Skip to main content

Forensic Geophysical Data Processing and Interpretation

  • Chapter
  • First Online:
Advances in Geophysical Methods Applied to Forensic Investigations

Abstract

Processing and interpretation of geophysical data determine the success or failure of an investigation in the forensic sciences. Furthermore to help data processing and interpretation is advisable the integration with other data (i.e., data from one or more geophysical techniques, investigators data, geological data, archaeological data, structural data, etc.). In this chapter will be discussed the methodologies and associated mathematical and physical parameters related to the processing of the geophysical data that can help in the resolution of forensic problems such as to individuate the presence of hidden objects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelrahman, E. M., Saber, H. S., Essa, K. S., & Fouda, M. A. (2004). A least-squares approach to depth determination from numerical horizontal self-potential gradients. Pure and Applied Geophysics, 161, 399–411. https://doi.org/10.1007/s00024-003-2446-5.

    Article  Google Scholar 

  • Abdelrahman, E. M., & Sharafeldin, S. M. (1997). A least-squares approach to depth determination from residual self-potential anomalies caused by horizontal cylinders and spheres. Geophysics, 62, 44–48. https://doi.org/10.1190/1.1444143.

    Article  Google Scholar 

  • Annan, A. P. (2005). Ground-penetrating radar. In D. K. Butler (Ed.), Near surface geophysics (Vol. 13, pp. 357–438). Society of exploration geophysicists: Tulsa, Investigations in Geophysics.

    Google Scholar 

  • Asfahani, J., & Tlas, M. (2005). A constrained nonlinear inversion approach to quantitative interpretation of self-potential anomalies caused by cylinders, spheres and sheet-like structures. Pure and Applied Geophysics, 162, 609–624.

    Google Scholar 

  • Baker, J. M., & Allmaras, R. R. (1990). System for automating and multiplexing soil moisture measurement by time-domain reflectometry. Soil Science Society of America Journal, 54, 1–6. https://doi.org/10.2136/sssaj1990.03615995005400010001x.

    Article  Google Scholar 

  • Barnett, V., & Lewis, T. (1984). Outliers in statistical data. New York: Wiley.

    Google Scholar 

  • Bazán, F. S. V. (2008). Fixed-point iterations in determining the Tikhonov regularization parameter. Inverse Problems, 24, 035001. 15 pp.

    Article  Google Scholar 

  • Becker, H. (1995). From nanotesla to picotesla—A new window for magnetic prospecting in archaeology. Archaeological Prospection, 2, 217–228.

    Google Scholar 

  • Cassidy, N. J. (2009). Ground penetrating radar data processing, modelling and analysis. In H. M. Jol (Ed.), Ground penetrating radar: Theory and applications (pp. 141–176). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Ciminale, M., & Loddo, M. (2001). Aspects of magnetic data processing archaeological prospection. Archaeological Prospection, 8, 239–246.

    Article  Google Scholar 

  • Claerbout, J. F., & Muir, F. (1973). Robust modeling with erratic data. Geophysics, 38, 826–844.

    Article  Google Scholar 

  • Clark, D. A., & Emerson, D. W. (1991). Notes on rock magnetization characteristics in applied geophysical studies. Exploration Geophysics, 22(3), 547–555.

    Article  Google Scholar 

  • Constable, S. C., Parker, R. L., & Constable, C. G. (1987). Occam’s inversion: A practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics, 52, 289–300.

    Article  Google Scholar 

  • Conyers, L. B. (2015a). Analysis and interpretation of GPR datasets for integrated archaeological mapping. Near Surface Geophysics, 13, 645–651.

    Article  Google Scholar 

  • Conyers, L. B. (2015b). Multiple GPR datasets for integrated archaeological mapping. Journal of Near Surface Geophysics, 13(3).

    Google Scholar 

  • Dalton, F. N., & van Genuchten, M Th. (1986). The time-domain reflectometry method for measuring soil water content and salinity. Geoderma, 38, 237–250.

    Article  Google Scholar 

  • Day-Lewis, F. D., Chen, Y., & Singha, K. (2007). Moment inference from tomograms. Geophysical Research Letters, 34, L22404. https://doi.org/10.1029/2007gl031621, 6 p.

  • Day-Lewis, F. D., Singha, K., & Binley, A. M. (2005). Applying petrophysical models to radar traveltime and electrical resistivity tomograms—Resolution-dependent limitations. Journal of Geophysical Research, 110, B08206. https://doi.org/10.1029/2004jb005369, 17 p. 37.

  • de Groot-Hedlin, C., & Constable, S. (1990). Occam’s inversion to generate smooth, two dimensional models from magnetotelluric data. Geophysics, 55(12), 1613–1624.

    Article  Google Scholar 

  • Dijkstra, E. W. (1995). A note on two problems in connection with graphs. Numeriskche Mathematik, 1, 269–271.

    Article  Google Scholar 

  • Dines, K., & Lytle, J. R. (1979). Computerized geophysical tomography. In Proceedings of the IEEE (Vol. 67, No. 7), Luglio.

    Google Scholar 

  • Drahor, M. G. (2004). Application of the self‐potential method to archaeological prospection: Some case histories. Archaeological Prospection, 11(2), 77–105.

    Google Scholar 

  • Eder-Hinterleinter, A., Neubauer, W., & Melichar, P. (1996). Restoring magnetic anomalies. Archaeological Prospection, 3, 185–197.

    Article  Google Scholar 

  • El-Araby, H. M. (2004). A new method for complete quantitative interpretation of self-potential anomalies. Journal of Applied Geophysics, 55, 211–224. https://doi.org/10.1016/j.jappgeo.2003.11.002.

    Article  Google Scholar 

  • Essa, K., Mehanee, S., & Smith, P. D. (2008). A new inversion algorithm for estimating the best fitting parameters of some geometrically simple body to measured self-potential anomalies. Exploration Geophysics, 39, 155–163.

    Article  Google Scholar 

  • Evett, S. R. (2000). The TACQ computer program for automatic time domain reflectometry measurements: II. Waveform interpretation methods. Transactions of the ASAE, 43, 1947–1956. https://doi.org/10.13031/2013.3100.

    Article  Google Scholar 

  • Fedi, M., & Abbas, M. (2013). A fast interpretation of self-potential data using the depth from extreme points method. Geophysics, 78(2), E107–E116. https://doi.org/10.1190/geo2012-0074.1.

    Article  Google Scholar 

  • Fitterman, D. V., & Corwin, R. F. (1982). Inversion of self-potential data from the Cerro Prieto geothermal field, Mexico. Geophysics, 47, 938–945.

    Google Scholar 

  • Goodman, D. (2013). GPR sim manual. http://www.gprsurvey.com/. Accessed June 2013.

  • Gouveia, W. P., & Scales, J. A. (1997). Resolution of seismic waveform inversion–Bayes versus Occam. Inverse Problems, 13, 322–349.

    Article  Google Scholar 

  • Grant, F. S., & West, G. F. (1965). Interpretation theory in applied geophysics. New York: McGraw-Hill.

    Google Scholar 

  • Hammer, S. (1965). Terrain corrections for gravimeter stations. Geophysics, 4, 184–194.

    Article  Google Scholar 

  • Hansen, P. C. (2001). The L-curve and its use in the numerical treatment of inverse problems. In P. Johnston (Ed.), Computational inverse problems in electrocardiology (pp. 119–142). Southampton: WIT Press. (invited chapter).

    Google Scholar 

  • Hawkins, D. M. (1980). Identification of outliers. New York: Chapman and Hall.

    Book  Google Scholar 

  • Kitanidis, P. K. (1997). The minimum structure solution to the inverse problem. Water Resources Research, 33(10), 2263–2272.

    Article  Google Scholar 

  • Leucci, G. (2015). Geofisica Applicata all’Archeologia e ai Beni Monumentali (p. 368). Palermo: Dario Flaccovio Editore. ISBN: 9788857905068.

    Google Scholar 

  • Leucci, G. (2019). Nondestructive testing for archaeology and cultural heritage: A practical guide and new perspectives. Springer International Publishing.

    Google Scholar 

  • Leucci, G., & De Giorgi, L. (2015). 2D AND 3D seismic measurements to evaluate the collapse risk of cave in soft carbonate rock. Central European Journal of Geosciences, 7(1), 84–94. https://doi.org/10.1515/geo-2015-0006.

    Article  Google Scholar 

  • Leucci, G., De Giorgi, L., & Scardozzi, G. (2014). Geophysical prospecting and remote sensing for the study of the San Rossore area in Pisa (Tuscany, Italy). Journal of Archaeological Science, 52, 256–276. https://doi.org/10.1016/j.jas.2014.08.028.

    Article  Google Scholar 

  • Leucci, G., Greco, F., De Giorgi, L., & Mauceri, R. (2007). Three-dimensional image of seismic refraction tomography and electrical resistivity tomography survey in the castle of Occhiola (Sicily, Italy). Journal of Archaeological Science, 34, 233–242. https://doi.org/10.1016/j.jas.2006.04.010.

    Article  Google Scholar 

  • Longman, I. M. (1959). Formulas for computing the tidal accelerations due to the Moon and the Sun. Journal Geophysical Research, 64(12), 2351–2355. https://doi.org/10.1029/JZ064i012p02351.

    Article  Google Scholar 

  • Menke, W. (1989). Geophysical data analysis: Discrete inverse theory. International Geophysics Series (Vol. 45, 1989). Academic Press.

    Google Scholar 

  • Monteiro Santos, F. A. (2010). Inversion of self-potential of idealized bodies anomalies using particle swarm optimization. Computers & Geosciences, 36, 1185–1190.

    Article  Google Scholar 

  • Musset, A. E., & Khan, M. A. (2000). Looking into the Earth. New York, USA: Cambridge University Press.

    Book  Google Scholar 

  • Nettleton, L. L. (1976). Gravity and magnetics in oil prospecting (2nd ed). New York: McGraw-Hill, Publishing Co.

    Google Scholar 

  • Nolet, G. (1987). Seismic tomography with applications in global seismology and exploration geophysics. D. Reidel Publishing Company.

    Google Scholar 

  • Nuzzo, L., Leucci, G., Negri, S., Carrozzo, M. T., & Quarta, T. (2002). Application of 3d visualization techniques in the analysis of GPR data for archaeology. Annals of Geophysics, 45(2), 321–337.

    Google Scholar 

  • Or, D., Jones, S. B., Van Shaar, J. R., Humphries, S., & Koberstein, L. (2004). User’s guide WinTDR. Version 6.1. Utah State University, Logan. http://www.usu.edu/soilphysics/wintdr/documentation.cfm.

  • Patella, D. (1997). Self‐potential global tomography including topographic effects. Geophysical Prospecting, 843–863.

    Google Scholar 

  • Reginska, T. (1996). A regularization parameter in discrete ill-posed problems. SIAM Journal on Scientific Computing, 3, 740–749.

    Article  Google Scholar 

  • Revil, A., Ehouarne, L., & Thyreault, E. (2001). Tomography of self-potential anomalies of electrochemical nature. Geophysical Research Letters, 28, 4363–4366.

    Article  Google Scholar 

  • Sandmeier, K. J. (2013). Reflexw 7.0 manual. Karlsruhe: Sandmeier Software.

    Google Scholar 

  • Sasaki, Y. (1992). Resolution of resistivity tomography inferred from numerical simulation. Geophysical Prospecting, 40, 453–464.

    Article  Google Scholar 

  • Schwartz, R. C., Casanova, J. J., Bell, J. M., & Evett, S. R. (2013). A reevaluation of time domain reflectometry propagation time determination in soils. Vadose Zone Jounal, 13, 1–13. https://doi.org/10.2136/vzj2013.07.0135.

    Article  Google Scholar 

  • Scollar, I., Tabbagh, A., Hesse, A., & Herzog, I. (1990). Archaeological prospecting and remote sensing. Cambridge: Cambridge University Press.

    Google Scholar 

  • Tarantola, A. (1987a). Inverse problem theory and methods for data fitting and model parameter estimation (613 p.). Amsterdam: Elsevier.

    Google Scholar 

  • Tarantola, A. (1987b). Inverse problem theory (613 pp.). Elsevier, New York.

    Google Scholar 

  • Telford, W. M., Geldart, L. P., & Sheriff, R. E. (1990). Applied geophysics. New York: Cambridge University Press.

    Book  Google Scholar 

  • Tikhonov, A. N., & Arsenin, V. Y. (1977a). Solutions of ill-posed problems. Washington DC: Winston and Sons.

    Google Scholar 

  • Tikhonov, A. N., & Arsenin, V. Y. (1977b). Solutions of ill-posed problems. New York: Wiley.

    Google Scholar 

  • Tikhonov, A. N., Leonov, A. S., Yagola, A. G. (1998). Nonlinear ill-posed problems (Vols. 1 and 2). London: Chapman and Hall.

    Google Scholar 

  • Topp, G. C., Davis, J. L., & Annan, A. P. (1980). Electromagnetic determination of soil water content: measurements in coaxial transmission lines. Water Resources Research, 16(3), 574–582.

    Article  Google Scholar 

  • Topp, G. C., Yanuka, M., Zebchuk, W. D., & Zegelin, S. (1988). Determination of electrical conductivity using time domain reflectometry: Soil and water experiments in coaxial lines. Water Resources Research, 24, 939–944.

    Article  Google Scholar 

  • Tripp, A. C., Hohmann, G. W., & Swift, C. M., Jr. (1984). Two-dimensional resistivity inversion. Geophysics, 49(10), 1708–1717.

    Article  Google Scholar 

  • Vasco, D. W., Datta-Gupta, A., & Long, J. C. S. (1997). Resolution and uncertainty in hydrologic characterization. Water Resources Research, 33(3), 379–397.

    Article  Google Scholar 

  • Yanuka, M., Topp, G. C., Zegelin, S., & Zebchuk, W. D. (1988). Multiple reflection and attenuation of time domain reflectometry pulses: Theoretical considerations for applications to soil and water. Water Resources Research, 24, 945–952.

    Article  Google Scholar 

  • Yungul, S. (1950). Interpretation of spontaneous-polarization anomalies caused by spherical ore bodies. Geophysics, 15, 237–246.

    Google Scholar 

  • Zhdanov, M. S. (2002). Geophysical inversion theory and regularization problems. Amsterdam: Elsevier.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Leucci .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Leucci, G. (2020). Forensic Geophysical Data Processing and Interpretation. In: Advances in Geophysical Methods Applied to Forensic Investigations. Springer, Cham. https://doi.org/10.1007/978-3-030-46242-0_4

Download citation

Publish with us

Policies and ethics