JK, et al. Role of endoscopic ultrasound in the diagnosis of intraductal papillary mucinous neoplasms: correlation with surgical histopathology. Clin Gastroenterol Hepatol. 2007;5:489–95.

    Article  PubMed  Google Scholar 

  52. Kim JR, Jang JY, Kang MJ, et al. Clinical implication of serum carcinoembryonic antigen and carbohydrate antigen 19-9 for the prediction of malignancy in intraductal papillary mucinous neoplasm of pancreas. J Hepatobiliary Pancreat Sci. 2015;22:699–707.

    Article  PubMed  Google Scholar 

  53. Wang W, Zhang L, Chen L, et al. Serum carcinoembryonic antigen and carbohydrate antigen 19-9 for prediction of malignancy and invasiveness in intraductal papillary mucinous neoplasms of the pancreas: a meta-analysis. Biomed Rep. 2015;3:43–50.

    Article  CAS  PubMed  Google Scholar 

  54. Thosani N, Thosani S, Qiao W, et al. Role of EUS-FNA-based cytology in the diagnosis of mucinous pancreatic cystic lesions: a systematic review and meta-analysis. Dig Dis Sci. 2010;55:2756–66.

    Article  PubMed  PubMed Central  Google Scholar 

  55. de Jong K, van Hooft JE, Nio CY, et al. Accuracy of preoperative workup in a prospective series of surgically resected cystic pancreatic lesions. Scand J Gastroenterol. 2012;47:1056–63.

    Article  PubMed  Google Scholar 

  56. Cizginer S, Turner B, Bilge AR, et al. Cyst fluid carcinoembryonic antigen is an accurate diagnostic marker of pancreatic mucinous cysts. Pancreas. 2011;40:1024–8.

    Article  CAS  PubMed  Google Scholar 

  57. Sedlack R, Affi A, Vazquez-Sequeiros E, et al. Utility of EUS in the evaluation of cystic pancreatic lesions. Gastrointest Endosc. 2002;56:543–7.

    Article  PubMed  Google Scholar 

  58. Morris-Stiff G, Lentz G, Chalikonda S, et al. Pancreatic cyst aspiration analysis for cystic neoplasms: mucin or carcinoembryonic antigen—which is better? Surgery. 2010;148:638–45.

    Article  PubMed  Google Scholar 

  59. Pitman MB, Michaels PJ, Deshpande V, et al. Cytological and cyst fluid analysis of small (< or =3 cm) branch duct intraductal papillary mucinous neoplasms adds value to patient management decisions. Pancreatology. 2008;8:277–84.

    Article  PubMed  Google Scholar 

  60. Pitman MB, Genevay M, Yaeger K, et al. High-grade atypical epithelial cells in pancreatic mucinous cysts are a more accurate predictor of malignancy than “positive” cytology. Cancer Cytopathol. 2010;118:434–40.

    Article  PubMed  Google Scholar 

  61. Pitman MB, Centeno BA, Genevay M, et al. Grading epithelial atypia in endoscopic ultrasound-guided fine-needle aspiration of intraductal papillary mucinous neoplasms: an international interobserver concordance study. Cancer Cytopathol. 2013;121:729–36.

    Article  PubMed  Google Scholar 

  62. Thiruvengadam N, Park WG. Systematic review of pancreatic cyst fluid biomarkers: the path forward. Clin Transl Gastroenterol. 2015;6:e88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sendino O, Fernandez-Esparrach G, Sole M, et al. Endoscopic ultrasonography-guided brushing increases cellular diagnosis of pancreatic cysts: a prospective study. Dig Liver Dis. 2010;42:877–81.

    Article  PubMed  Google Scholar 

  64. Sedlack R, Affi A, Vazquez-Sequeiros E, et al. Utility of EUS in the evaluation of cystic pancreatic lesions. Gastrointest Endosc. 2002;56:543–7.

    Article  PubMed  Google Scholar 

  65. Tanaka M, Heckler M, Liu B, et al. Cytologic analysis of pancreatic juice increases specificity of detection of malignant IPMN - a systematic review. Clin Gastroenterol Hepatol. 2019;17:2199.

    Article  PubMed  Google Scholar 

  66. Khalid A, McGrath KM, Zahid M, et al. The role of pancreatic cyst fluid molecular analysis in predicting cyst pathology. Clin Gastroenterol Hepatol. 2005;3:967–73.

    Article  CAS  PubMed  Google Scholar 

  67. Theisen BK, Wald AI, Singhi AD. Molecular diagnostics in the evaluation of pancreatic cysts. Surg Pathol Clin. 2016;9:441–56.

    Article  PubMed  Google Scholar 

  68. Khalid A, Zahid M, Finkelstein SD, et al. Pancreatic cyst fluid DNA analysis in evaluating pancreatic cysts: a report of the PANDA study. Gastrointest Endosc. 2009;69:1095–102.

    Article  PubMed  Google Scholar 

  69. Fritz S, Fernandez-del Castillo C, Mino-Kenudson M, et al. Global genomic analysis of intraductal papillary mucinous neoplasms of the pancreas reveals significant molecular differences compared to ductal adenocarcinoma. Ann Surg. 2009;249:440–7.

    Article  PubMed  Google Scholar 

  70. Maitra A, Adsay NV, Argani P, et al. Multicomponent analysis of the pancreatic adenocarcinoma progression model using a pancreatic intraepithelial neoplasia tissue microarray. Mod Pathol. 2003;16:902.

    Article  PubMed  Google Scholar 

  71. Eser S, Schnieke A, Schneider G, et al. Oncogenic KRAS signalling in pancreatic cancer. Br J Cancer. 2014;111:817–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kanda M, Matthaei H, Wu J, et al. Presence of somatic mutations in most early-stage pancreatic intraepithelial neoplasia. Gastroenterology. 2012;142:730–733 e9.

    Article  CAS  PubMed  Google Scholar 

  73. Schoedel KE, Finkelstein SD, Ohori NP. K-Ras and microsatellite marker analysis of fine-needle aspirates from intraductal papillary mucinous neoplasms of the pancreas. Diagn Cytopathol. 2006;34:605–8.

    Article  PubMed  Google Scholar 

  74. Sawhney MS, Devarajan S, O'Farrel P, et al. Comparison of carcinoembryonic antigen and molecular analysis in pancreatic cyst fluid. Gastrointest Endosc. 2009;69:1106–10.

    Article  PubMed  Google Scholar 

  75. Shen J, Brugge WR, Dimaio CJ, et al. Molecular analysis of pancreatic cyst fluid: a comparative analysis with current practice of diagnosis. Cancer. 2009;117:217–27.

    PubMed  Google Scholar 

  76. Sreenarasimhaiah J, Lara LF, Jazrawi SF, et al. A comparative analysis of pancreas cyst fluid CEA and histology with DNA mutational analysis in the detection of mucin producing or malignant cysts. JOP. 2009;10:163–8.

    PubMed  Google Scholar 

  77. Talar-Wojnarowska R, Pazurek M, Durko L, et al. A comparative analysis of K-ras mutation and carcinoembryonic antigen in pancreatic cyst fluid. Pancreatology. 2012;12:417–20.

    Article  CAS  PubMed  Google Scholar 

  78. Nikiforova MN, Khalid A, Fasanella KE, et al. Integration of KRAS testing in the diagnosis of pancreatic cystic lesions: a clinical experience of 618 pancreatic cysts. Mod Pathol. 2013;26:1478–87.

    Article  CAS  PubMed  Google Scholar 

  79. Bournet B, Vignolle-Vidoni A, Grand D, et al. Endoscopic ultrasound-guided fine-needle aspiration plus KRAS and GNAS mutation in malignant intraductal papillary mucinous neoplasm of the pancreas. Endosc Int Open. 2016;4:E1228–35.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Al-Haddad M, DeWitt J, Sherman S, et al. Performance characteristics of molecular (DNA) analysis for the diagnosis of mucinous pancreatic cysts. Gastrointest Endosc. 2014;79:79–87.

    Article  PubMed  Google Scholar 

  81. Jones M, Zheng Z, Wang J, et al. Impact of next-generation sequencing on the clinical diagnosis of pancreatic cysts. Gastrointest Endosc. 2016;83:140–8.

    Article  PubMed  Google Scholar 

  82. Tatarian T, Winter JM. Genetics of pancreatic cancer and its implications on therapy. Surg Clin North Am. 2016;96:1207–21.

    Article  PubMed  Google Scholar 

  83. Wu J, Matthaei H, Maitra A, et al. Recurrent GNAS mutations define an unexpected pathway for pancreatic cyst development. Sci Transl Med. 2011;3:92ra66.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Kitago M, Ueda M, Aiura K, et al. Comparison of K-ras point mutation distributions in intraductal papillary-mucinous tumors and ductal adenocarcinoma of the pancreas. Int J Cancer. 2004;110:177–82.

    Article  CAS  PubMed  Google Scholar 

  85. Tada M, Ohashi M, Shiratori Y, et al. Analysis of K-ras gene mutation in hyperplastic duct cells of the pancreas without pancreatic disease. Gastroenterology. 1996;110:227–31.

    Article  CAS  PubMed  Google Scholar 

  86. Kuboki Y, Shimizu K, Hatori T, et al. Molecular biomarkers for progression of intraductal papillary mucinous neoplasm of the pancreas. Pancreas. 2015;44:227–35.

    Article  CAS  PubMed  Google Scholar 

  87. Winner M, Sethi A, Poneros JM, et al. The role of molecular analysis in the diagnosis and surveillance of pancreatic cystic neoplasms. JOP. 2015;16:143–9.

    PubMed  Google Scholar 

  88. Khalid A, Pal R, Sasatomi E, et al. Use of microsatellite marker loss of heterozygosity in accurate diagnosis of pancreaticobiliary malignancy from brush cytology samples. Gut. 2004;53:1860–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Guo X, Zhan X, Li Z. Molecular analyses of aspirated cystic fluid for the differential diagnosis of cystic lesions of the pancreas: a systematic review and meta-analysis. Gastroenterol Res Pract. 2016;2016:3546085.

    PubMed  Google Scholar 

  90. Loren D, Kowalski T, Siddiqui A, et al. Influence of integrated molecular pathology test results on real-world management decisions for patients with pancreatic cysts: analysis of data from a national registry cohort. Diagn Pathol. 2016;11:5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Al-Haddad MA, Kowalski T, Siddiqui A, et al. Integrated molecular pathology accurately determines the malignant potential of pancreatic cysts. Endoscopy. 2015;47:136–46.

    PubMed  Google Scholar 

  92. Tinschert S, Gerl H, Gewies A, et al. McCune-Albright syndrome: clinical and molecular evidence of mosaicism in an unusual giant patient. Am J Med Genet. 1999;83:100–8.

    Article  CAS  PubMed  Google Scholar 

  93. Turan S, Bastepe M. The GNAS complex locus and human diseases associated with loss-of-function mutations or epimutations within this imprinted gene. Horm Res Paediatr. 2013;80:229–41.

    Article  CAS  PubMed  Google Scholar 

  94. Wu J, Matthaei H, Maitra A, et al. Recurrent GNAS mutations define an unexpected pathway for pancreatic cyst development. Sci Transl Med. 2011;3:92ra66–6.

    Google Scholar 

  95. Siddiqui AA, Kowalski TE, Kedika R, et al. EUS-guided pancreatic fluid aspiration for DNA analysis of KRAS and GNAS mutations for the evaluation of pancreatic cystic neoplasia: a pilot study. Gastrointest Endosc. 2013;77:669–70.

    Article  PubMed  Google Scholar 

  96. Singhi AD, Nikiforova MN, Fasanella KE, et al. Preoperative GNAS and KRAS testing in the diagnosis of pancreatic mucinous cysts. Clin Cancer Res. 2014;20:4381–9.

    Article  CAS  PubMed  Google Scholar 

  97. Singhi AD, McGrath K, Brand RE, et al. Preoperative next-generation sequencing of pancreatic cyst fluid is highly accurate in cyst classification and detection of advanced neoplasia. Gut. 2018;67:2131–41.

    Article  CAS  PubMed  Google Scholar 

  98. Dal Molin M, Matthaei H, Wu J, et al. Clinicopathological correlates of activating GNAS mutations in intraductal papillary mucinous neoplasm (IPMN) of the pancreas. Ann Surg Oncol. 2013;20:3802–8.

    Article  Google Scholar 

  99. Kanda M, Knight S, Topazian M, et al. Mutant GNAS detected in duodenal collections of secretin-stimulated pancreatic juice indicates the presence or emergence of pancreatic cysts. Gut. 2013;62:1024–33.

    Article  CAS  PubMed  Google Scholar 

  100. Taki K, Ohmuraya M, Tanji E, et al. GNAS(R201H) and Kras(G12D) cooperate to promote murine pancreatic tumorigenesis recapitulating human intraductal papillary mucinous neoplasm. Oncogene. 2016;35:2407–12.

    Article  CAS  PubMed  Google Scholar 

  101. Hata T, Dal Molin M, Suenaga M, et al. Cyst fluid Telomerase activity predicts the histologic grade of cystic neoplasms of the pancreas. Clin Cancer Res. 2016;22:5141–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wada K. p16 and p53 gene alterations and accumulations in the malignant evolution of intraductal papillary-mucinous tumors of the pancreas. J Hepato-Biliary-Pancreat Surg. 2002;9:76–85.

    Article  Google Scholar 

  103. Biankin AV, Biankin SA, Kench JG, et al. Aberrant p16(INK4A) and DPC4/Smad4 expression in intraductal papillary mucinous tumours of the pancreas is associated with invasive ductal adenocarcinoma. Gut. 2002;50:861–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Campa D, Pastore M, Gentiluomo M, et al. Functional single nucleotide polymorphisms within the cyclin-dependent kinase inhibitor 2A/2B region affect pancreatic cancer risk. Oncotarget. 2016;7:57011–20.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Izeradjene K, Combs C, Best M, et al. KrasG12D and Smad4/Dpc4 haploinsufficiency cooperate to induce mucinous cystic neoplasms and invasive adenocarcinoma of the pancreas. Cancer Cell. 2007;11:229–43.

    Article  CAS  PubMed  Google Scholar 

  106. Narayanan R, Tuoc TC. Roles of chromatin remodeling BAF complex in neural differentiation and reprogramming. Cell Tissue Res. 2014;356:575–84.

    Article  CAS  PubMed  Google Scholar 

  107. Von Figura G, Fukuda A, Roy N, et al. The chromatin regulator Brg1 suppresses formation of intraductal papillary mucinous neoplasm and pancreatic ductal adenocarcinoma. Nat Cell Biol. 2014;16:255.

    Article  CAS  Google Scholar 

  108. Roy N, Malik S, Villanueva KE, et al. Brg1 promotes both tumor-suppressive and oncogenic activities at distinct stages of pancreatic cancer formation. Genes Dev. 2015;29:658–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Dal Molin M, Hong S-M, Hebbar S, et al. Loss of expression of the SWI/SNF chromatin remodeling subunit BRG1/SMARCA4 is frequently observed in intraductal papillary mucinous neoplasms of the pancreas. Hum Pathol. 2012;43:585–91.

    Article  CAS  PubMed  Google Scholar 

  110. Dal Molin M, Hong SM, Hebbar S, et al. Loss of expression of the SWI/SNF chromatin remodeling subunit BRG1/SMARCA4 is frequently observed in intraductal papillary mucinous neoplasms of the pancreas. Hum Pathol. 2012;43:585–91.

    Article  CAS  PubMed  Google Scholar 

  111. Tsiatis AC, Norris-Kirby A, Rich RG, et al. Comparison of Sanger sequencing, pyrosequencing, and melting curve analysis for the detection of KRAS mutations: diagnostic and clinical implications. J Mol Diagn. 2010;12:425–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Amato E, Molin MD, Mafficini A, et al. Targeted next-generation sequencing of cancer genes dissects the molecular profiles of intraductal papillary neoplasms of the pancreas. J Pathol. 2014;233:217–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Sato N, Ueki T, Fukushima N, et al. Aberrant methylation of CpG islands in intraductal papillary mucinous neoplasms of the pancreas. Gastroenterology. 2002;123:365–72.

    Article  CAS  PubMed  Google Scholar 

  114. Hong SM, Omura N, Vincent A, et al. Genome-wide CpG island profiling of intraductal papillary mucinous neoplasms of the pancreas. Clin Cancer Res. 2012;18:700–12.

    Article  CAS  PubMed  Google Scholar 

  115. Henriksen SD, Madsen PH, Krarup H, et al. DNA hypermethylation as a blood-based marker for pancreatic cancer: a literature review. Pancreas. 2015;44:1036–45.

    Article  CAS  PubMed  Google Scholar 

  116. Wang L, Zheng J, Sun C, et al. MicroRNA expression levels as diagnostic biomarkers for intraductal papillary mucinous neoplasm. Oncotarget. 2017;8:58765–70.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Lee EJ, Gusev Y, Jiang J, et al. Expression profiling identifies microRNA signature in pancreatic cancer. Int J Cancer. 2007;120:1046–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Ryu JK, Matthaei H, Dal Molin M, et al. Elevated microRNA miR-21 levels in pancreatic cyst fluid are predictive of mucinous precursor lesions of ductal adenocarcinoma. Pancreatology. 2011;11:343–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Farrell JJ, Toste P, Wu N, et al. Endoscopically acquired pancreatic cyst fluid microRNA 21 and 221 are associated with invasive cancer. Am J Gastroenterol. 2013;108:1352–9.

    Article  CAS  PubMed  Google Scholar 

  120. Caponi S, Funel N, Frampton AE, et al. The good, the bad and the ugly: a tale of miR-101, miR-21 and miR-155 in pancreatic intraductal papillary mucinous neoplasms. Ann Oncol. 2013;24:734–41.

    Article  CAS  PubMed  Google Scholar 

  121. Wang J, Paris PL, Chen J, et al. Next generation sequencing of pancreatic cyst fluid microRNAs from low grade-benign and high grade-invasive lesions. Cancer Lett. 2015;356:404–9.

    Article  CAS  PubMed  Google Scholar 

  122. Matthaei H, Wylie D, Lloyd MB, et al. miRNA biomarkers in cyst fluid augment the diagnosis and management of pancreatic cysts. Clin Cancer Res. 2012;18:4713–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Allen PJ, Qin LX, Tang L, et al. Pancreatic cyst fluid protein expression profiling for discriminating between serous cystadenoma and intraductal papillary mucinous neoplasm. Ann Surg. 2009;250:754–60.

    Article  PubMed  Google Scholar 

  124. Scarlett CJ, Samra JS, Xue A, et al. Classification of pancreatic cystic lesions using SELDI-TOF mass spectrometry. ANZ J Surg. 2007;77:648–53.

    Article  PubMed  Google Scholar 

  125. Corcos O, Couvelard A, Dargere D, et al. Proteomic assessment of markers for malignancy in the mucus of intraductal papillary mucinous neoplasms of the pancreas. Pancreas. 2012;41:169–74.

    Article  CAS  PubMed  Google Scholar 

  126. Maker AV, Carrara S, Jamieson NB, et al. Cyst fluid biomarkers for intraductal papillary mucinous neoplasms of the pancreas: a critical review from the international expert meeting on pancreatic branch-duct-intraductal papillary mucinous neoplasms. J Am Coll Surg. 2015;220:243–53.

    Article  PubMed  Google Scholar 

  127. Cao Z, Maupin K, Curnutte B, et al. Specific glycoforms of MUC5AC and endorepellin accurately distinguish mucinous from nonmucinous pancreatic cysts. Mol Cell Proteomics. 2013;12:2724–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Morris-Stiff G, Lentz G, Chalikonda S, et al. Pancreatic cyst aspiration analysis for cystic neoplasms: mucin or carcinoembryonic antigen--which is better? Surgery. 2010;148:638–44; discussion 644-5.

    Article  PubMed  Google Scholar 

  129. Maker AV, Katabi N, Gonen M, et al. Pancreatic cyst fluid and serum mucin levels predict dysplasia in intraductal papillary mucinous neoplasms of the pancreas. Ann Surg Oncol. 2011;18:199–206.

    Article  PubMed  Google Scholar 

  130. Jabbar KS, Arike L, Verbeke CS, et al. Highly accurate identification of cystic precursor lesions of pancreatic cancer through targeted mass spectrometry: a phase IIc diagnostic study. J Clin Oncol. 2018;36:367–75.

    Article  CAS  PubMed  Google Scholar 

  131. Jabbar KS, Verbeke C, Hyltander AG, et al. Proteomic mucin profiling for the identification of cystic precursors of pancreatic cancer. J Natl Cancer Inst. 2014;106:djt439.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Yokoyama S, Kitamoto S, Higashi M, et al. Diagnosis of pancreatic neoplasms using a novel method of DNA methylation analysis of mucin expression in pancreatic juice. PLoS One. 2014;9:e93760.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Sai JK, Nobukawa B, Matsumura Y, et al. Pancreatic duct lavage cytology with the cell block method for discriminating benign and malignant branch-duct type intraductal papillary mucinous neoplasms. Gastrointest Endosc. 2013;77:726–35.

    Article  PubMed  Google Scholar 

  134. Shimamoto T, Tani M, Kawai M, et al. MUC1 is a useful molecular marker for malignant intraductal papillary mucinous neoplasms in pancreatic juice obtained from endoscopic retrograde pancreatography. Pancreas. 2010;39:879–83.

    Article  CAS  PubMed  Google Scholar 

  135. Das KM, Sakamaki S, Vecchi M, et al. The production and characterization of monoclonal antibodies to a human colonic antigen associated with ulcerative colitis: cellular localization of the antigen by using the monoclonal antibody. J Immunol. 1987;139:77–84.

    CAS  PubMed  Google Scholar 

  136. Das KM, Prasad I, Garla S, et al. Detection of a shared colon epithelial epitope on Barrett epithelium by a novel monoclonal antibody. Ann Intern Med. 1994;120:753–6.

    Article  CAS  PubMed  Google Scholar 

  137. Mirza Z, Das K, Slate J, et al. Gastric intestinal metaplasia as detected by a monoclonal antibody is highly associated with gastric adenocarcinoma. Gut. 2003;52:807–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Onuma EK, Amenta PS, Jukkola AF, et al. A phenotypic change of small intestinal epithelium to colonocytes in small intestinal adenomas and adenocarcinomas. Am J Gastroenterol. 2001;96:2480.

    Article  CAS  PubMed  Google Scholar 

  139. Das KK, Xiao H, Geng X, et al. mAb Das-1 is specific for high-risk and malignant intraductal papillary mucinous neoplasm (IPMN). Gut. 2014;63:1626–34.

    CAS  PubMed  Google Scholar 

  140. Ohuchida K, Mizumoto K, Fujita H, et al. Sonic hedgehog is an early developmental marker of intraductal papillary mucinous neoplasms: clinical implications of mRNA levels in pancreatic juice. J Pathol. 2006;210:42–8.

    Article  CAS  PubMed  Google Scholar 

  141. Jang KT, Lee KT, Lee JG, et al. Immunohistochemical expression of Sonic hedgehog in intraductal papillary mucinous tumor of the pancreas. Appl Immunohistochem Mol Morphol. 2007;15:294–8.

    Article  CAS  PubMed  Google Scholar 

  142. Satoh K, Kanno A, Hamada S, et al. Expression of Sonic hedgehog signaling pathway correlates with the tumorigenesis of intraductal papillary mucinous neoplasm of the pancreas. Oncol Rep. 2008;19:1185–90.

    CAS  PubMed  Google Scholar 

  143. Huang S, Zheng J, Huang Y, et al. Impact of S100A4 expression on clinicopathological characteristics and prognosis in pancreatic cancer: a meta-analysis. Dis Markers. 2016;2016:8137378.

    PubMed  PubMed Central  Google Scholar 

  144. Ohuchida K, Mizumoto K, Egami T, et al. S100P is an early developmental marker of pancreatic carcinogenesis. Clin Cancer Res. 2006;12:5411–6.

    Article  CAS  PubMed  Google Scholar 

  145. Yip-Schneider MT, Carr RA, Wu H, et al. Prostaglandin E2: a pancreatic fluid biomarker of intraductal papillary mucinous neoplasm dysplasia. J Am Coll Surg. 2017;225:481–7.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Schmidt CM, Yip-Schneider MT, Ralstin MC, et al. PGE(2) in pancreatic cyst fluid helps differentiate IPMN from MCN and predict IPMN dysplasia. J Gastrointest Surg. 2008;12:243–9.

    Article  PubMed  Google Scholar 

  147. Bausch D, Mino-Kenudson M, Fernandez-Del Castillo C, et al. Plectin-1 is a biomarker of malignant pancreatic intraductal papillary mucinous neoplasms. J Gastrointest Surg. 2009;13:1948–54; discussion 1954.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Maker AV, Katabi N, Qin LX, et al. Cyst fluid interleukin-1beta (IL1beta) levels predict the risk of carcinoma in intraductal papillary mucinous neoplasms of the pancreas. Clin Cancer Res. 2011;17:1502–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Tun MT, Pai RK, Kwok S, et al. Diagnostic accuracy of cyst fluid amphiregulin in pancreatic cysts. BMC Gastroenterol. 2012;12:15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Raty S, Sand J, Laukkarinen J, et al. Cyst fluid SPINK1 may help to differentiate benign and potentially malignant cystic pancreatic lesions. Pancreatology. 2013;13:530–3.

    Article  CAS  PubMed  Google Scholar 

  151. Park WG, Wu M, Bowen R, et al. Metabolomic-derived novel cyst fluid biomarkers for pancreatic cysts: glucose and kynurenine. Gastrointest Endosc. 2013;78:295–302 e2.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Zikos T, Pham K, Bowen R, et al. Cyst fluid glucose is rapidly feasible and accurate in diagnosing mucinous pancreatic cysts. Am J Gastroenterol. 2015;110:909–14.

    Article  PubMed  Google Scholar 

  153. Arima K, Okabe H, Hashimoto D, et al. The neutrophil-to-lymphocyte ratio predicts malignant potential in intraductal papillary mucinous neoplasms. J Gastrointest Surg. 2015;19:2171–7.

    Article  PubMed  Google Scholar 

  154. Gemenetzis G, Bagante F, Griffin JF, et al. Neutrophil-to-lymphocyte ratio is a predictive marker for invasive malignancy in intraductal papillary mucinous neoplasms of the pancreas. Ann Surg. 2017;266:339–45.

    Article  PubMed  Google Scholar 

  155. Hata T, Mizuma M, Motoi F, et al. Diagnostic and prognostic impact of neutrophil-to-lymphocyte ratio for intraductal papillary mucinous neoplasms of the pancreas with high-grade dysplasia and associated invasive carcinoma. Pancreas. 2019;48:99–106.

    Article  PubMed  Google Scholar 

  156. Takano S, Fukasawa M, Kadokura M, et al. Next-generation sequencing revealed TP53 mutations to be malignant marker for intraductal papillary mucinous neoplasms that could be detected using pancreatic juice. Pancreas. 2017;46:1281–7.

    Article  CAS  PubMed  Google Scholar 

  157. Yu J, Sadakari Y, Shindo K, et al. Digital next-generation sequencing identifies low-abundance mutations in pancreatic juice samples collected from the duodenum of patients with pancreatic cancer and intraductal papillary mucinous neoplasms. Gut. 2017;66:1677–87.

    Article  CAS  PubMed  Google Scholar 

  158. Kisiel JB, Yab TC, Taylor WR, et al. Stool DNA testing for the detection of pancreatic cancer: assessment of methylation marker candidates. Cancer. 2012;118:2623–31.

    Article  CAS  PubMed  Google Scholar 

  159. Rhim AD, Mirek ET, Aiello NM, et al. EMT and dissemination precede pancreatic tumor formation. Cell. 2012;148:349–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Rhim AD, Thege FI, Santana SM, et al. Detection of circulating pancreas epithelial cells in patients with pancreatic cystic lesions. Gastroenterology. 2014;146:647–51.

    Article  PubMed  Google Scholar 

  161. Poruk KE, Valero V 3rd, He J, et al. Circulating epithelial cells in intraductal papillary mucinous neoplasms and cystic pancreatic lesions. Pancreas. 2017;46:943–7.

    Article  CAS  PubMed  Google Scholar 

  162. Franses JW, Basar O, Kadayifci A, et al. Improved detection of circulating epithelial cells in patients with intraductal papillary mucinous neoplasms. Oncologist. 2018;23:121–7.

    Article  CAS  PubMed  Google Scholar 

  163. Berger AW, Schwerdel D, Costa IG, et al. Detection of hot-spot mutations in circulating cell-free DNA from patients with intraductal papillary mucinous neoplasms of the pancreas. Gastroenterology. 2016;151:267–70.

    Article  CAS  PubMed  Google Scholar 

  164. Yang S, Che SP, Kurywchak P, et al. Detection of mutant KRAS and TP53 DNA in circulating exosomes from healthy individuals and patients with pancreatic cancer. Cancer Biol Ther. 2017;18:158–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Kawada N, Uehara H, Nagata S, et al. Pancreatic juice cytology as sensitive test for detecting pancreatic malignancy in intraductal papillary mucinous neoplasm of the pancreas without mural nodule. Pancreatology. 2016;16:853–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koushik K. Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hasak, S., Das, K.K. (2020). Novel Biomarkers of Invasive IPMN. In: Michalski, C., Rosendahl, J., Michl, P., Kleeff, J. (eds) Translational Pancreatic Cancer Research. Molecular and Translational Medicine. Humana, Cham. https://doi.org/10.1007/978-3-030-49476-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-49476-6_3

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-49475-9

  • Online ISBN: 978-3-030-49476-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics