Skip to main content

Efficient Resource Discovery and Sharing Framework for Fog Computing in Healthcare 4.0

  • Chapter
  • First Online:
Fog Computing for Healthcare 4.0 Environments

Part of the book series: Signals and Communication Technology ((SCT))

Abstract

Nowadays, healthcare industry is leveraging the technical innovations for providing better facilities to the patients. A number of high quality medical devices are available to record a patient’s health based on numerous parameters. Such sensor-based health monitoring devices generate high volume of data which is analyzed to provide the appropriate treatment. Such monitoring requires the storage and analysis of data on a remote cloud. Though cloud-based services provide efficient storage, they suffer from the delays incurred while sending the data and retrieving the analysis. Fog computing has proven to be an efficient solution to this problem. A fog node can be considered as an edge node, network device, healthcare equipment, etc., having a limited computation power. These devices are located in proximity to the sensor nodes. Fog nodes can be used to perform data analysis in a distributed manner without adding network delay. However, without any proper infrastructure, it is difficult to identify a fog node having sufficient resources to analyze a set of data. This problem can be addressed by using publish/subscribe paradigm over distributed hash tables (DHTs). Publish/subscribe system provides an event triggered approach which can be used to identify a fog node capable to service a data processing request. Further, a DHT is a peer-to-peer overlay network which is used for efficient resource sharing among the peer nodes. In this chapter, a DHT-based peer-to-peer network of fog nodes is proposed. The objective of the proposed networking infrastructure is to create an overlay of physical fog nodes to provide efficient resource discovery. It is achieved by using publish/subscribe communication and peer-to-peer overlays enabling the nodes to share their computation capabilities with each other.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aekaterinidis, I., & Triantafillou, P. (2006). Pastrystrings: A comprehensive content-based publish/subscribe DHT network. In International Conference on Distributed Computing Systems (vol. 6, p. 23)

    Google Scholar 

  2. Atlam, H., Walters, R., & Wills, G. (2018). Fog computing and the internet of things: A review. Big Data and Cognitive Computing, 2(2), 10.

    Article  Google Scholar 

  3. Bonomi, F., Milito, R., Zhu, J., & Addepalli, S. (2012). Fog computing and its role in the internet of things. In Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing (pp. 13–16). New York: ACM.

    Chapter  Google Scholar 

  4. Buford, J. F., & Yu, H. (2010). Peer-to-peer networking and applications: synopsis and research directions. In Handbook of peer-to-peer networking (pp. 3–45). Berlin: Springer.

    Chapter  Google Scholar 

  5. Cao, Y., Chen, S., Hou, P., & Brown, D. (2015). Fast: A fog computing assisted distributed analytics system to monitor fall for stroke mitigation. In 2015 IEEE International Conference on Networking, Architecture and Storage (NAS) (pp. 2–11). Piscataway: IEEE.

    Chapter  Google Scholar 

  6. Carlsson, B., Gustavsson, R. (2001). The rise and fall of napster-an evolutionary approach. In International Computer Science Conference on Active Media Technology (pp. 347–354). Berlin: Springer.

    Google Scholar 

  7. Eugster, P. T., Felber, P. A., Guerraoui, R., & Kermarrec, A. M. (2003). The many faces of publish/subscribe. ACM Computing Surveys (CSUR), 35(2), 114–131.

    Article  Google Scholar 

  8. Gia, T. N., Jiang, M., Rahmani, A. M., Westerlund, T., Liljeberg, P., & Tenhunen, H. (2015). Fog computing in healthcare internet of things: A case study on ECG feature extraction. In 2015 IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing (pp. 356–363). Piscataway: IEEE.

    Chapter  Google Scholar 

  9. Gupta, A., Sahin, O. D., Agrawal, D., & Abbadi, A. E. (2004). Meghdoot: Content-based publish/subscribe over p2p networks. In Proceedings of the 5th ACM/IFIP/USENIX International Conference on Middleware (pp. 254–273). New York: Springer.

    Google Scholar 

  10. Gupta, H., Vahid Dastjerdi, A., Ghosh, S. K., & Buyya, R. (2017). iFogSim: A toolkit for modeling and simulation of resource management techniques in the internet of things, edge and fog computing environments. Software: Practice and Experience, 47(9), 1275–1296.

    Google Scholar 

  11. Hao, Z., Novak, E., Yi, S., & Li, Q.: Challenges and software architecture for fog computing. IEEE Internet Computing, 21(2), 44–53 (2017)

    Article  Google Scholar 

  12. Hathaliya, J. J., Tanwar, S., Tyagi, S., & Kumar, N. (2019). Securing electronics healthcare records in healthcare 4.0: A biometric-based approach. Computers & Electrical Engineering, 76, 398–410.

    Article  Google Scholar 

  13. Kraemer, F. A., Braten, A. E., Tamkittikhun, N., & Palma, D. (2017). Fog computing in healthcare–a review and discussion. IEEE Access, 5, 9206–9222.

    Article  Google Scholar 

  14. Kumari, A., Tanwar, S., Tyagi, S., & Kumar, N. (2018). Fog computing for healthcare 4.0 environment: Opportunities and challenges. Computers & Electrical Engineering, 72, 1–13.

    Article  Google Scholar 

  15. Kumari, A., Tanwar, S., Tyagi, S., Kumar, N., Parizi, R. M., & Choo, K. K. R. (2019). Fog data analytics: A taxonomy and process model. Journal of Network and Computer Applications, 128, 90–104.

    Article  Google Scholar 

  16. Liang, J., Kumar, R., & Ross, K. (2004). The kazaa overlay: A measurement study. In: Proceedings of the 19th IEEE Annual Computer Communications Workshop (pp. 17–20). Citeseer.

    Google Scholar 

  17. Liu, Y., Fieldsend, J. E., & Min, G. (2017). A framework of fog computing: Architecture, challenges, and optimization. IEEE Access, 5, 25445–25454.

    Article  Google Scholar 

  18. Mehmood, M., Javaid, N., Akram, J., Abbasi, S. H., Rahman, A., & Saeed, F. (2018). Efficient resource distribution in cloud and fog computing. In International Conference on Network-Based Information Systems (pp. 209–221). Berlin: Springer.

    Google Scholar 

  19. Naha, R. K., Garg, S., Georgakopoulos, D., Jayaraman, P. P., Gao, L., Xiang, Y., et al. (2018). Fog computing: Survey of trends, architectures, requirements, and research directions. IEEE Access, 6, 47980–48009.

    Article  Google Scholar 

  20. Paul, A., Pinjari, H., Hong, W. H., Seo, H. C., & Rho, S. (2018). Fog computing-based IoT for health monitoring system. Journal of Sensors, 2018. Article ID 1386470.

    Google Scholar 

  21. Pietzuch, P. R., & Bacon, J. M. (2002). Hermes: A distributed event-based middleware architecture. In Proceedings of the 22nd International Conference on Distributed Computing Systems Workshops, 2002 (pp. 611–618). Piscataway: IEEE.

    Google Scholar 

  22. Prasad, V. K., Bhavsar, M. D., & Tanwar, S. (2019). Influence of monitoring: Fog and edge computing. Scalable Computing: Practice and Experience, 20(2), 365–376.

    Google Scholar 

  23. Ratnasamy, S., Francis, P., Handley, M., Karp, R., & Shenker, S. (2001). A scalable content-addressable network (vol. 31). New York: ACM.

    MATH  Google Scholar 

  24. Ripeanu, M. (2001). Peer-to-peer architecture case study: Gnutella network. In Proceedings of the First International Conference on Peer-to-Peer Computing, 2001 (pp. 99–100). Piscataway: IEEE.

    Google Scholar 

  25. Rowstron, A., & Druschel, P. (2001). Pastry: Scalable, decentralized object location, and routing for large-scale peer-to-peer systems. In IFIP/ACM International Conference on Distributed Systems Platforms and Open Distributed Processing (pp. 329–350). Berlin: Springer.

    MATH  Google Scholar 

  26. Rowstron, A., Kermarrec, A. M., Castro, M., & Druschel, P. (2001). Scribe: The design of a large-scale event notification infrastructure. In International workshop on networked group communication (pp. 30–43). Berlin: Springer.

    Chapter  Google Scholar 

  27. Shen, G., Yanga, M., & Zhang, B. (2018). Ballistocardiogram-based heart rate variation monitoring using unsupervised. In Transdisciplinary Engineering Methods for Social Innovation of Industry 4.0. Proceedings of the 25th ISPE Inc. International Conference on Transdisciplinary Engineering, July 3–6 (vol. 7, p. 320). IOS Press, Amsterdam.

    Google Scholar 

  28. Stoica, I., Morris, R., Karger, D., Kaashoek, M. F., & Balakrishnan, H. (2001). Chord: A scalable peer-to-peer lookup service for internet applications. ACM SIGCOMM Computer Communication Review, 31(4), 149–160.

    Article  Google Scholar 

  29. Tanwar, S., Vora, J., Kaneriya, S., & Tyagi, S. (2017). Fog-based enhanced safety management system for miners. In 2017 3rd International Conference on Advances in Computing, Communication & Automation (ICACCA) (Fall) (pp. 1–6). Piscataway: IEEE.

    Google Scholar 

  30. Tanwar, S., Vora, J., Kaneriya, S., Tyagi, S., Kumar, N., Sharma, V., et al. (2019). Human arthritis analysis in fog computing environment using Bayesian network classifier and thread protocol. IEEE Consumer Electronics Magazine, 9(1), 88–94.

    Article  Google Scholar 

  31. Tuli, S., Basumatary, N., Gill, S. S., Kahani, M., Arya, R.C., Wander, G.S., et al. (2020). HealthFog: An ensemble deep learning based smart healthcare system for automatic diagnosis of heart diseases in integrated IoT and fog computing environments. Future Generation Computer Systems, 104, 187–200.

    Article  Google Scholar 

  32. Tuli, S., Mahmud, R., Tuli, S., & Buyya, R. (2019). Fogbus: A blockchain-based lightweight framework for edge and fog computing. Journal of Systems and Software, 154, 22–36.

    Article  Google Scholar 

  33. Vaquero, L. M., Rodero-Merino, L. (2014). Finding your way in the fog: Towards a comprehensive definition of fog computing. ACM SIGCOMM Computer Communication Review, 44(5), 27–32.

    Article  Google Scholar 

  34. Vora, J., DevMurari, P., Tanwar, S., Tyagi, S., Kumar, N., & Obaidat, M.S. (2018). Blind signatures based secured e-healthcare system. In 2018 International Conference on Computer, Information and Telecommunication Systems (CITS) (pp. 1–5). Piscataway: IEEE.

    Google Scholar 

  35. Vora, J., Italiya, P., Tanwar, S., Tyagi, S., Kumar, N., Obaidat, M.S., et al. (2018). Ensuring privacy and security in e-health records. In 2018 International Conference on Computer, Information and Telecommunication Systems (CITS) (pp. 1–5). Piscataway: IEEE.

    Google Scholar 

  36. Vora, J., Nayyar, A., Tanwar, S., Tyagi, S., Kumar, N., Obaidat, M.S., et al. (2018). BHEEM: A blockchain-based framework for securing electronic health records. In 2018 IEEE GLOBECOM workshops (GC Wkshps) (pp. 1–6). Piscataway: IEEE.

    Google Scholar 

  37. Vora, J., Tanwar, S., Tyagi, S., Kumar, N., & Rodrigues, J.J. (2017). FAAL: Fog computing-based patient monitoring system for ambient assisted living. In 2017 IEEE 19th International Conference on E-Health Networking, Applications and Services (Healthcom) (pp. 1–6). Piscataway: IEEE.

    Google Scholar 

  38. Yi, S., Hao, Z., Qin, Z., & Li, Q. (2015). Fog computing: Platform and applications. In 2015 Third IEEE workshop on hot topics in web systems and technologies (HotWeb) (pp. 73–78). Piscataway: IEEE.

    Chapter  Google Scholar 

  39. Zhao, B. Y., Kubiatowicz, J., & Joseph, A. D., et al. (2001). Tapestry: An infrastructure for fault-tolerant wide-area location and routing. Berkeley: University of California at Berkeley.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitin Shukla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shukla, N., Gandhi, C. (2021). Efficient Resource Discovery and Sharing Framework for Fog Computing in Healthcare 4.0. In: Tanwar, S. (eds) Fog Computing for Healthcare 4.0 Environments. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-46197-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-46197-3_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-46196-6

  • Online ISBN: 978-3-030-46197-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics