Skip to main content

Emerging Roles of Phytochemicals in the Pathobiology and Management of Esophageal Cancer

  • Chapter
  • First Online:
Phytochemicals Targeting Tumor Microenvironment in Gastrointestinal Cancers

Abstract

Esophageal cancer demonstrates varying epidemiology across the globe. Over the last 30 years, esophageal adenocarcinoma has overtaken esophageal squamous cell cancer as the most common histologic variety in the Western hemisphere. However, esophageal squamous cell cancer remains the predominant type in Asia. Despite an increase in our understanding of its pathophysiology, varying chemotherapeutic regimens have not made any significant impact on the survival of patients with this disease. These chemotherapeutic agents have potentially severe adverse effects which affect the patient adherence to the given treatment. As an alternative modality of the disease treatment, various phytochemicals have been studied as therapeutic and prophylactic entities for esophageal cancer. Most of these agents exert their effect using antioxidant and anti-inflammatory pathways. In this chapter, we discuss the roles of curcumin, flavonoids, and other agents in terms of the available data. As we move towards preventative care among the high-risk patients with conditions such as Barrett’s esophagus, supplementation of these phytochemicals may lead to halting and decrease in the progression towards malignancy. More robust studies are needed prior to recommending their widespread application; however, in the era of cost-effective medicine, introducing such options in the care of patients will have a significant impact in the long run. We also briefly discuss the current state of chemotherapeutic and immune therapeutic options for patients with esophageal cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BSC:

Best supportive care

CD:

Cluster differentiation

COX:

Cyclooxygenase

CSC:

Cancer stem cells

CTLA-4:

Cytotoxic T-lymphocyte-associated protein 4

EAC:

Esophageal adenocarcinoma

EGCG:

Epigallocatechin gallate

EGFR:

Epidermal growth factor receptor

ESC:

Esophageal squamous cell cancer

FDA:

Food and Drug Administration (USA)

FGFR:

Fibroblast growth factor receptor

5-FU:

5-Fluorouracil

GEJ:

Gastroesophageal junctional carcinoma

GERD:

Gastroesophageal reflux disease

HER2:

Human epidermal growth factor receptor 2

IL:

Interleukin

NF-kB:

Nuclear factor-kB

OR:

Odds ratio

ORR:

Objective response rate

OS:

Overall survival

PD-1:

Programmed cell death protein 1

PDGFR:

Platelet-derived growth factor receptor

PD-L1:

Programmed death-ligand 1

PFS:

Progression-free survival

PGE-2:

Prostaglandin E-2

ROS:

Reactive oxygen species

RTK:

Receptor tyrosine kinase

TKI:

Tyrosine kinase inhibitors

VEGFR:

Vascular endothelial growth factor receptor

References

  1. Accessed March 3, 2020 from https://www.wcrf.org/dietandcancer/cancer-trends/oesophageal-cancer-statistics.

    Google Scholar 

  2. van Hagen, P., Hulshof, M. C., van Lanschot, J. J., Steyerberg, E. W., van Berge, et al. (2012). Preoperative chemoradiotherapy for esophageal or junctional cancer. The New England Journal of Medicine, 366(22), 2074–2084.

    Google Scholar 

  3. Kato, H., & Nakajima, M. (2013). Treatments for esophageal cancer: A review. General Thoracic and Cardiovascular Surgery, 61(6), 330–335.

    Google Scholar 

  4. Zhang, Y. (2013). Epidemiology of esophageal cancer. World Journal of Gastroenterology, 19(34), 5598–5606.

    Google Scholar 

  5. Cesas, A., & Bagajevas, A. (2004). Combined treatment of esophageal cancer: A review. Medicina (Kaunas, Lithuania), 40.

    Google Scholar 

  6. Lee, M. T., Lin, W. C., Yu, B., & Lee, T. T. (2017). Antioxidant capacity of phytochemicals and their potential effects on oxidative status in animals: A review. Asian-Australasian Journal of Animal Sciences, 30(3), 299–308.

    CAS  Google Scholar 

  7. Zhu, F., Du, B., & Xu, B. (2018). Anti-inflammatory effects of phytochemicals from fruits, vegetables, and food legumes: A review. Critical Reviews in Food Science and Nutrition, 58(8), 1260–1270.

    CAS  Google Scholar 

  8. Wang, H., Khor, T. O., Shu, L., Su, Z., Fuentes, F., Lee, J. J.-H., & Kong, A.-N. T. (2012). Plants against cancer: A review on natural phytochemicals in preventing and treating cancers and their druggability. Anti-Cancer Agents in Medicinal Chemistry, 12(10), 1281–1305.

    CAS  Google Scholar 

  9. Dutt, R., Garg, V., Khatri, N., & Madan, A. K. (2019). Phytochemicals in anticancer drug development. Anti-Cancer Agents in Medicinal Chemistry, 19(2), 172–183.

    CAS  Google Scholar 

  10. Liu, R. H. (2004). Potential synergy of phytochemicals in cancer prevention: Mechanism of action. The Journal of Nutrition, 134(12 Suppl), 3479S–3485S.

    CAS  Google Scholar 

  11. Chung, M.-Y., Lim, T. G., & Lee, K. W. (2013). Molecular mechanisms of chemopreventive phytochemicals against gastroenterological cancer development. World Journal of Gastroenterology, 19(7), 984–993.

    CAS  Google Scholar 

  12. Wargovich, M. J. (1997). Experimental evidence for cancer preventive elements in foods. Cancer Letters, 114(1-2), 11–17.

    CAS  Google Scholar 

  13. Phytochemicals directory. Accessed March 3, 2020 from https://www.phytochemicals.info/phytochemicals/curcumin.php.

    Google Scholar 

  14. Shehzad, A., Wahid, F., & Lee, Y. S. (2010). Curcumin in cancer chemoprevention: Molecular targets, pharmacokinetics, bioavailability, and clinical trials. Archiv der Pharmazie (Weinheim), 343(9), 489–499.

    CAS  Google Scholar 

  15. Anand, P., Sundaram, C., Jhurani, S., Kunnumakkara, A. B., & Aggarwal, B. B. (2008). Curcumin and cancer: An ‘old-age’ disease with an ‘age-old’ solution. Cancer Letters, 267(1), 133–164.

    CAS  Google Scholar 

  16. Lee, K. W., Bode, A. M., & Dong, Z. (2011). Molecular targets of phytochemicals for cancer prevention. Nature Reviews. Cancer, 11(3), 211–218.

    CAS  Google Scholar 

  17. Guo, Y., Shu, L., Zhang, C., Su, Z. Y., & Kong, A. N. (2015). Curcumin inhibits anchorage-independent growth of HT29 human colon cancer cells by targeting epigenetic restoration of the tumor suppressor gene DLEC1. Biochemical Pharmacology, 94(2), 69–78.

    CAS  Google Scholar 

  18. Almanaa, T. N., Geusz, M. E., & Jamasbi, R. J. (2012). Effects of curcumin on stem-like cells in human esophageal squamous carcinoma cell lines. BMC Complementary and Alternative Medicine, 12, 195.

    CAS  Google Scholar 

  19. Sullivan-Coyne, G., Sullivan, G. C., Donovan, T. R., Piwocka, K., & McKenna, S. L. (2009). Curcumin induces apoptosis-independent death in oesophageal cancer cells. British Journal of Cancer, 101(9), 1585–1595.

    Google Scholar 

  20. Pendleton, E. G., Jamasbi, R. J., & Geusz, M. E. (2019). Tetrahydrocurcumin, curcumin, and 5-fluorouracil effects on human esophageal carcinoma cells. Anti-Cancer Agents in Medicinal Chemistry, 19(8), 1012–1020.

    Google Scholar 

  21. Valko, M., Rhodes, C. J., Moncol, J., Izakovic, M., & Mazur, M. (2006). Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chemico-Biological Interactions, 160(1), 1–40.

    CAS  Google Scholar 

  22. Bower, M. R., Aiyer, H. S., Li, Y., & Martin, R. C. G. (2010). Chemoprotective effects of curcumin in esophageal epithelial cells exposed to bile acids. World Journal of Gastroenterology, 16(33), 4152–4158.

    CAS  Google Scholar 

  23. Rawat, N., Alhamdani, A., McAdam, E., Cronin, J., Eltahir, Z., Lewis, P., Griffiths, P., Baxter, J. N., & Jenkins, G. J. (2012). Curcumin abrogates bile-induced NF-κB activity and DNA damage in vitro and suppresses NF-κB activity whilst promoting apoptosis in vivo, suggesting chemopreventative potential in Barrett’s oesophagus. Clinical & Translational Oncology, 14(4), 302–311.

    CAS  Google Scholar 

  24. Liao, S., Xia, J., Chen, Z., Zhang, S., Ahmad, A., Miele, L., Sarkar, F. H., & Wang, Z. (2011). Inhibitory effect of curcumin on oral carcinoma CAL-27 cells via suppression of Notch-1 and NF-κB signaling pathways. Journal of Cellular Biochemistry, 112(4), 1055–1065.

    CAS  Google Scholar 

  25. Masuda, S. (2012). Dysfunctional transforming growth factor-β signaling with constitutively active notch signaling in Barrett’s esophageal adenocarcinoma. Cancer, 118(7), 1956–1957.

    Google Scholar 

  26. Haraguchi, N., Utsunomiya, T., Inoue, H., Tanaka, F., Mimori, K., Barnard, G. F., & Mori, M. (2006). Characterization of a side population of cancer cells from human gastrointestinal system. Stem Cells, 24(3), 506–513.

    CAS  Google Scholar 

  27. Ricci-Vitiani, L., Lombardi, D. G., Pilozzi, E., Biffoni, M., Todaro, M., Peschle, C., & De Maria, R. (2007). Identification and expansion of human colon-cancer-initiating cells. Nature, 445(7123), 111–115.

    CAS  Google Scholar 

  28. D’Angelo, R. C., & Wicha, M. S. (2010). Stem cells in normal development and cancer. Progress in Molecular Biology and Translational Science, 95, 113–158.

    Google Scholar 

  29. Dean, M., Fojo, T., & Bates, S. (2005). Tumour stem cells and drug resistance. Nature Reviews. Cancer, 5(4), 275–284.

    CAS  Google Scholar 

  30. Chacko, S. M., Thambi, P. T., Kuttan, R., & Nishigaki, I. (2010). Beneficial effects of green tea: A literature review. Chinese Medicine, 5, 13.

    Google Scholar 

  31. Fujiki, H., Watanabe, T., Sueoka, E., Rawangkan, A., & Suganuma, M. (2018). Cancer prevention with green tea and its principal constituent, EGCG: From early investigations to current focus on human cancer stem cells. Molecules and Cells, 41(2), 73–82.

    CAS  Google Scholar 

  32. Wang, L. X., Shi, Y. L., Zhang, L. J., Wang, K. R., Xiang, L. P., Cai, Z. Y., et al. (2019). Inhibitory effects of (−)-Epigallocatechin-3-gallate on esophageal cancer. Molecules, 8, 24(5).

    Google Scholar 

  33. Khan, N., Afaq, F., Saleem, M., Ahmad, N., & Mukhtar, H. (2006). Targeting multiple signaling pathways by green tea polyphenol (−)-epigallocatechin-3-gallate. Cancer Research, 66(5), 2500–2505.

    CAS  Google Scholar 

  34. Singh, B. N., Shankar, S., & Srivastava, R. K. (2011). Green tea catechin, epigallocatechin-3-gallate (EGCG): Mechanisms, perspectives and clinical applications. Biochemical Pharmacology, 82(12), 1807–1821.

    CAS  Google Scholar 

  35. Ye, F., Zhang, G.-H., Guan, B.-X., & Xu, X.-C. (2012). Suppression of esophageal cancer cell growth using curcumin, (−)-epigallocatechin-3-gallate and lovastatin. World Journal of Gastroenterology, 18(2), 126–135.

    CAS  Google Scholar 

  36. Li, Z. G., Shimada, Y., Sato, F., Maeda, M., Itami, A., Kaganoi, J., et al. (2002). Inhibitory effects of epigallocatechin-3-gallate on N-nitrosomethylbenzylamine-induced esophageal tumorigenesis in F344 rats. International Journal of Oncology, 21(6), 1275–1283.

    CAS  Google Scholar 

  37. Hou, Z., Sang, S., You, H., Lee, M. J., Hong, J., Chin, K. V., & Yang, C. S. (2005). Mechanism of action of (−)-epigallocatechin-3-gallate: Auto-oxidation-dependent inactivation of epidermal growth factor receptor and direct effects on growth inhibition in human esophageal cancer KYSE 150 cells. Cancer Research, 65(17), 8049–8056.

    CAS  Google Scholar 

  38. Ge, X. X., Xing, M. Y., Yu, L. F., & Shen, P. (2013). Carotenoid intake and esophageal cancer risk: A meta-analysis. Asian Pacific Journal of Cancer Prevention, 14(3), 1911–1918.

    Google Scholar 

  39. Zhou, H.-B., Yan, Y., Sun, Y.-N., & Zhu, J.-R. (2003). Resveratrol induces apoptosis in human esophageal carcinoma cells. World Journal of Gastroenterology, 9(3), 408–411.

    CAS  Google Scholar 

  40. Stoner, G. D., Kresty, L. A., Carlton, P. S., Siglin, J. C., & Morse, M. A. (1999). Isothiocyanates and freeze-dried strawberries as inhibitors of esophageal cancer. Toxicological Sciences, 52(2 Suppl), 95–100.

    CAS  Google Scholar 

  41. Adlercreutz, H. (2007). Lignans and human health. Critical Reviews in Clinical Laboratory Sciences, 44(5-6), 483–525.

    CAS  Google Scholar 

  42. Hertog, M. G., Hollman, P. C., & Katan, M. B. (1992). Content of potentially anticarcinogenic flavonoids of 28 vegetables and 9 fruits commonly consumed in the Netherlands. Journal of Agricultural and Food Chemistry, 40(12), 2379–2383.

    CAS  Google Scholar 

  43. Peters, P. H., Slimani, N., van der Schouw, Y. T., Grace, P. B., Navarro, C., Tjonneland, A., Olsen, A., Clavel-Chapelon, F., Touillaud, M., Boutron-Ruault, M. C., & Jenab, M. (2007). Variations in plasma phytoestrogen concentrations in European adults. The Journal of Nutrition, 137(5), 1294–1300.

    Google Scholar 

  44. Lamuela-Raventos, R. M., Romero-Perez, A. I., Waterhouse, A. L., & de la Torre-Boronat, M. C. (1995). Direct HPLC analysis of cis-and trans-resveratrol and piceid isomers in Spanish red Vitis vinifera wines. Journal of Agricultural and Food Chemistry, 43(2), 281–283.

    CAS  Google Scholar 

  45. Penttinen, P., Jaehrling, J., Damdimopoulos, A. E., Inzunza, J., Lemmen, J. G., van der Saag, P., Pettersson, K., Gauglitz, G., Mäkelä, S., & Pongratz, I. (2007). Diet-derived polyphenol metabolite enterolactone is a tissue-specific estrogen receptor activator. Endocrinology, 148(10), 4875–4886.

    CAS  Google Scholar 

  46. van der Woude, H., ter Veld, M. G., Jacobs, N., van der Saag, P. T., Murk, A. J., & Rietjens, I. M. (2005). The stimulation of cell proliferation by quercetin is mediated by the estrogen receptor. Molecular Nutrition & Food Research, 49(8), 763–771.

    Google Scholar 

  47. Gehm, B. D., McAndrews, J. M., Chien, P. Y., & Jameson, J. L. (1997). Resveratrol, a polyphenolic compound found in grapes and wine, is an agonist for the estrogen receptor. Proceedings of the National Academy of Sciences of the United States of America, 94(25), 14138–14143.

    CAS  Google Scholar 

  48. Tiffin, N., Suvarna, S. K., Trudgill, N. J., & Riley, S. A. (2003). Sex hormone receptor immunohistochemistry staining in Barrett’s oesophagus and adenocarcinoma. Histopathology, 42(1), 95–96.

    CAS  Google Scholar 

  49. Lagergren, J., & Lagergren, P. (2013). Recent developments in esophageal adenocarcinoma. CA: A Cancer J Clin, 63(4), 232–248.

    Google Scholar 

  50. Lin, Y., Yngve, A., Lagergren, J., & Lu, Y. (2014). A dietary pattern rich in lignans, quercetin and resveratrol decreases the risk of oesophageal cancer. The British Journal of Nutrition, 112(12), 2002–2009.

    CAS  Google Scholar 

  51. Tavani, A., Bertuzzi, M., Talamini, R., Gallus, S., Parpinel, M., Franceschi, S., Levi, F., & La Vecchia, C. (2003). Coffee and tea intake and risk of oral, pharyngeal and esophageal cancer. Oral Oncology, 39(7), 695–700.

    Google Scholar 

  52. Kuppusamy, U. R., & Das, N. P. (1994). Potentiation of β-adrenoceptor agonist-mediated lipolysis by quercetin and fisetin in isolated rat adipocytes. Biochemical Pharmacology, 47(3), 521–529.

    CAS  Google Scholar 

  53. Park, H. J., Yang, J. Y., Ambati, S., Della-Fera, M. A., Hausman, D. B., Rayalam, S., & Baile, C. A. (2008). Combined effects of genistein, quercetin, and resveratrol in human and 3T3-L1 adipocytes. Journal of Medicinal Food, 11(4), 773–783.

    CAS  Google Scholar 

  54. Robinson, D. R., Wu, Y. M., & Lin, S. F. (2000). The protein tyrosine kinase family of the human genome. Oncogene, 19(49), 5548–5557.

    CAS  Google Scholar 

  55. Schlessinger, J. (2000). Cell signaling by receptor tyrosine kinases. Cell, 103(2), 211–225.

    CAS  Google Scholar 

  56. Morishita, A., Gong, J., & Masaki, T. (2014). Targeting receptor tyrosine kinases in gastric cancer. World Journal of Gastroenterology, 20(16), 4536.

    CAS  Google Scholar 

  57. Hubbard, S. R., & Till, J. H. (2000). Protein tyrosine kinase structure and function. Annual Review of Biochemistry, 69(1), 373–398.

    CAS  Google Scholar 

  58. Becker, J. C., Müller-Tidow, C., Serve, H., Domschke, W., & Pohle, T. (2006). Role of receptor tyrosine kinases in gastric cancer: New targets for a selective therapy. World Journal of Gastroenterology, 12(21), 3297–3305.

    CAS  Google Scholar 

  59. Shawver, L. K., Slamon, D., & Ullrich, A. (2002). Smart drugs: Tyrosine kinase inhibitors in cancer therapy. Cancer Cell, 1(2), 117–123.

    CAS  Google Scholar 

  60. Cohen, M. H., Williams, G. A., Sridhara, R., Chen, G., & Pazdur, R. (2003). FDA drug approval summary: Gefitinib (ZD1839) (Iressa) tablets. The Oncologist, 8(4), 303–306.

    CAS  Google Scholar 

  61. (2004). New treatments for colorectal cancer. FDA Consumer, 38(3), 17.

    Google Scholar 

  62. Al-Kasspooles, M., Moore, J. H., Orringer, M. B., & Beer, D. G. (1993). Amplification and over-expression of the EGFR and erbB-2 genes in human esophageal adenocarcinomas. International Journal of Cancer, 54(2), 213–219.

    CAS  Google Scholar 

  63. Wilkinson, N. W., Black, J. D., Roukhadze, E., Driscoll, D., Smiley, S., Hoshi, H., Geradts, J., Javle, M., & Brattain, M. (2004). Epidermal growth factor receptor expression correlates with histologic grade in resected esophageal adenocarcinoma. Journal of Gastrointestinal Surgery, 8(4), 448–453.

    Google Scholar 

  64. Tew, W. P., Kelsen, D. P., & Ilson, D. H. (2005). Targeted therapies for esophageal cancer. The Oncologist, 10(8), 590–601.

    CAS  Google Scholar 

  65. Huang, Z. H., Ma, X. W., Zhang, J., Li, X., Lai, N. L., & Zhang, S. X. (2018). Cetuximab for esophageal cancer: An updated meta-analysis of randomized controlled trials. BMC Cancer, 18(1), 1170.

    Google Scholar 

  66. Waddell, T., Chau, I., Cunningham, D., Gonzalez, D., Okines, A. F., Wotherspoon, A., Saffery, C., Middleton, G., Wadsley, J., Ferry, D., & Mansoor, W. (2013). Epirubicin, oxaliplatin, and capecitabine with or without panitumumab for patients with previously untreated advanced oesophagogastric cancer (REAL3): A randomized, open-label phase 3 trial. The Lancet Oncology, 14(6), 481–489.

    CAS  Google Scholar 

  67. Dutton, S. J., Ferry, D. R., Blazeby, J. M., Abbas, H., Dahle-Smith, A., Mansoor, W., Thompson, J., Harrison, M., Chatterjee, A., Falk, S., & Garcia-Alonso, A. (2014). Gefitinib for oesophageal cancer progressing after chemotherapy (COG): A phase 3, multicentre, double-blind, placebo-controlled randomized trial. The Lancet Oncology, 15(8), 894–904.

    CAS  Google Scholar 

  68. Zhang, X., Jia, J., Lu, M., Wang, X., Gong, J., Li, J., Li, J., Li, Y., Zhang, X., Lu, Z., et al. (2017). Nimotuzumab plus paclitaxel and cisplatin as 1st line treatment for unresectable esophageal squamous cell carcinoma: Long term follow-up of survival in a phase II study. Journal of Clinical Oncology, 35, e15573.

    Google Scholar 

  69. Kleespies, A., Guba, M., Jauch, K. W., & Bruns, C. J. (2004). Vascular endothelial growth factor in esophageal cancer. Journal of Surgical Oncology, 87(2), 95–104.

    CAS  Google Scholar 

  70. Fuchs, C. S., Shitara, K., Di Bartolomeo, M., Lonardi, S., Al-Batran, S. E., Van Cutsem, E., Ilson, D. H., Alsina, M., Chau, I., Lacy, J., & Ducreux, M. (2019). Ramucirumab with cisplatin and fluoropyrimidine as first-line therapy in patients with metastatic gastric or junctional adenocarcinoma (RAINFALL): A double-blind, randomised, placebo-controlled, phase 3 trial. The Lancet Oncology, 20(3), 420–435.

    CAS  Google Scholar 

  71. Creemers, A., Ebbing, E. A., Hooijer, G. K., Stap, L., Jibodh-Mulder, R. A., Gisbertz, S. S., van Berge Henegouwen, M. I., van Montfoort, M. L., Hulshof, M. C., Krishnadath, K. K., & van Oijen, M. G. (2018). The dynamics of HER2 status in esophageal adenocarcinoma. Oncotarget, 9(42), 26787.

    Google Scholar 

  72. Li, J., Qin, S., Xu, J., Xiong, J., Wu, C., Bai, Y., Liu, W., Tong, J., Liu, Y., Xu, R., & Wang, Z. (2016). Randomized, double-blind, placebo-controlled phase III trial of apatinib in patients with chemotherapy-refractory advanced or metastatic adenocarcinoma of the stomach or gastroesophageal junction. Journal of Clinical Oncology, 34(13), 1448–1454.

    CAS  Google Scholar 

  73. Barsouk, A., Rawla, P., Hadjinicolaou, A. V., Aluru, J. S., & Barsouk, A. (2019). Targeted therapies and immunotherapies in the treatment of esophageal cancers. Medical Science, 7(10), 100.

    CAS  Google Scholar 

  74. Sharpe, A. H., & Pauken, K. E. (2018). The diverse functions of the PD-1 inhibitory pathway. Nature Reviews. Immunology, 18(3), 153.

    CAS  Google Scholar 

  75. Kailasam, A., Mittal, S. K., & Agrawal, D. K. (2015). Epigenetics in the pathogenesis of esophageal adenocarcinoma. Clinical and Translational Science, 8(4), 394–402.

    Google Scholar 

  76. Raufi, A. G., & Klempner, S. J. (2015). Immunotherapy for advanced gastric and esophageal cancer: Pre-clinical rationale and ongoing clinical investigations. Journal of Gastrointestinal Oncology Journal of Gastrointestinal Oncology, 6(5), 561–569.

    Google Scholar 

  77. Muro, K., Chung, H. C., Shankaran, V., Geva, R., Catenacci, D., Gupta, S., Eder, J. P., Golan, T., Le, D. T., Burtness, B., & McRee, A. J. (2016). Pembrolizumab for patients with PD-L1-positive advanced gastric cancer (KEYNOTE-012): A multicentre, open-label, phase 1b trial. The Lancet Oncology, 17(6), 717–726.

    CAS  Google Scholar 

  78. Kang, Y. K., Boku, N., Satoh, T., Ryu, M. H., Chao, Y., Kato, K., Chung, H. C., Chen, J. S., Muro, K., Kang, W. K., & Yeh, K. H. (2017). Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2): A randomised, double-blind, placebo-controlled, phase 3 trial. The Lancet, 390(10111), 2461–2471.

    CAS  Google Scholar 

  79. Boku, N., Ryu, M. H., Kato, K., Chung, H. C., Minashi, K., Lee, K. W., Cho, H., Kang, W. K., Komatsu, Y., Tsuda, M., & Yamaguchi, K. (2019). Safety and efficacy of nivolumab in combination with S-1/capecitabine plus oxaliplatin in patients with previously untreated, unresectable, advanced, or recurrent gastric/gastroesophageal junction cancer: Interim results of a randomized, phase II trial (ATTRACTION-4). Annals of Oncology, 30(2), 250–258.

    CAS  Google Scholar 

  80. Le, D. T., Bendell, J. C., Calvo, E., Kim, J. W., Ascierto, P. A., Sharma, P., Ott, P. A., Bono, P., Jaeger, D., Evans, T. J., & De Braud, F. G. (2016). Safety and activity of nivolumab monotherapy in advanced and metastatic (A/M) gastric or gastroesophageal junction cancer (GC/GEC): Results from the CheckMate-032 study. Journal of Clinical Oncology, 21, 34(6).

    Google Scholar 

  81. Bang, Y. J., Ruiz, E. Y., Van Cutsem, E., Lee, K. W., Wyrwicz, L., Schenker, M., Alsina, M., Ryu, M. H., Chung, H. C., Evesque, L., & Al-Batran, S. E. (2018). Phase III, randomised trial of avelumab versus physician’s choice of chemotherapy as third-line treatment of patients with advanced gastric or gastro-oesophageal junction cancer: Primary analysis of JAVELIN gastric 300. Annals of Oncology, 29(10), 2052–2060.

    Google Scholar 

  82. Segal, N. H., Antonia, S. J., Brahmer, J. R., Maio, M., Blake-Haskins, A., Li, X., Vasselli, J., Ibrahim, R. A., Lutzky, J., & Khleif, S. (2014). Preliminary data from a multi-arm expansion study of MEDI4736, an anti-PD-L1 antibody. Journal of Clinical Oncology, 32(suppl; Abstr 3002), 5s.

    Google Scholar 

  83. Kelly, R. J., Chung, K., Gu, Y., Steele, K. E., Rebelatto, M. C., Robbins, P. B., Tavakkoli, F., Karakunnel, J. J., Lai, D. W., & Almhanna, K. (2015). Phase Ib/II study to evaluate the safety and antitumor activity of durvalumab (MEDI4736) and tremelimumab as monotherapy or in combination, in patients with recurrent or metastatic gastric/gastroesophageal junction adenocarcinoma. Journal for Immunotherapy of Cancer, 3(Suppl 2), 157.

    Google Scholar 

  84. Bang, Y. J., Cho, J. Y., Kim, Y. H., Kim, J. W., Di Bartolomeo, M., Ajani, J. A., Yamaguchi, K., Balogh, A., Sanchez, T., & Moehler, M. (2017). Efficacy of sequential ipilimumab monotherapy versus best supportive care for unresectable locally advanced/metastatic gastric or gastroesophageal junction cancer. Clinical Cancer Research, 23(19), 5671–5678.

    CAS  Google Scholar 

  85. Ralph, C., Elkord, E., Burt, D. J., O'Dwyer, J. F., Austin, E. B., Stern, P. L., Hawkins, R. E., & Thistlethwaite, F. C. (2010). Modulation of lymphocyte regulation for cancer therapy: A phase II trial of tremelimumab in advanced gastric and esophageal adenocarcinoma. Clinical Cancer Research, 16(5), 1662–1672.

    CAS  Google Scholar 

  86. Janjigian, Y. Y., Bendell, J., Calvo, E., Kim, J. W., Ascierto, P. A., Sharma, P., Ott, P. A., Peltola, K., Jaeger, D., Evans, J., & De Braud, F. (2018). CheckMate-032 study: Efficacy and safety of nivolumab and nivolumab plus ipilimumab in patients with metastatic esophagogastric cancer. Journal of Clinical Oncology, 36(28), 2836–2844.

    CAS  Google Scholar 

  87. Fuchs, C. S., Doi, T., Jang, R. W., Muro, K., Satoh, T., Machado, M., Sun, W., Jalal, S. I., Shah, M. A., Metges, J. P., & Garrido, M. (2018). Safety and efficacy of pembrolizumab monotherapy in patients with previously treated advanced gastric and gastroesophageal junction cancer: Phase 2 clinical KEYNOTE-059 trial. JAMA Oncology, 4(5), e180013.

    Google Scholar 

  88. Bang, Y. J., Kang, Y. K., Catenacci, D. V., Muro, K., Fuchs, C. S., Geva, R., Hara, H., Golan, T., Garrido, M., Jalal, S. I., & Borg, C. (2019). Pembrolizumab alone or in combination with chemotherapy as first-line therapy for patients with advanced gastric or gastroesophageal junction adenocarcinoma: Results from the phase II nonrandomized KEYNOTE-059 study. Gastric Cancer, 22(4), 828–837.

    CAS  Google Scholar 

  89. Fashoyin-Aje, L., Donoghue, M., Chen, H., He, K., Veeraraghavan, J., Goldberg, K. B., Keegan, P., McKee, A. E., & Pazdur, R. (2019). FDA approval summary: Pembrolizumab for recurrent locally advanced or metastatic gastric or gastroesophageal junction adenocarcinoma expressing PD-L1. The Oncologist, 24(1), 103–109.

    CAS  Google Scholar 

  90. Ohtsu, A., Tabernero, J., Bang, Y. J., Fuchs, C. S., Sun, L., Wang, Z., Csiki, I., Koshiji, M., & Van Cutsem, E. (2016). Pembrolizumab (MK-3475) versus paclitaxel as second-line therapy for advanced gastric or gastroesophageal junction (GEJ) adenocarcinoma: Phase 3 KEYNOTE-061 study. Journal of Clinical Oncology, 34, TPS183.

    Google Scholar 

  91. Shah, M. A., Kojima, T., Hochhauser, D., Enzinger, P., Raimbourg, J., Hollebecque, A., Lordick, F., Kim, S. B., Tajika, M., Kim, H. T., & Lockhart, A. C. (2019). Efficacy and safety of pembrolizumab for heavily pretreated patients with advanced, metastatic adenocarcinoma or squamous cell carcinoma of the esophagus: The phase 2 KEYNOTE-180 study. JAMA Oncology, 5(4), 546–550.

    Google Scholar 

  92. Shah, M. A., Adenis, A., Enzinger, P. C., Kojima, T., Muro, K., Bennouna, J., Francois, E., Hsu, C. H., Moriwaki, T., Kim, S. B., & Lee, S. H. (2019). Pembrolizumab versus chemotherapy as second-line therapy for advanced esophageal cancer: Phase 3 KEYNOTE-181 study. Journal of Clinical Oncology, 37, 4010.

    Google Scholar 

  93. Kojima, T., Muro, K., Francois, E., Hsu, C.-H., Moriwaki, T., Kim, S.-B., Lee, S.-H., Bennouna, J., Kato, K., Lin, S., et al. (2019). Pembrolizumab versus chemotherapy as second-line therapy for advanced esophageal cancer: Phase III KEYNOTE-181 study. Journal of Clinical Oncology, 37(4 Suppl), 2. https://doi.org/10.1200/JCO.2019.37.4_suppl.2.

    Article  Google Scholar 

Download references

Acknowledgements

Author Contributions: Dr. Asad ur Rahman conceived the idea and subsequently all the authors have diligently contributed to the development and preparation of this research work (book chapter), including the literature search, concept organization, data interpretation, and writings. All the authors have read and approved the final draft for publication.

Conflict of Interest: The authors declare that they have no conflicts of interest associated with this book chapter.

Financial Disclosures: None to disclose.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Asad ur Rahman or Sarfraz Ahmad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rahman, A.u. et al. (2020). Emerging Roles of Phytochemicals in the Pathobiology and Management of Esophageal Cancer. In: Nagaraju, G.P. (eds) Phytochemicals Targeting Tumor Microenvironment in Gastrointestinal Cancers. Springer, Cham. https://doi.org/10.1007/978-3-030-48405-7_8

Download citation

Publish with us

Policies and ethics