Skip to main content

Phages as Therapy or “Dietary Supplements” Against Multiresistant Bacteria?

  • Chapter
  • First Online:
Biocommunication of Phages
  • 1084 Accesses

Abstract

Bacteria and phages form an ecosystem and play a role in obesity, in Intestinal bowel disease, neurological disorders, in the brain-gut axis and more recently in anticancer therapies. We have shown that fecal transfer can cure a patient from a life -threatening infection with Clostridium difficile. The microbiome and virome of the feces of a patient before and after fecal transfer has been analyzed, where phages play a role.

Phages form a quasispecies and are highly specialized to specific bacterial hosts. Further studies are required to develop broad-range phages similar to broad-range antibiotics.

Phages do not fit into the regulatory presently required definition as a medicinal product. They should be defined differently to enable scientists and medical doctors to evaluate them for general phage therapy. They should be defined as food supplements or dietary products, or probiotics similar to probiotic bacteria. Then they could be evaluated for more general applications for people with infections. The rules need to be changed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Appelt B, Böl GF, Greiner M, Lahrssen-Wiederholt M, Hensel A, EHEC Outbreak (2011) Investigation of the outbreak along the foodchain. Bundesinstitut für Risikobewertung, BfR

    Google Scholar 

  • Broecker F, Moelling K (2019) Evolution of immune systems from viruses and transposable elements. Front Microbiol. https://doi.org/10.3389/fmicb.2019.00051

  • Broecker F, Kube M, Klumpp J, Schuppler M, Biedermann L, Hecht J, Hombach M, Keller PM, Rogler G, Moelling K (2013) Analysis of the intestinal microbiome of a recovered Clostridium difficile patient after fecal transplantation. Digestion 68:243–251

    Article  Google Scholar 

  • Broecker F, Klumpp J, Schuppler M, Russo G, Biedermann L et al (2016) Long-term changes of bacterial and viral compositions in the instestine of a recovered Clostridium difficile patient after fecal microbiota transplantation. Cold Spring Harb Mol Case Stud 2:a000448. https://doi.org/10.1101/mcs.a000448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broecker F, Russo G, Klumpp J, Moelling K (2017) Stable core virome despite variable microbiome afer fecal transfer. Gut Microbes 8:214–220

    Article  Google Scholar 

  • Brüssow H (2019a) Hurdles for Phage therapy to become a reality-an editorial comment. Viruses 11:557. https://doi.org/10.3390/v11060557

    Article  PubMed Central  Google Scholar 

  • Brüssow H (2019b) Probiotics and prebiotics in clinical tests: an update. eCollection 2019:F1000Res

    Google Scholar 

  • Chan BK, Sistrom M, Wertz JE, Kaitlyn KE, Narayan D, Turner PE (2019) Phage seletion restores antibiotic sensitivity in psuedomonas aeruginosa. Sci Rep 6:26717

    Article  Google Scholar 

  • d’Hèrelle F (1917) Sur un microbe unvisible antagoniste des bacteries dysentériques, Comptes Rendues Acad Sci Paris 165:373–375, or d’Hèrelle F (1917) On an unvisible microbe antagonist of dysenteric bacteria Comptes Rendues Acad Sci Paris 165:373–375

    Google Scholar 

  • De Sordi L, Lourenco M, Debarbieux L (2019) I will survive: a tale of bacteriophage-bacteria coevolution in the gut. Gut Microbes 10:92–99

    Google Scholar 

  • Declaration H (2013) World medical association declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA 310:2191–2194

    Article  Google Scholar 

  • Dedrick RM, Guerrero-Bustamante CA, Garlena RA, Russell DA, Ford K, Harris K, Gilmour KC, Soothill J, Jacobs-Sera D, Schooley RT, Hatfull GF, Spencer H (2019) Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nat Med 25:730–733

    Article  CAS  Google Scholar 

  • DeFilipp Z, Bloom P, Soto MT et al (2019) Drug-resistant E coli bacteremia transmitted by fecal microbiota transplant. New Engl J Med Oct 30:2019. https://doi.org/10.1056/NEJMoa1910437

    Article  Google Scholar 

  • Dunne M, Rupf B, Tala M, Plückthun A, Loessner ML, Kilcher S (2019) Reprogramming bacteriophage host range through structure-guided design of chimeric receptor binding proteins. Cell Rep 29:1336–1350

    Article  CAS  Google Scholar 

  • Febvre HP et al (2019) PHAGE study: effects of supplemental bacteriophage intake on inflammation and gut microbiota in health adults. Nutrients 11:666

    Article  CAS  Google Scholar 

  • Fish R, Kutter E, Wheat G, Blasdel B, Kutateladze M et al (2016) Bacteriophage treatment of intransigent diabetic toe ulcers: a case series. J Wound Care 25:273. https://doi.org/10.12968/jowc.2016.25.sup7.s27

    Article  Google Scholar 

  • Haeusler T (2006) Viruses vs. superbugs: a solution to the antibiotics crisis? Palgrave Macmillan, Basingstoke, p 298

    Book  Google Scholar 

  • Hankin EH (1896) L’action bactericide des eaux de la Jumna et du Gange sur le vibrion du cholera (in French). Ann Inst Pasteur Bacteriophage 10:511–523

    Google Scholar 

  • Hiroki A, Lemire S, Pires PD, Lu TK (2015) Engineering Moduar viral scaffolds for targeted bacterial population editing. Cell Syst 1:187–195

    Article  Google Scholar 

  • Hope A (2019) Liver transplant baby saved by “trained” virus at Saint-Luc hospital The Brussels Time, 22.5.2019 Belgium

    Google Scholar 

  • Hupfeld M, Trasanidou D, Ramazzini L, Klumpp J, Loessner MJ, Kilcher S (2018) A functional type II-A CRISPR-Cas system from Listeria enables efficient genome editing of large non-integrating bacteriophage. Nucleic Acids Res 46:6920–6933

    Article  CAS  Google Scholar 

  • Jault P, Leclerc T, Jennes S, Pirnay JP, Que YA et al (2019) Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by Pseudomonas aeruginosa (PhagoBurn): a randomised, controlled, double-blind phase 1/2 trial. Lancet Infect Dis 19:35–45

    Article  Google Scholar 

  • Kilcher S, Loessner MJ (2019) Engineering bacteriophages as versatile biologics. Trends Microbiol 27:355–367

    Article  CAS  Google Scholar 

  • Kilcher S, Studer P, Muessner C, Klumpp J, Loessner MJ (2018) Cross-genus rebooting of custom-made, synthetic bacteriophage genomes in L-form bacteria. Proc Natl Acad Sci U S A 115:567–572

    Article  CAS  Google Scholar 

  • Kuehn C, Rubalskii E, Rohde C reported on television, “Visite” 11.06.2019, Norddeutscher Rundfunk, NDR

    Google Scholar 

  • Kutter E, de Vos D, Gvasalia G, Alavidze Z, Gogokhia L, Kuhl S, Abedon ST (2010) Phage therapy in clinical practice: treatment of human infections. Curr Pharm Biotechnol 11:69–86

    Article  CAS  Google Scholar 

  • Leitner L, Sybesma W, Chanishvili N, Goderdzishvili M, Chkhotua A, Ujmajuridze A, Schneider MP, Sartori A, Mehnert U, Bachmann LM, Kessler (2017) TM bacteriophages for treating urinary tract infections in patients undergoing transurethral ressection of the prostate: a eandomized, placebo-controlled, double-blind clincal trial. BMC Urol 17:90–95

    Google Scholar 

  • Makarova KS, Haft DH, Barrangou R, Brouns SJ, Charpentier E, Horvath P, Moineau S, Mojica FJ, Wolf YI, Yakunin AF, van der Oost J, Koonin EV (2011) Evolution and classification of the CRISPR/Cas sytems. NatRev Mikrobiol 9:467–477

    CAS  Google Scholar 

  • Manrique P, Bolduc B, Walk ST, van der Oost J, de Vos WM, Young M (2016) Healthy human gut phageome. Proc Natl Acad Sci USA 13:1000–10405

    Google Scholar 

  • Medhekar B, Miller JF (2007) Diversity-generating retroelements. Curr Opin Microbiol 10:388–395

    Article  CAS  Google Scholar 

  • Moelling K (2019) New case reports with phage therapy- what is needed for more? Nurs Health Care 4:30–32

    Google Scholar 

  • Moelling K, Broecker F (2016) Fecal microbiota transplantation to fight Clostridium difficile infections and other intestinal diseases. Bacteriophage 6:e1251380

    Article  Google Scholar 

  • Moelling K, Broecker F, Willy C (2018) A wake-up call: we need phage therapy now. Viruses 10:688–692

    Article  CAS  Google Scholar 

  • Ott SJ, Waetzig GH, Rehman A, Moltzau-Anderson J, Bharti R, Grasis JA, Cassidy L, Tholey A, Fickenscher H, Seegert D, Rosenstiel P, Schreiber S (2017) Efficacy of sterile fecal filtrate transfer for treating patients with Clostridium difficile infection. Gastroenterology 152:799–811. e7

    Article  Google Scholar 

  • Pirnay JP, Verbeken G, Ceyssens PJ, Huys I, de Vos D, Ameloot C, Fauconnier A (2018) The Magistral phage. Viruses 10:64–69

    Article  Google Scholar 

  • Routy B et al (2018) Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359:91–97

    Article  CAS  Google Scholar 

  • Schmidt CG (2019) Phage therapy’s latest makeover. Nat Biotechnol 37:581–586

    Google Scholar 

  • Schooley RT, Biswas B, Gill JJ, Hernandez-Morales A, Lancaster J, Lessor L, Barr JJ, Reed SL, Rohwer F, Benler S, Segall AM, Taplitz R, Smith DM, Kerr K, Kumaraswamy M, Nizet V, Lin L, McCauley MD, Strathdee SA, Benson CA, Pope RK, Leroux BM, Picel AC, Mateczun AJ, Cilwa KE, Regeimbal JM, Estrella LA, Wolfe DM, Henry MS, Quinones J, Salka S, Bishop-Lilly KA, Young R, Hamilton T (2017) Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant acinetobacter baumannii infection. Antimicrob Agents Chemother 61:e00954–e00917

    Article  CAS  Google Scholar 

  • Sunagawa S, Coelho LP, Caffron S, Kultimaj R, Labadie K, Salazar G et al (2015) Ocean plankton. Structure and function of the global ocean microbiome. Science 348:1261359

    Article  Google Scholar 

  • Suttle CA (2005) Viruses in the sea. Nature 437:356–361

    Article  CAS  Google Scholar 

  • Suttle CA (2013) Viruses: unlocking the greatest biodiversity on Earth. Genome 56:542–544

    Article  Google Scholar 

  • Tsulukidze AP (1941) Experience of use of bacteriophages in the conditions of war traumatism (in Russian). Tbilisi, Gruzmedgiz

    Google Scholar 

  • Vogt D, Sperling S, Tkhilaishvili T, Trampuz A, Prinay JP, Willy C (2017) Beyond antibiotic therypy – future antiinfective strategies – an update 2017. Unfallchirurg 120:573–584

    Article  CAS  Google Scholar 

  • Wilbert S, Pirnay JP (2016) Silk route to the acceptance and re-implantation of bacteriophage therapy. Biotechnol J 11:595–600

    Article  Google Scholar 

  • Wright A, Hawkins CH, Anggard EE, Harper DR (2009) A controlled clinical trial of a therapeutic abcteriophage preparation in chronic otitis due to antibiotic-resistnt Pseudomonas aeruginosa; a preliminary report of effiacy. Clin Otolarynngol 34:349–357

    Article  CAS  Google Scholar 

  • Zitvogel L, Ma Y, Raoult D, Kroemer G, Gajewski TF (2018) The microbiome in cancer immunotherapy: diagnostic tools and therapeutic strategies. Science 359:1366–1370

    Article  CAS  Google Scholar 

Download references

Acknowledgement

I want to thank Dr. Felix Broecker for discussions and critical reading of the mansucript. I am grateful to “Betty” Kutter for critical reading of the manuscript.

Declaration

There are no obligations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin Moelling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moelling, K. (2020). Phages as Therapy or “Dietary Supplements” Against Multiresistant Bacteria?. In: Witzany, G. (eds) Biocommunication of Phages. Springer, Cham. https://doi.org/10.1007/978-3-030-45885-0_14

Download citation

Publish with us

Policies and ethics