Skip to main content

Applications of Thermal/Infrared NDT

  • Chapter
  • First Online:
Infrared Thermography and Thermal Nondestructive Testing

Abstract

This chapter summarizes applications of both passive and active IR thermography and TNDT, including power generation, civil engineering and buildings, smokestacks, electrical installations, aerospace, petrochemical, automotive industry, art objects, medicine and many others. The discussions are supported by numerous illustrations and an extensive bibliography.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nondestructive Testing Handbook. Vol. 3 “Infrared and Thermal Testing”, Techn. Ed. Xavier P.V. Maldague, Ed. Patrick O. Moore. A.S.N.T., Bellingham (2001)

    Google Scholar 

  2. Ljungberg, S.-A.: Infrared techniques in buildings and structures: operation and maintenance. In: Maldague, X. (ed.) Infrared Methodology and Technology. Nondestructive Testing Monographs and Tracts, pp. 211–252. Gordon & Breach Science Publish Amsterdam, Amsterdam (Netherlands) (1992)

    Google Scholar 

  3. Hart, J.M.: A practical guide to infrared thermography for building surveys. Building Research Establishment Report, Garston, Watford, U.S.A.-24 p

    Google Scholar 

  4. Evans, J.: Meteorology and infrared measurements. Proc. SPIE “Thermosense IV”, Vol. 313. U.S.A., pp. 64–68 (1981)

    Google Scholar 

  5. Budadin, O.N., Potapov, A.I., Kolganov, V.I., et al.: Thermal Nondestructive Testing of Products, p. 476 (in Russian). “Nauka” Publish, Moscow (2002)

    Google Scholar 

  6. The diagnostics and determination of thermal parameters of building envelopes by using IR thermography. – Guidelines # 1305/442 from 10.01.2001 approved by Gosstandard, Russian Federation. 36 P. (in Russian)

    Google Scholar 

  7. Luong, M.P.: Infrared thermographic evaluation of fatigue behavior of concrete. Transact. 14th intern. conf. on structural mech. in reactor technol. (SMiRT 13), Lyon, France, pp. 155–162 (1997, Aug 17–22)

    Google Scholar 

  8. Vavilov, V.P.: Infrared thermography of mechanical stresses in building constructions (diagnostics of the TVVKUS casern in Tomsk after the catastrophe). Control. Diagn. 1, 21–25 (in Russian) (1998)

    Google Scholar 

  9. Ivanov, G.S., Podolyan, L.A.: Energy saving in buildings. Heat Supply News. 7, 8–13 (in Russian) (2001)

    Google Scholar 

  10. Standard ISO 6781-83. Thermal insulation, Qualitative detection of thermal irregularities in building envelopes. Infrared method

    Google Scholar 

  11. GOST 26254–84. Russian state standard. Buildings and constructions. Methods for determining envelope thermal resistance (in Russian)

    Google Scholar 

  12. GOST 26629–85. Russian state standard. The method of IR thermographic quality inspection. Thermal insulation of building envelopes (in Russian)

    Google Scholar 

  13. Edis, E., Flores-Colen, I., De Brito, J.: Time-dependent passive building thermography for detecting delamination of adhered ceramic cladding. JONE. 34(3), 24–16 (2015)

    Google Scholar 

  14. Cornienko, S.G.: Detecting modes of deformation in monolithic concrete by using IR thermographic monitoring. Prikladnaya fizika (Appl. Phys). 1, 134–138 (in Russian) (1997)

    Google Scholar 

  15. Moropoulou, A., Avdelidis, N.P., Koui, M.: Detection of defects of airport pavements using infrared thermography. CSNDT J. Vol 4020, 5–8 (2000)

    Google Scholar 

  16. ASTM Standard D-4788-88. Test method for detecting delaminations in bridge decks by using infrared thermography, 1997, U.S.A.

    Google Scholar 

  17. Frumuselu, D., Radu, C.: IR thermography applied to ground-level reinforced concrete constructions belonging to electricity networks. Insight. 40(7), 501–504 (1998)

    Google Scholar 

  18. Drozdov, V.A., Sukharev, V.I.: Building thermography. Moscow, “Stroyizdat”, p. 238 (1987). (in Russian)

    Google Scholar 

  19. Grinzato, E., Bison, P.G., Bressan, C. et al.: Active thermal testing of delaminations in frescoes’ plaster. Proc. 4th intern. conf. on nondestr. testing of works of art, Berlin, Germany, pp. 357–366 (1994, 3–8 Oct)

    Google Scholar 

  20. Bison, P.G., Grinzato, E., Marinetti, S., Braggiotti, A.: Fresco thermographic inspection by convective heating technique. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in Quantitative Non-destructive Evaluation, vol. 17, pp. 1769–1776. Plenum Press, New York (1998)

    Google Scholar 

  21. Grinzato, E., Bison, P.G., Bressan, C., Mazzoldi, A.: NDE of frescoes by infrared thermography and lateral heating. Proc. Eurotherm seminar #60, QIRT’98, Lodz (Poland), pp. 64–67 (1998)

    Google Scholar 

  22. Vavilov, V.P., Grinzato, E., Bison, P., Marinetti, S.: Thermal NDT of air-filled delaminations under wall frescos. Defectoskopiya (Rus. J. NDT). 7, 73–83 (in Russian) (1994)

    Google Scholar 

  23. Grinzato, E., Bison, P.G., Marinetti, S., Vavilov, V.: Thermal NDE enhanced by 3D numerical modeling applied to works of art. In: Proc. 15th world conf. on NDT, Rome (Italy), (available only on CD). 9 p (2000, 15–21 Oct)

    Google Scholar 

  24. Spagnolo, S., Ambrosini, D., Paoletti, P.: Comparative study on the efficiency of some optical methods for artwork diagnostics. Proc. laser techniques and systems in art conservation. Munich, Germany. pp. 227–234 (2001, 18–19 June)

    Google Scholar 

  25. Grinzato, E., Bison, P.G., Marinetti, S., Vavilov, V.: Non-destructive Evaluation of Delaminations in Fresco Plaster Using Transient Infrared Thermography, vol. 5. No. 4, pp. 257–271. Res. in NDE, Springer-Verlag, New York (1994)

    Google Scholar 

  26. Grinzato, E., Marinetti, S., Vavilov, V., Bison, P.G.: Nondestructive testing of wooden painting by IR thermography. In: Proc. 8th Europ. Con. NDT, pp. 342–346, Barcelona (2002)

    Google Scholar 

  27. Enno, I.K., Duzhykh, F.P., Melentyev, N.N.: Nondestructive testing of chimneys by using IR thermography. Electricheskiye stanzii (Electrical stations). 6, 23–26 (in Russian) (1988)

    Google Scholar 

  28. Vavilov, V., Demin, V., Shiryaev, V.: Inspecting smokestacks by IR thermographic smokestacks and heat conduction modeling. Proc. SPIE “Thermosense-XXIII”, Orlando, U.S.A., Vol. 4360. pp. 324–332 (2001)

    Google Scholar 

  29. Volkov, E.P., Gavrilov, E.I., Duzhykh, F.P.: Gas-Collecting Chimneys of Thermal and Atomic Power Plants, p. 240. Energoatomizdat Publish, Moscow (1987). (in Russian)

    Google Scholar 

  30. Franchuk, S.V.: Tables of Thermal Properties of Building Materials, p. 264. Energoatomizdat Publish, Moscow (1969). (in Russian)

    Google Scholar 

  31. Kouznetsov, N.V. (ed.): Thermal Analysis of Boilers, p. 320. Energia Publish, Moscow (1973). (in Russian)

    Google Scholar 

  32. The Rules for Technical Exploitation of Electrical Stations in Russian Federation, 15th edn, p. 46 (in Russian). Ed. A. Alexandrov. ORGRES Publish, Moscow (1996)

    Google Scholar 

  33. RD 153–34.0-20.363-99. Management directive. The basics of IR diagnostics of electrical installations and high-voltage transmission lines, 2003 (in Russian)

    Google Scholar 

  34. Bazhanov, S.A.: Infrared Diagnostics of Electrical Facilities and Distribution Lines, p. 76. Electrotechnician Library.//Appendix to “Energetica” Journal, Energoprogress Publish, Moscow (2000). (in Russian)

    Google Scholar 

  35. Madding, R.P., Lyon, B.R.: Wind effects on electrical hot spots-some experimental IR data. Proc. SPIE “Thermosense-XXII”, Vol. 4020, pp. 164–172 (2000)

    Google Scholar 

  36. Madding, R., Leonard, K., Orlove, G.L.: Important measurements that support infrared surveys in substations. InfraMation Proc. 3, 19–25 (2002)

    Google Scholar 

  37. Kaplan, H.: Practical Applications of Infrared Thermal Sensing and Imaging Equipment.-Tutorial Texts in Optical Engineering, vol. TT34, p. 164. SPIE Press (1999)

    Google Scholar 

  38. OST 16.0.800.343–76 (Russian Industrial Standard). Turbo-generators. Testing stator cores

    Google Scholar 

  39. Methodical guidelines on exploitation of contact rings and brush gears of turbogenerators by power 165 MW and higher. # TI 34–70–024-84, Moscow, Russia, Soyuztechnenergo enterprise. 1984 (in Russian)

    Google Scholar 

  40. Khizhnyakov, S.V.: Practical Calculations of Thermal Insulation, 236 P. Russia, Gosenergoizdat Publ, Moscow (1976)

    Google Scholar 

  41. Lanius, M.A.: Infrared applications for steam turbine condenser systems. Proc. SPIE “Thermosense XXII”, Vol. 4020, pp. 107–113 (2000)

    Google Scholar 

  42. Ducar, R.J.: Pulsed thermographic inspection and application in commercial aircraft repair. Proc. SPIE “Thermosense-XXI”, Vol. 3700. pp. 77–83 (1999)

    Google Scholar 

  43. Airbus adopts infrared thermography for in-service inspection. Insight. 36(10), 126 (1994)

    Google Scholar 

  44. Vavilov, V.P., Marinetti, S., Pan, Y., Chulkov, A.: Detecting water ingress in aviation honeycomb panels: qualitative and quantitative aspects. Polym. Test. 54, 270–280 (2016)

    Google Scholar 

  45. Maldague, X., Cielo, P., Poussart, D., Emerson, P.: Thermographic nondestructive evaluation of turbine blades: methods and image processing. Ind. Metrol. 1, 139–153 (1990)

    Google Scholar 

  46. Morozov, G.A.: Development of NDT techniques in aviation. Control Diagn. 7, 3–8 (in Russian) (2002)

    Google Scholar 

  47. Cielo, P.: Pulsed photothermal evaluation of layered materials. J. Appl. Phys. 56, 230–236 (1984)

    Google Scholar 

  48. Cielo, P., Dallaire, S.: Optothermal NDE of thermal-barrier coatings. Proc. ‘85 ASM’s intern. conf. surface modification and coatings, Toronto, Canada, pp. 10–14 (1985, 14–16 Oct)

    Google Scholar 

  49. Maclachlan Spicer, J.W., Kerns, W.D., Aamodt, L.C., Murphy, J.C.: Determination of Degree of Thermal Barrier Coating Disbanding by Time-Resolved IR Radiometry, vol. 10B, pp. 1193–1200. Rev. of Progress in Quant. NDE, Plenum Press, New York (1991)

    Google Scholar 

  50. Maclachlan Spicer, J.W., Kerns, W.D., Aamodt, L.C., Murphy, J.C.: Measurement of coating physical properties and detection of coating disbonds by time-resolved radiometry. J. NDE. 8(2), 107–120 (1989)

    Google Scholar 

  51. Osiander, R., Maclachlan Spicer, J.W., Amos, J.M.: Thermal inspection of SiC/SiC ceramic matrix composites. Proc. SPIE “Thermosense XX”, Vol. 3361, pp. 339–348 (1998)

    Google Scholar 

  52. Lehtiniemi, R., Hartikainen, J., Rantala, J., et al.: Fast Photothermal Inspection of Plasma-Sprayed Coatings of Primary Circulation Seal Rings of a Nuclear Reactor. Part Two: after the Trial Run, vol. 12, pp. 1236–1240. Rev. of Progress in Quant. NDE, Plenum Press, New York (1993)

    Google Scholar 

  53. Varis, J., Hartikainen, J., Lehtiniemi, R., Luukkala, M.: A simple transportable imaging system for fast thermal nondestructive testing. Proc. Quant. IR Thermography-QIRT’92, Paris, France, pp. 235–238 (1992, July 7–9)

    Google Scholar 

  54. Netzelmann, U., Walle, G.: High-speed pulsed thermography of thin metallic coatings. Proc. Quant. IR Thermography-QIRT’2000, Reims, France, pp. 206–211 (2000, July 18–21)

    Google Scholar 

  55. Happlodt, P.G., Ellingson, W.A., Gardiner, T., Krueger, J.: Defect detection in multi-layered plasma sprayed zirconia by time-resolved IR radiometry: a comparison between analytical and experimental methods. Proc. SPIE “Thermosense XVI”, Vol. 2245. pp. 210–219 (1994)

    Google Scholar 

  56. Shepard, S.M., Favro, L.D., Thomas, R.L.:Thermal wave NDT of ceramic coatings. Proc. SPIE “Thermosense XVII”, Vol. 2473. pp. 190–193 (1995)

    Google Scholar 

  57. Bison, P., Marinetti, S., Grinzato, E., et al.: Inspecting thermal barrier coatings by IR thermography. Proc. SPIE “Thermosense XXV”, Vol. 5073, pp. 165–173 (2003)

    Google Scholar 

  58. Vavilov, V.P., Marinetti, S., Cernuschi, F., Roba, D.: Thermal NDT of turbine blade thermal protection coatings. Defectoscopiya (Rus. J. NDT). 7, 74–83 (in Russian) (2005)

    Google Scholar 

  59. Vavilov, V.P., Kasatkin, M.A.: Thermal NDT of heat-resistant nickel-based alloys. Defectoscopy (Rus. J. NDT). 4, 51–54 (in Russian) (1990)

    Google Scholar 

  60. Alcott, J.: An investigation of nondestructive inspection equipment: detecting hidden corrosion on USAF aircraft. Mater. Eval. (5), 64–73 (1994)

    Google Scholar 

  61. DelGrande, N.K., Durbin, P.F.: Dual-band IR imaging to defect corrosion damage within airframes and concrete structures. Proc. SPIE “Thermosense XVI”, Vol. 2245. pp. 202–209 (1994)

    Google Scholar 

  62. Syed, H.I., Winfree, W.P., Cramer, K.E., Howell, P.A.: Thermographic Detection of Corrosion in Aircraft Skin, vol. 12, pp. 724–729. Rev. of Progress in Quant. NDE, Plenum Press, New York (1993)

    Google Scholar 

  63. Zalameda, J., Rajic, N., Winfree, W.P.: A comparison of image processing algorithms for thermal nondestructive evaluation. Proc. SPIE “Thermosense XXV”, Vol. 5073, pp. 374–385 (2003)

    Google Scholar 

  64. Pratt, J.: Detecting hidden exfoliation corrosion in aircraft wing skin using thermography. Proc. SPIE”Thermosense-XXII”, Vol. 4020. pp. 200–209 (2000)

    Google Scholar 

  65. Burleigh, D.: A portable, combined thermography/shearography NDT system for inspecting large composite structures. Proc. SPIE “Thermosense-XXIV”, Vol. 4710, pp. 578–587 (2002)

    Google Scholar 

  66. Delpeche, P., Boscher, D.M., Lepoutre, F., et al.: Quantitative Nondestructive Evaluation of Carbon-Carbon Composites by Pulsed IR Thermography, vol. 12, pp. 672–678. Rev. of Progress in Quant. NDE, Plenum Press, New York (1993)

    Google Scholar 

  67. Burleigh, D., Kuhns, D., Cowell, S., Engel, J.: Thermographic nondestructive testing of honeycomb composite structural parts of Atlas space launch vehicle. Proc. SPIE “Thermosense-“, Vol. 2245, pp. 132–138 (1994)

    Google Scholar 

  68. Storozhenko, V.A., Vavilov, V.P., Volchek, A.D.: Nondestructive Testing of Industrial Products by Using Active Thermal NDT, p. 128. Tekhnika Publish, Kiev (1988). (in Russian)

    Google Scholar 

  69. Kush, D.V., Rapoport, D.A., Budadin, O.N.: Inverse problem of automated thermal NDT. Defectoscopiya (Soviet J. NDT). 5, 64–68 (1988)

    Google Scholar 

  70. Cramer, K.E.: Quantitative thermal imaging of aircraft structures. Proc. SPIE “Thermosense-XVII”, Vol. 2473. pp. 226–232 (1995)

    Google Scholar 

  71. Thompson, K.G., Crisman, E.M.: Thermographic inspection of solid-fuel rocket booster field joint components. Mater. Eval. (48), 1096–1099 (1990)

    Google Scholar 

  72. Welch, C., Eden, T.J.: Numerically Enhanced Thermal Inspection of Shuttle Solid Rocket Motor Inhibitor/Liner/Fuel Bondline, vol. 8B, pp. 2027–2034. Rev. of Progress in Quant. NDE, Plenum Publishing Corp, New York (1989)

    Google Scholar 

  73. Burleigh, D., Engel, J.: NDT of adhesively bonded fixed foam insulation for Atlas/Centaur cryogenic fuel tanks. Proc. 6th NASA NDE Conf., Johnson Space Center, Houston, Texas, pp. 86–94 (1989, May 2)

    Google Scholar 

  74. Burleigh, D.: Thermographic testing used on the X-33 space launch vehicle program by BF Goodrich Aerospace. Proc. SPIE “Thermosense-XXI”, Vol. 3700. pp. 84–92 (1999)

    Google Scholar 

  75. Cramer, K., Winfree, W., Hodges, K. et al.: Status of thermal NDT of space shuttle materials at NASA. Proc. SPIE “Thermosense-XXVIII”. Vol. 6205, pp. 62051B1–9 (2006)

    Google Scholar 

  76. Gazarik, M., Johnson, D., Kist, E., et al.: Development of an extra-vehicular (EVA) infrared (IR) camera inspection system. Proc. SPIE “Thermosense-XXVIII”. Vol. 6205. pp. 62051C1–11 (2006)

    Google Scholar 

  77. Kontsevoy, Y.A., Kudin, V.D.: Inspection Methods in the Production of Semiconductor Devices, p. 140. Energia Publish, Moscow (1973). (in Russian)

    Google Scholar 

  78. Vavilov, V.P.: Thermal NDT of Composite Structures and Radio Electronic Components, p. 162. Radio i Svyaz Publish, Moscow (1984). (in Russian)

    Google Scholar 

  79. Danilin, N.S., Baklanov, O.D., Zagorovski, Y.I.: Theory and Methods of the Infrared Inspection of Radioelectronic Devices, p. 164. USSR Ministry of Defense Publish, Moscow (1974). (in Russian)

    Google Scholar 

  80. Use of Infrared thermography in electronics. https://www.ept.ca/features/use-infrared-thermography-electronics/

  81. Boillot, J.P., Cielo, P., Begin, G., et al.: Adaptive welding by fiber optic thermographic sensing: an analysis of thermal and instrumental considerations. Weld. J. 209–217 (1985)

    Google Scholar 

  82. Bekeshko, N.A., Popov, Y.A.: Evaluation of weld spot joint quality by using IR thermography. Defectoscopiya (Rus. J. NDT). 3, 123–127 (in Russian) (1971)

    Google Scholar 

  83. Bekeshko, N.A., Popov, Y.A.: Evaluation the diameter of weld spot joints by visualizing thermal distributions. Defectoscopiya (Rus. J. NDT). 6, 86–90 (in Russian) (1972)

    Google Scholar 

  84. Vavilov, V.P., Gorbunov, V.I., Kouznetsov, V.B.: Theoretical analysis of thermal NDT of weld spot joints. Defectoscopiya (Rus. J. NDT). 1, 21–27 (in Russian) (1973)

    Google Scholar 

  85. Shepard, S., Chaudry, B., Predmesky, R., Zaluzek, M.: Pulsed thermographic inspection of spot welds. Proc. SPIE “Thermosense-XX”, Vol. 3361, pp. 320–323 (1998)

    Google Scholar 

  86. Jonietz, F., Myrach, P., Suwala, H., Ziegler, M.: Examination of spot welded joints with active thermography. JONE. 35(1), 1–14 (2016)

    Google Scholar 

  87. Bragina, L.A., Vavilov, V.P., Ivanov, A.I., et al.: Evaluation of diffusion welding defects in semiconductor devices by using active thermal NDT. Defectoscopiya (Rus. J. NDT). 5, 69–70 (in Russian) (1983)

    Google Scholar 

  88. Vavilov, V.P., Shiryaev, V.V., Tanaseychuk, S.Y.: Complex approach to designing a thermal NDT system for inspecting soldered joints. Defectoscopiya (Rus. J. NDT). 10, 63–67 (in Russian) (1978)

    Google Scholar 

  89. Denisov, S.S., Volkov Ya, A., Storozhenko, V.A., et al.: A scanning optical head for active thermal NDT. Defectoscopiya (Rus. J. NDT). 6, 116–118 (in Russian) (1975)

    Google Scholar 

  90. Cramer, K.E., Jacobstein, R., Reilly, T.: Boiler tube corrosion characterization with a scanning thermal line. Proc. SPIE “Thermosense XXIII”, Vol. 4360, pp. 594–605 (2001)

    Google Scholar 

  91. Maldague, X.: Pipe inspection by IR thermography: NDT solution. Mater. Eval. 57(9), 899–902 (1999)

    Google Scholar 

  92. Martinez, V.M., Martinez, B.T., Olmeda Gonzalez, P.O., Peralta Uria, R.W.: Fault detection in diesel engines using infrared thermography. Insight. 44(4), 228–232 (2000)

    Google Scholar 

  93. Jones, T.S., Lindgren, E.A.: Thermographic inspection of marine composite structures. Proc. SPIE “Thermosense XVI”, Vol. 2245, pp. 173–175 (1994)

    Google Scholar 

  94. Aleev, R.M., Ovsiannikov, V.A., Chepurski, V.N.: Aerial IR Thermographic Apparatus for the Inspection of Oil Transport Piping, p. 160. Nedra Publish, Moscow (1995). (in Russian)

    Google Scholar 

  95. Ljungberg, S.-A., Jonsson, O.: Passive gas imaging – preliminary results from gas leak simulations: a field study performed during real world conditions. Proc. SPIE “Thermosense XXIV”, Vol. 4710, pp. 468–477 (2002)

    Google Scholar 

  96. Potseluyev, A.A., Arkhangelski, V.V.: Remote Sensing Methods for the Environmental Monitoring (School Book), p. 184. STT Publish, Tomsk (2001). (in Russian)

    Google Scholar 

  97. Hudson, R.D.: Infrared system engineering. Wiley-Interscience, New York (1969)

    Google Scholar 

  98. Accetta, J.S., Shumaker Exec, D.L. (eds.): The Infrared and Electro-Optical Systems Handbook. V. 3 “Electro-Optical Components”, p. 668. ERIM and SPIE Optical Engineering Press, Bellingham/Washington (1993)

    Google Scholar 

  99. Pasechnik, V.I., Anosov, A.A., Barabanenkov, Yu.N. et al.: Determining in-depth temperature in biological objects by using passive acoustical thermotomography. - Proc. Nizhny Novgorod acoustical scientific session, NNGU, 2002, pp. 375–378 (in Russian)

    Google Scholar 

  100. Pavlidis I.T. Lie detection using thermal imaging. // Proc. SPIE “Thermosense-XXVI”, 2004. V. 5405. P. 270–279

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vavilov, V., Burleigh, D. (2020). Applications of Thermal/Infrared NDT. In: Infrared Thermography and Thermal Nondestructive Testing. Springer, Cham. https://doi.org/10.1007/978-3-030-48002-8_11

Download citation

Publish with us

Policies and ethics