Skip to main content

Role of NLRP3 Inflammasomes in Obesity-Induced Cardiovascular Diseases

  • Chapter
  • First Online:
Biochemistry of Cardiovascular Dysfunction in Obesity

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 20))

  • 412 Accesses

Abstract

The prevalence of obesity is increasing at an alarming rate in many countries across the world. This is a significant concern given that obesity is associated with several metabolic complications including cardiovascular diseases such as myocardial infarction, hypertension, atherosclerosis, dyslipidemia, chronic kidney disease, insulin resistance and type 2 diabetes mellitus. The discovery of the NLRP3 (NLR family, pyrin domain containing 3) inflammasome as an intracellular machinery responsible for the activation of inflammation in variety of tissues or organs opened new avenues for treatment of a host of obesity-induced cardiovascular disorders. Here, we summarize our current understanding on how the NLRP3 inflammasome is involved in obesity and associated cardiovascular complications. The modulation of NLRP3 inflammasomes may have a great impact in the development of novel therapeutic modalities in obesity induced cardiovascular diseases. We review various NLRP3 inflammasome-targeted strategies and the evidence supporting the role of the NLRP3 inflammasome in obesity induced cardiovascular complications such as atherosclerosis, hypertension, myocardial infarction and adverse cardiac remodeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Czernichow S, Kengne AP, Stamatakis E et al (2011) Body mass index, waist circumference and waist-hip ratio: which is the better discriminator of cardiovascular disease mortality risk?: evidence from an individual-participant meta-analysis of 82864 participants from nine cohort studies. Obes Rev 12:680–687

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Singh GM, Danaei G, Farzadfar F et al (2013) Global Burden of Metabolic Risk Factors of Chronic Diseases Collaborating G, Asia-Pacific Cohort Studies C, Diabetes Epidemiology: Collaborative analysis of Diagnostic criteria in E, Emerging Risk Factor C, Prospective Studies C: The age-specific quantitative effects of metabolic risk factors on cardiovascular diseases and diabetes: a pooled analysis. PLoS ONE 8:e65174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Van Gaal LF, Mertens IL, De Block CE (2006) Mechanisms linking obesity with cardiovascular disease. Nature 444:875–880

    Article  PubMed  CAS  Google Scholar 

  4. Yusuf S, Hawken S, Ounpuu S et al (2005) Obesity and the risk of myocardial infarction in 27,000 participants from 52 countries: a case-control study. Lancet 366:1640–1649

    Article  PubMed  Google Scholar 

  5. Boini KM, Hussain T, Li PL et al (2017) Trimethylamine-N-oxide instigates NLRP3 inflammasome activation and endothelial dysfunction. Cell Physiol Biochem 44:152–162

    Article  PubMed  Google Scholar 

  6. Chooi YC, Ding C, Magkos F (2019) The epidemiology of obesity. Metabolism 92:6–10

    Article  CAS  PubMed  Google Scholar 

  7. Nammi S, Koka S, Chinnala KM, Boini KM (2004) Obesity: an overview on its current perspectives and treatment options. Nutr J 3:3

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hubert HB, Feinleib M, McNamara PM, Castelli WP (1983) Obesity as an independent risk factor for cardiovascular disease: a 26-year follow-up of participants in the Framingham heart study. Circulation 67:968–977

    Article  CAS  PubMed  Google Scholar 

  9. Ritchie SA, Connell JM (2007) The link between abdominal obesity, metabolic syndrome and cardiovascular disease. Nutr Metab Cardiovasc Dis 17:319–326

    Article  CAS  PubMed  Google Scholar 

  10. Weiss R, Dziura J, Burgert TS et al (2004) Obesity and the metabolic syndrome in children and adolescents. N Engl J Med 350:2362–2374

    Article  CAS  PubMed  Google Scholar 

  11. Yanovski SZ, Yanovski JA (2002) Obesity. N Engl J Med 346:591–602

    Article  CAS  PubMed  Google Scholar 

  12. Mariathasan S, Newton K, Monack DM et al (2004) Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430:213–218

    Article  CAS  PubMed  Google Scholar 

  13. Strowig T, Henao-Mejia J, Elinav E, Flavell R (2012) Inflammasomes in health and disease. Nature 481:278–286

    Article  CAS  PubMed  Google Scholar 

  14. Meylan E, Tschopp J, Karin M (2006) Intracellular pattern recognition receptors in the host response. Nature 442:39–44

    Article  CAS  PubMed  Google Scholar 

  15. Pedra JH, Cassel SL, Sutterwala FS (2009) Sensing pathogens and danger signals by the inflammasome. Curr Opin Immunol 21:10–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhong Y, Kinio A, Saleh M (2013) Functions of NOD-like receptors in human diseases. Front Immunol 4:333

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Davis BK, Wen H, Ting JP (2011) The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu Rev Immunol 29:707–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Broz P, Dixit VM (2016) Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol 16:407–420

    Article  CAS  PubMed  Google Scholar 

  19. Duewell P, Kono H, Rayner KJ et al (2010) NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464:1357–1361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Halle A, Hornung V, Petzold GC et al (2008) The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat Immunol 9:857–865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Martinon F, Petrilli V, Mayor AT et al (2006) Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440:237–241

    Google Scholar 

  22. Zhou R, Tardivel A, Thorens B et al (2010) Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol 11:136–140

    Article  CAS  PubMed  Google Scholar 

  23. Latz E, Xiao TS, Stutz A (2013) Activation and regulation of the inflammasomes. Nat Rev Immunol 13:397–411

    Article  CAS  PubMed  Google Scholar 

  24. Schroder K, Tschopp J (2010) The inflammasomes 140:821–832

    Google Scholar 

  25. Schroder K, Zhou R, Tschopp J (2010) The NLRP3 inflammasome: a sensor for metabolic danger? Science 327:296–300

    Article  CAS  PubMed  Google Scholar 

  26. Stienstra R, Tack CJ, Kanneganti TD et al (2012) The inflammasome puts obesity in the danger zone. Cell Metab 15:10–18

    Article  CAS  PubMed  Google Scholar 

  27. Lee HM, Kim JJ, Kim HJ et al (2013) Upregulated NLRP3 inflammasome activation in patients with type 2 diabetes. Diabetes 62:194–204

    Article  CAS  PubMed  Google Scholar 

  28. Vandanmagsar B, Youm YH, Ravussin A et al (2011) The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat Med 17:179–188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Traba J, Sack MN (2017) The role of caloric load and mitochondrial homeostasis in the regulation of the NLRP3 inflammasome. Cell Mol Life Sci 74:1777–1791

    Article  CAS  PubMed  Google Scholar 

  30. Kursawe R, Dixit VD, Scherer PE et al (2016) A role of the inflammasome in the low storage capacity of the abdominal subcutaneous adipose tissue in obese adolescents. Diabetes 65:610–618

    Article  CAS  PubMed  Google Scholar 

  31. Mocanu AO, Mulya A, Huang H et al (2015) Effect of Roux-en-Y gastric bypass on the NLRP3 inflammasome in adipose tissue from obese rats. PLoS ONE 10:e0139764

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Nagareddy PR, Kraakman M, Masters SL et al (2014) Adipose tissue macrophages promote myelopoiesis and monocytosis in obesity. Cell Metab 19:821–835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Esser N, L’Homme L, De Roover A et al (2013) Obesity phenotype is related to NLRP3 inflammasome activity and immunological profile of visceral adipose tissue. Diabetologia 56:2487–2497

    Article  CAS  PubMed  Google Scholar 

  34. Elliott EI, Sutterwala FS (2015) Initiation and perpetuation of NLRP3 inflammasome activation and assembly. Immunol Rev 265:35–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Stutz A, Kolbe CC, Stahl R et al (2017) NLRP3 inflammasome assembly is regulated by phosphorylation of the pyrin domain. J Exp Med 214:1725–1736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Martinon F (2010) Signaling by ROS drives inflammasome activation. Eur J Immunol 40:616–619

    Article  CAS  PubMed  Google Scholar 

  37. Won JH, Park S, Hong S et al (2015) Rotenone-induced impairment of mitochondrial electron transport chain confers a selective priming signal for NLRP3 inflammasome activation. J Biol Chem 290:27425–27437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhou R, Yazdi AS, Menu P, Tschopp J (2011) A role for mitochondria in NLRP3 inflammasome activation. Nature 469:221–225

    Article  CAS  PubMed  Google Scholar 

  39. Abais JM, Xia M, Li G et al (2014) Nod-like receptor protein 3 (NLRP3) inflammasome activation and podocyte injury via thioredoxin-interacting protein (TXNIP) during hyperhomocysteinemia. J Biol Chem 289:27159–27168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Petrilli V, Papin S, Dostert C et al (2007) Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death Differ 14:1583–1589

    Article  CAS  PubMed  Google Scholar 

  41. Hornung V, Bauernfeind F, Halle A et al (2008) Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol 9:847–856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Stienstra R, van Diepen JA, Tack CJ et al (2011) Inflammasome is a central player in the induction of obesity and insulin resistance. Proc Natl Acad Sci U S A 108:15324–15329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wen H, Gris D, Lei Y et al (2011) Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat Immunol 12:408–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Stienstra R, Joosten LA, Koenen T et al (2010) The inflammasome-mediated caspase-1 activation controls adipocyte differentiation and insulin sensitivity. Cell Metab 12:593–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Boini KM, Xia M, Koka S et al (2017) Sphingolipids in obesity and related complications. Front Biosci (Landmark Ed) 22:96–116

    Article  CAS  Google Scholar 

  46. Trayhurn P, Wood IS (2005) Signalling role of adipose tissue: adipokines and inflammation in obesity. Biochem Soc Trans 33:1078–1081

    Article  CAS  PubMed  Google Scholar 

  47. Lyon CJ, Law RE, Hsueh WA (2003) Minireview: adiposity, inflammation, and atherogenesis. Endocrinology 144:2195–2200

    Article  CAS  PubMed  Google Scholar 

  48. Membrez M, Ammon-Zufferey C, Philippe D et al (2009) Interleukin-18 protein level is upregulated in adipose tissue of obese mice. Obesity (Silver Spring) 17:393–395

    Article  CAS  Google Scholar 

  49. Kizer JR (2014) Adiponectin, cardiovascular disease, and mortality: parsing the dual prognostic implications of a complex adipokine. Metabolism 63:1079–1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dinarello CA (2009) Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol 27:519–550

    Article  CAS  PubMed  Google Scholar 

  51. Feve B, Bastard JP (2009) The role of interleukins in insulin resistance and type 2 diabetes mellitus. Nat Rev Endocrinol 5:305–311

    Article  CAS  PubMed  Google Scholar 

  52. Odegaard JI, Chawla A (2008) Mechanisms of macrophage activation in obesity-induced insulin resistance. Nat Clin Pract Endocrinol Metab 4:619–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. De Nardo D, Latz E (2011) NLRP3 inflammasomes link inflammation and metabolic disease. Trends Immunol 32:373–379

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Lu X, Kakkar V (2014) Inflammasome and atherogenesis. Curr Pharm Des 20:108–124

    Article  PubMed  CAS  Google Scholar 

  55. Yajima N, Takahashi M, Morimoto H et al (2008) Critical role of bone marrow apoptosis-associated speck-like protein, an inflammasome adaptor molecule, in neointimal formation after vascular injury in mice. Circulation 117:3079–3087

    Article  CAS  PubMed  Google Scholar 

  56. Rajamaki K, Lappalainen J, Oorni K et al (2010) Cholesterol crystals activate the NLRP3 inflammasome in human macrophages: a novel link between cholesterol metabolism and inflammation. PLoS ONE 5:e11765

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Freigang S, Ampenberger F, Spohn G et al (2011) Nrf2 is essential for cholesterol crystal-induced inflammasome activation and exacerbation of atherosclerosis. Eur J Immunol 41:2040–2051

    Article  CAS  PubMed  Google Scholar 

  58. Wang R, Wang Y, Mu N et al (2017) Activation of NLRP3 inflammasomes contributes to hyperhomocysteinemia-aggravated inflammation and atherosclerosis in apoE-deficient mice. Lab Invest 97:922–934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zheng F, Xing S, Gong Z, Xing Q (2013) NLRP3 inflammasomes show high expression in aorta of patients with atherosclerosis. Heart Lung Circ 22:746–750

    Article  PubMed  Google Scholar 

  60. Paramel Varghese G, Folkersen L et al (2016) NLRP3 inflammasome expression and activation in human atherosclerosis. J Am Heart Assoc 5:e003031

    Article  PubMed  PubMed Central  Google Scholar 

  61. Ding Z, Liu S, Wang X, Dai Y et al (2014) LOX-1, mtDNA damage, and NLRP3 inflammasome activation in macrophages: implications in atherogenesis. Cardiovasc Res 103:619–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Abderrazak A, Syrovets T, Couchie D et al (2015) NLRP3 inflammasome: from a danger signal sensor to a regulatory node of oxidative stress and inflammatory diseases. Redox Biol 4:296–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Din-Dzietham R, Liu Y, Bielo MV, Shamsa F (2007) High blood pressure trends in children and adolescents in national surveys, 1963 to 2002. Circulation 116:1488–1496

    Article  PubMed  Google Scholar 

  64. Krishnan SM, Sobey CG, Latz E et al (2014) IL-1beta and IL-18: inflammatory markers or mediators of hypertension? Br J Pharmacol 171:5589–5602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yu XJ, Zhang DM, Jia LL et al (2015) Inhibition of NF-kappaB activity in the hypothalamic paraventricular nucleus attenuates hypertension and cardiac hypertrophy by modulating cytokines and attenuating oxidative stress. Toxicol Appl Pharmacol 284:315–322

    Article  CAS  PubMed  Google Scholar 

  66. Qi J, Yu XJ, Shi XL et al (2016) NF-kappaB blockade in hypothalamic paraventricular nucleus inhibits high-salt-induced hypertension through NLRP3 and caspase-1. Cardiovasc Toxicol 16:345–354

    Article  CAS  PubMed  Google Scholar 

  67. Qi J, Zhao XF, Yu XJ et al (2016) Targeting interleukin-1 beta to suppress sympathoexcitation in hypothalamic paraventricular nucleus in Dahl salt-sensitive hypertensive rats. Cardiovasc Toxicol 16:298–306

    Article  CAS  PubMed  Google Scholar 

  68. Gan W, Ren J, Li T et al (1864) The SGK1 inhibitor EMD638683, prevents Angiotensin II-induced cardiac inflammation and fibrosis by blocking NLRP3 inflammasome activation. Biochim Biophys Acta Mol Basis Dis 1–10:2018

    Google Scholar 

  69. Frangogiannis NG (2014) The inflammatory response in myocardial injury, repair, and remodelling. Nat Rev Cardiol 11:255–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mastrocola R, Collino M, Penna C et al (2016) Maladaptive modulations of NLRP3 inflammasome and cardioprotective pathways are involved in diet-induced exacerbation of myocardial ischemia/reperfusion injury in mice. Oxid Med Cell Longev 2016:3480637

    PubMed  Google Scholar 

  71. Marchetti C, Chojnacki J, Toldo S et al (2014) A novel pharmacologic inhibitor of the NLRP3 inflammasome limits myocardial injury after ischemia-reperfusion in the mouse. J Cardiovasc Pharmacol 63:316–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sandanger O, Ranheim T, Vinge LE et al (2013) The NLRP3 inflammasome is up-regulated in cardiac fibroblasts and mediates myocardial ischaemia-reperfusion injury. Cardiovasc Res 99:164–174

    Article  CAS  PubMed  Google Scholar 

  73. Liu Y, Lian K, Zhang L et al (2014) TXNIP mediates NLRP3 inflammasome activation in cardiac microvascular endothelial cells as a novel mechanism in myocardial ischemia/reperfusion injury. Basic Res Cardiol 109:415

    Article  PubMed  CAS  Google Scholar 

  74. Sutton MG, Sharpe N (2000) Left ventricular remodeling after myocardial infarction: pathophysiology and therapy. Circulation 101:2981–2988

    Article  CAS  PubMed  Google Scholar 

  75. Li L, Wang X, Chen W et al (2015) Regulatory role of CARD3 in left ventricular remodelling and dysfunction after myocardial infarction. Basic Res Cardiol 110:56

    Article  PubMed  CAS  Google Scholar 

  76. Cassel SL, Sutterwala FS (2010) Sterile inflammatory responses mediated by the NLRP3 inflammasome. Eur J Immunol 40:607–611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from American Heart Association [19AIREA34380223], National Institutes of Health [1R56HL143809-01A1] to S.K and National Institutes of Health [DK104031] to K.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saisudha Koka .

Editor information

Editors and Affiliations

Ethics declarations

The authors of this manuscript declare that they have no conflicts of interests.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Boini, K.M., Li, PL., Koka, S. (2020). Role of NLRP3 Inflammasomes in Obesity-Induced Cardiovascular Diseases. In: Tappia, P.S., Bhullar, S.K., Dhalla, N.S. (eds) Biochemistry of Cardiovascular Dysfunction in Obesity. Advances in Biochemistry in Health and Disease, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-030-47336-5_5

Download citation

Publish with us

Policies and ethics