Skip to main content

Antibacterial Activities of Bdellovibrio and like Organisms in Aquaculture

  • Chapter
  • First Online:
The Ecology of Predation at the Microscale

Abstract

In this paper, we firstly reviewed the diseases and antibiotic resistance problems facing the aquaculture industry, and introduced the probiotic concept and the use of Bdellovibrio and like organisms (BALOs) as a probiotic/biological agent to control pathogens or potential pathogens in a sustainable aquaculture. Then we reviewed, in greater details, the antibacterial activities of BALOs in aquaculture. As a special group of predator prokaryotic bacteria, BALOs are increasingly being regarded as an alternative biocontrol agent in the field of aquaculture, in China in particular. We have comprehensively evaluated relevant high quality documentations and discovered that BALOs are not only capable of lysing a wide range of Gram-negatives, but also some Gram-positives, depending on the strain/isolate specificities. Various challenge tests confirmed that BALOs do have protective effects on the organisms tested against the challenged pathogens. Furthermore, Pearson correlation coefficient analyses revealed that BALOs have significantly negative correlations with total bacterial and vibrio counts in rearing waters and the guts of reared organisms (p < 0.01), and positive correlations with their growth (body length and weight gains) and survival (p < 0.01). Finally, we concluded that BALOs do possess strong antibacterial activities against various bacteria, including vibrios, and have a very strong application potential in aquaculture practices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abram D, Castro e Melo J, Chou D. Penetration of Bdellovibrio bacteriovorus into host cells. J Bacteriol. 1974;118:663–80.

    Google Scholar 

  • Aguilar-Macias OL, Ojeda-Ramirez JJ, Campa-Cordova AI, Saucedo PE. Evaluation of natural and commercial probiotics for improving growth and survival of the pearl oyster, Pinctada mazatlanica, during late hatchery and early field culturing. J World Aquacult Soc. 2010;41:447–54.

    Google Scholar 

  • Alavandi SV, Vijayan KK, Santiago TC, Poornima M, Jithendran KP, Ali SA, et al. Evaluation of Pseudomonas sp. PM 11 and Vibrio fluvialis PM 17 on immune indices of tiger shrimp, Penaeus monodon. Fish Shellfish Immunol. 2004;17:115–20.

    CAS  PubMed  Google Scholar 

  • Al-Sunaiher A, Ibrahim ASS, Alsalamah AA. Association of vibrio species with disease incidence in some cultured fishes in the Kingdom of Saudi Arabia. World Appl Sci J. 2010;8:653–60.

    Google Scholar 

  • Angulo L, Lopez JE, Vicente JA, Saborido AM. Haemorrhagic areas in the mouth of farmed turbot, Scophthalmus maximus (L.). J Fish Dis. 1994;17:163–9.

    Google Scholar 

  • Austin B, Austin DA, editors. Bacterial fish pathogens: disease of farmed and wild fish. 6th ed. Cham: Springer; 2016.

    Google Scholar 

  • Bondad-Reantaso MG, Subasinghe RP, Arthur JR, Ogawa K, Chinabut S, Adlard R, et al. Disease and health management in Asian aquaculture. Vet Parasitol. 2005;132:249–72.

    PubMed  Google Scholar 

  • Cabello FC. Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environ Microbiol. 2006;8:1137–44.

    CAS  PubMed  Google Scholar 

  • Cai J, Zhao J, Wang Z, Zou D, Sun L. Lysis of vibrios by Bdellovibrio-and-like organisms (BALOs) isolated from marine environment. J Food Saf. 2008;28:220–35.

    CAS  Google Scholar 

  • Cai J, Lin S, Wu B. Characterization of Pseudomonas aeruginosa associated with diseased postlarval abalone in Shenzhen, China. Aquacult Int. 2009;17:449–58.

    Google Scholar 

  • Cao H, Yang X, Qian Y, Deng L. Isolation of Bdellovibrio bacteria from the gut of Carassius auratus gibelio and the study of its biological characteristics. Microbiology. 2007;34:52–6. (in Chinese)

    CAS  Google Scholar 

  • Cao H, He S, Lu L, Hou L. Characterization and phylogenetic analysis of the bitrichous pathogenic Aeromonas hydrophila isolated from diseased Siberian sturgeon (Acipenser baerii). Isr J Aquacult-Bamidgeh. 2010;62:182–9.

    Google Scholar 

  • Cao H, He S, Wang H, Hou S, Lu L, Yang X. Bdellovibrios, potential biocontrol bacteria against pathogenic Aeromonas hydrophila. Vet Microbiol. 2012;154:413–8.

    PubMed  Google Scholar 

  • Cao H, He S, Lu L, Yang X, Chen B. Identification of a Proteus penneri isolate as the causal agent of red body disease of the cultured white shrimp Penaeus vannamei and its control with Bdellovibrio bacteriovorus. Anton Van Leeuwenh. 2014;105:423–30.

    Google Scholar 

  • Cao H, An J, Zheng W, He S. Vibrio cholerae pathogen from the freshwater cultured whiteleg shrimp Penaeus vannamei and control with Bdellovibrio bacteriovorus. J Invert Pathol. 2015;130:13–20.

    Google Scholar 

  • Chatterjee S, Haldar S. Vibrio related diseases in aquaculture and development of rapid and accurate identification methods. J Marine Sci Res Dev. 2012;S1:002. https://doi.org/10.4172/2155-9910.S1-002.

    Article  Google Scholar 

  • Chen L, Cai J. Research of Bdellovibrio-and-like organisms on controlling Scophthlmus maximus enteric red mouths. Guangdong Agric Sci. 2011;38:3–5. (in Chinese)

    Google Scholar 

  • Chen H, Han M, Yu J, Liu L. Effect of Bacteriovorax sp. N1 on the bacterial community in the freshwater and seawater environment using PCR-DGGE. J Guangdong Ocean Uni. 2019;39:8–15. (in Chinese)

    Google Scholar 

  • Cheng L, Huang J, Shi C, Thompson KD, Mackey B, Cai J. Vibrio parahaemolyticus associated with mass mortality of postlarval abalone, Haliotis diversicolor supertexta (L.), in Sanya, China. J World Aquacult Soc. 2008;39:746–57.

    Google Scholar 

  • Cheng J, Yin Q, Jia D, Yuan H, Dong L, Hu K, Yang X. Isolation and growth conditions of Bdellovibrio in coastal areas of Shanghai. J South Agric. 2017;48:532–9. (in Chinese)

    Google Scholar 

  • Chu W, Zhu W. Isolation of Bdellovibrio as biological therapeutic agents used for the treatment of Aeromonas hydrophila infection in fish. Zoonoses Public Health. 2010;57:258–64.

    CAS  PubMed  Google Scholar 

  • Chu W, Zhu W, Kang C. Isolation, identification of marine bdellovibrios and its effect on Vibrio parahaemolyticus. Microbiology. 2009;36:20–4. (in Chinese)

    Google Scholar 

  • Davidov Y, Jurkevitch E. Diversity and evolution of Bdellovibrio-and-like organisms (BALOs), reclassification of Bacteriovorax starrii as Peredibacter starrii gen. nov., comb. nov., and description of the BacteriovoraxPeredibacter clade as Bacteriovoracaceae fam. nov. Int J Syst Evol Microbiol. 2004;54:1439–52.

    Google Scholar 

  • De BC, Meena DK, Behera BK, Das P, Das Mohapatra PK, Sharma AP. Probiotics in fish and shellfish culture: immunomodulatory and ecophysiological responses. Fish Physiol Biochem. 2014;40:921–71.

    Google Scholar 

  • Del’Duca A, Cesar DE, Diniz CG, Abreu PC. Evaluation of the presence and efficiency of potential probiotic bacteria in the gut of tilapia (Oreochromis niloticus) using the fluorescent in situ hybridization technique. Aquaculture. 2013;388–391:115–21.

    Google Scholar 

  • De Schryver P, Vadstein O. Ecological theory as a foundation to control pathogenic invasion in aquaculture. ISME J. 2014;8:2360–8.

    PubMed  PubMed Central  Google Scholar 

  • De Schryver P, Defoirdt T, Sorgeloos P. Early mortality syndrome outbreaks: a microbial management issue in shrimp farming? PLoS Pathog. 2014;10:e1003919. https://doi.org/10.1371/journal.ppat.1003919.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fry JC, Staples DG. Distribution of Bdellovibrio bacteriovorus in sewage works, river water, and sediments. Appl Environ Microbiol. 1976;31:469–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fujian Society of Fisheries (FSF). 2016–2017 Fujian province freshwater aquaculture development research report. Straits Sci. 2018;10:84–92. (in Chinese)

    Google Scholar 

  • García De La Banda I, Lobo C, Chabrillon M, León-Rubio JM, Arijo S, Pazos G, et al. Influence of dietary administration of a probiotic strain Shewanella putrefaciens on Senegalese sole (Solea senegalensis, Kaup 1858) growth, body composition and resistance to Photobacterium damselae subsp piscicida. Aquac Res. 2012;43:662–9.

    Google Scholar 

  • Garrity GM, Bell JA, Lilburn T. Order VII. Bdellovibrionales ord. nov. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM, editors. Bergey’s manual of systematic bacteriology, vol. 2. New York: Springer; 2005. p. 1040–58.

    Google Scholar 

  • Gatesoupe FJ. The use of probiotics in aquaculture. Aquacult. 1999;180:147–65.

    Google Scholar 

  • Guo Y, Yan L, Cai J. Effects of Bdellovibrio and like organisms on survival and growth performance of juvenile turbot, Scophthalmus maximus. J World Aquacult Soci. 2016;47:633–45.

    Google Scholar 

  • Guo Y, Pan Q, Yan S, Chen Y, Li M, Chen D, et al. Bdellovibrio and like organisms promoted growth and survival of juvenile abalone Haliotis discus hannai Ino and modulated bacterial community structures in its gut. Aquacult Int. 2017;25:1625–43.

    Google Scholar 

  • Hahn MW, Schmidt J, Koll U, Rohde M, Verbarg S, Pitt A, et al. Silvanigrella aquatica gen. nov., sp. nov., isolated from a freshwater lake, description of Silvanigrellaceae fam. nov. and Silvanigrellales ord. nov., reclassification of the order Bdellovibrionales in the class Oligoflexia, reclassification of the families Bacteriovoracaceae and Halobacteriovoraceae in the new order Bacteriovoracales ord. nov., and reclassification of the family Pseudobacteriovoracaceae in the order Oligoflexales. Int J Syst Evol Microbial. 2017;67:2555–68.

    Google Scholar 

  • Hai NV, Buller N, Fotedar R. Effects of probiotics (Pseudomonas synxantha and P. aeruginosa) on the growth, survival and immune parameters of juvenile western king prawns (Penaeus latisulcatus Kishinouye, 1896). Aquac Res. 2009;40:590–602.

    Google Scholar 

  • Han M, Chen H, Si H, Liu Y, Chen Y. Diversity analysis of Bdellovibrio-like organisms in spiny sea cucumber (Stichopus japonicus) intestine. J Microbiol. 2015;35:44–8. (in Chinese)

    CAS  Google Scholar 

  • Huang L, Zheng D, Chen S. Prevention and treatment of Aeromonas hydrophila infection of crucian carp by bdellovibrio. Scient Fish Farm. 2009;8:57. (in Chinese)

    Google Scholar 

  • Huang L, Cai J, Cheng X, Xiao X. Elimination of potential pathogenic Vibrio in oysters by Bdellovibrio sp. Modern Food Sci Technol. 2010;26:225–30. (in Chinese)

    Google Scholar 

  • Iebba V, Santangelo F, Totino V, Nicoletti M, Gagliardi A, De Biase RV, et al. Higher prevalence and abundance of Bdellovibrio bacteriovorus in the human gut of healthy subjects. PLoS One. 2013;8:e61608. https://doi.org/10.1371/journal.pone.0061608. Correction in: PLoS One 8: https://doi.org/10.1371/annotation/b08ddcc9-dfdb-4fc1-b2ac-5a4af3051a91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irianto A, Austin B. Probiotics in aquaculture. J Fish Dis. 2002;25:633–42.

    Google Scholar 

  • Jiang HF, Liu XL, Chang YQ, Liu MT, Wang GX. Effects of dietary supplementation of probiotic Shewanella colwelliana WA64, Shewanella olleyana WA65 on the innate immunity and disease resistance of abalone, Haliotis discus hannai Ino. Fish Shellfish Immunol. 2013;35:86–91.

    PubMed  Google Scholar 

  • Jurkevitch E, Ramati B. Design and uses of Bdellovibrio 16S rRNA-targeted oligonucleotides. FEMS Microbiol Lett. 2000;184:265–71.

    CAS  PubMed  Google Scholar 

  • Kelley JI, Williams HN. Bdellovibrios in Callinectus sapidus, the blue crab. Appl Environ Microbiol. 1992;58:1408–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kelley JI, Turng BF, Williams HN, Baer ML. Effects of salinity, temperature and substrate on the colonization of surfaces by halophilic bdellovibrios. Appl Environ Microbiol. 1997;63:84–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim DH, Austin B. Innate immune responses in rainbow trout (Oncorhynchus mykiss, Walbaum) induced by probiotics. Fish Shellfish Immunol. 2006;21:513–24.

    CAS  PubMed  Google Scholar 

  • Kongrueng J, Mittraparp-Arthorn P, Bangpanwimon K, Robins W, Vuddhakul V, Mekalanos J, et al. Isolation of Bdellovibrio and like organisms and potential to reduce acute hepatopancreatic necrosis disease caused by Vibrio parahaemolyticus. Dis Aquat Org. 2017;124:223–32.

    PubMed  Google Scholar 

  • Koval SF, Williams HN, Stine OC. Reclassification of Bacteriovorax marinus as Halobacteriovorax marinus gen. nov., comb. nov. and Bacteriovorax litoralis as Halobacteriovorax litoralis comb. nov.; description of Halobacteriovoraceae fam. nov. in the class Deltaproteobacteria. Int J Syst Evol Microbiol. 2015;65:593–7.

    Google Scholar 

  • Le JH. World aquaculture development present situation the trend and suggestions. Chinese Fisher Econ. 2010;28:50–5. (in Chinese)

    Google Scholar 

  • Li H, Cai J. Effects of Bdellovibrio-and-like organism on growth of Haliotis diversicolor aquatilis and bacterial community in rearing system. Guangdong Agri Sci. 2014;41:127–32. (in Chinese)

    Google Scholar 

  • Li Y, Cao H, Chen S, Yang X. Effect of Bdellovibrio bacteriovorus on the water quality of snakehead fish farming pond. Fisher Modernizat. 2008;35:11–4. (in Chinese)

    Google Scholar 

  • Li H, Liu C, Chen L, Zhang X, Cai J. Biological characterization of two marine Bdellovibrio-and-like organisms isolated from Daya bay of Shenzhen, China and their application in the elimination of Vibrio parahaemolyticus in oyster. Int J Food Microbiol. 2011;151:36–43.

    PubMed  Google Scholar 

  • Li H, Chen C, Sun Q, Liu R, Cai J. Bdellovibrio and like organisms enhanced growth and survival of Penaeus monodon and altered bacterial community structures in its rearing water. Appl Environ Microbiol. 2014;80:6346–54.

    PubMed  PubMed Central  Google Scholar 

  • Li M, Guo Y, Wu B, Han H, Cai J. Research status and advances in bdellovibrios: a review. Fisher Sci. 2017;36:377–82. (in Chinese)

    Google Scholar 

  • Li MJ, Wu B, Han HC, Cai J. Characterization of a Bdellovibrio and-like organism strain BDE-1 for promoting its bdelloplast formation. Microbiology. 2018;45:1641–50. (in Chinese)

    Google Scholar 

  • Liu F, Luo Z, Huang JM. Research progress of pathogenic Bacillus cereus. J Ins Quar. 2016;26:68–71. (in Chinese)

    Google Scholar 

  • Ma Z, Ding W, Yang L, Gao J, Li H, Wang X. Study on Bdellovibrio bacteriovorus lysis effect to common fish pathogens. Microbiology. 1999;26:408–11. (in Chinese)

    CAS  Google Scholar 

  • McCauley EP, Haltli B, Kerr RG. Description of Pseudobacteriovorax antillogorgiicola gen. nov., sp. nov., a bacterium isolated from the gorgonian octocoral Antillogorgia elisabethae, belonging to the family Pseudobacteriovoracaceae fam. nov., within the order Bdellovibrionales. Int J Syst Evol Microbiol. 2015;65:522–30.

    CAS  PubMed  Google Scholar 

  • Nakai R, Nishijima M, Tazato N, Handa Y, Karray F, Sayadi S, et al. Oligoflexus tunisiensis gen. nov., sp. nov., a gram-negative, aerobic, filamentous bacterium of a novel proteobacterial lineage, and description of Oligoflexaceae fam. nov., Oligoflexales ord. nov. and Oligoflexia classis nov. Int J Syst Evol Microbiol. 2014;64:3353–9.

    PubMed  PubMed Central  Google Scholar 

  • Newaj-Fyzul A, Al-Harbi AH, Austin B. Review: developments in the use of probiotics for disease control in aquaculture. Aquaculture. 2014;431:1–11.

    Google Scholar 

  • Núñez ME, Martin MO, Chan PH, Spain EM. Predation, death and survival in a biofilm: Bdellovibrio investigated by atomic force micros-copy. Coll Surf B Biointer. 2005;42:263–71.

    Google Scholar 

  • Pasternak Z, Njagi M, Shani Y, Chanyi R, Rotem O, Lurie-Weinberger MN, et al. In and out: an analysis of epibiotic vs periplasmic bacterial predators. ISME J. 2014;8:625–35.

    CAS  PubMed  Google Scholar 

  • Pérez-Sánchez T, Mora-Sánchez B, Balcázar JL. Biological approaches for disease control in aquaculture: advantages, limitations and challenges. Trend Microbiol. 2018;26:896–903.

    Google Scholar 

  • Pineiro SA, Sahaniuk GE, Romberg E, Williams HN. Predation pattern and phylogenetic analysis of Bdellovibrionaceae from the great salt Lake, Utah. Curr Microbiol. 2004;48:113–7.

    CAS  PubMed  Google Scholar 

  • Qin SJ. Effects of Bdellovibrio bacteriovorus to eliminate aquatic bacteria. Disinfect Sterilizat. 1987;4:92–4. (in Chinese)

    Google Scholar 

  • Rotem O, Pasternak Z, Jurkevitch E. Bdellovibrio and like organisms. In: Rosenberg E, DeLong EF, Loy S, Stackebrandt E, Thompson F, editors. The Prokaryotes: Deltaproteobacteria and Epsilonproteobacteria. Berlin/Heidelberg: Springer; 2014. p. 3–17.

    Google Scholar 

  • Schoeffield AJ, Williams HN. Efficiencies of recovery of bdellovibrios from brackish- water environments by using various bacterial species as prey. Appl Environ Microbiol. 1990;56:230–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shatzkes K, Tang C, Singleton E, Shukla S, Zuena M, Gupta S. Effect of predatory bacteria on the gut bacterial microbiota in rats. Sci Rep. 2017;7:43483.

    PubMed  PubMed Central  Google Scholar 

  • Shi Z, Qin S, An Z. Quantitative investigation on the distribution of Bdellovibrio bacteriovorus in natural water (or mud). Chinese Pub Hyg. 1987;6:139–41. (in Chinese)

    Google Scholar 

  • Sockett R, Lambert C. Bdellovibrio as therapeutic agents: a predatory renaissance? Nat Rev Microbiol. 2004;2:669–75.

    CAS  PubMed  Google Scholar 

  • Stolp H, Petzold H. Untersuchungen über einen obligat parasitischen mikroorganismus mit lytischer aktivität für Pseudomonas-bakterien. J Phytopathol. 1962;45:364–90.

    Google Scholar 

  • Stolp H, Starr MP. Bdellovibrio bacteriovorus gen. et sp. n., a predatory, ectoparasitic, and bacteriolytic microorganism. Anton Van Leeuwenhoek. 1963;29:217–48.

    CAS  Google Scholar 

  • Summerfelt ST. Ozonation and UV irradiation – an introduction and examples of current applications. Aquacult Engineer. 2003;28:21–36.

    Google Scholar 

  • Sutton DC, Besant PJ. Ecology and characteristics of bdellovibrios from three tropical marine habitats. Mar Biol. 1994;119:313–20.

    Google Scholar 

  • Swain SM, Singh C, Arul V. Inhibitory activity of probiotics Streptococcus phocae PI80 and Enterococcus faecium MC13 against vibriosis in shrimp Penaeus monodon. World J Microbiol Biotechnol. 2009;25:697–703.

    Google Scholar 

  • Tapia-Paniagua ST, Diaz-Rosales P, Leon-Rubio JM, García de La Banda I, Lobo C, Alarcón FJ, et al. Use of the probiotic Shewanella putrefaciens Pdp11 on the culture of Senegalese sole (Solea senegalensis Kaup 1858) and gilthead sea bream (Sparus aurata L.). Aquacult Int. 2012;20:1025–39.

    Google Scholar 

  • Taylor VI, Baumann P, Reichelt JL, Allen RD. Isolation, enumeration, and host range of marine Bdellovibrios. Arch Microbiol. 1974;98:101–14.

    CAS  PubMed  Google Scholar 

  • Thompson J, Gregory S, Plummer S, Shields RJ, Rowley AF. An in vitro and in vivo assessment of the potential of Vibrio spp. as probiotics for the pacific white shrimp, Litopenaeus vannamei. J Appl Microbiol. 2010;109:1177–87.

    Google Scholar 

  • Tran L, Nunan L, Redman RM, Mohney LL, Pantoja CR, Fitzsimmons K, et al. Determination of the infectious nature of the agent of acute hepatopancreatic necrosis syndrome affecting penaeid shrimp. Dis Aquat Org. 2013;105:45–55.

    PubMed  Google Scholar 

  • Wakabayashi H. Effect of environmental conditions on the infectivity of Flexibacter columnaris to fish. J Fish Dis. 1991;14:279–90.

    Google Scholar 

  • Wang L. The aetiology and histopathologic study of Atlantic salmon infected with Pseudomonas fluorescens. Master’s thesis, Sichuan Agriculture University, Chengdu, China (in Chinese). 2010

    Google Scholar 

  • Wang Y. Use of probiotics Bacillus coagulans, Rhodopseudomonas palustris and Lactobacillus acidophilus as growth promoters in grass carp (Ctenopharyngodon idella) fingerlings. Aquac Nutr. 2011;17:e372–8.

    Google Scholar 

  • Wang S, Huang J, Wang Y. Prevention and treatment of the early mortality syndrome in shrimp. Sci Fish Farm. 2018;2:92. (in Chinese)

    Google Scholar 

  • Wen C, Lai X, Xue M, Huang Y, Li H, Zhou S. Molecular typing and identification of Bdellovibrio and-like organisms isolated from seawater shrimp ponds and adjacent coastal waters. J Appl Microbiol. 2009;106:1154–62.

    CAS  PubMed  Google Scholar 

  • Wen C, Liang H, Ding X, Xue M, Zhou S. Effects of marine Bdellovibrio-and-like organism DA5 on larval survival and water quality in larval rearing of Litopenaeus vannamei. J Trop Oceanograp. 2010;29:147–52. (in Chinese)

    CAS  Google Scholar 

  • Wen C, Xue M, Liang H, Zhou S. Evaluating the potential of marine Bacteriovorax sp. DA5 as a biocontrol agent against vibriosis in Litopenaeus vannamei larvae. Vet Microbiol. 2014;173:84–91.

    PubMed  Google Scholar 

  • Williams HN. The recovery of high numbers of bdellovibrios from the surface water microlayer. Can J Microbiol. 1987;33:572–5.

    Google Scholar 

  • Williams HN, Falkler WA. Distribution of bdellovibrios in the water column of an estuary. Can J Microbiol. 1984;30:971–4.

    CAS  PubMed  Google Scholar 

  • Williams HN, Schoeffield AJ, Guether D, Kelley J, Shah D, Falkler WA. Recovery of bdellovibrios from submerged surfaces and other aquatic habitats. Microb Ecol. 1995;29:39–48.

    CAS  PubMed  Google Scholar 

  • Willis AR, Moore C, Mazon-Moya M, Krokowski S, Lambert C, Till R, et al. Injections of predatory bacteria work alongside host immune cells to treat Shigella infection in zebrafish larvae. Curr Biol. 2016;26:3343–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wold P-A, Holan AB, Øie G, Attramadal K, Bakke I, Vadstein O, et al. Effects of membrane filtration on bacterial number and microbial diversity in marine recirculating aquaculture system (RAS) for Atlantic cod (Gadus morhua L.) production. Aquaculture. 2014;422–423:69–77.

    Google Scholar 

  • Xiao X, Cai J. Application of Bdellovibrio-and-like organisms in the spat production of abalone (Haliotis diversicolor). Guangdong Agri Sci. 2011;38:135–7. (in Chinese)

    CAS  Google Scholar 

  • Xie Q, Fang W, Qiao Z, Hu L, Liang S. A study on the lysis characters and influencing factors for growth of Bdellovibrio sp. Bdh5221 isolated from seawater. Marine Fisher. 2007;2:97–102. (in Chinese)

    Google Scholar 

  • Xiong J, Dai W, Zhu J, Liu K, Dong C, Qiu Q. The underlying ecological processes of gut microbiota among cohabitating retarded, overgrown and normal shrimp. Microb Ecol. 2017;73:988–99.

    PubMed  Google Scholar 

  • Yang SZ, Huang QH. Parasitic action of marine bdellovibrios on prawn pathogenic bacteria and other bacteria. J Xiamen Univers (Natur Sci). 1997;3:133–7. (in Chinese)

    Google Scholar 

  • Yang L, Ma Z, Huang W, Wang X, Gao J. Observation of protection common carp from infection of Aeromonas hydrophila by Bdellovibrio bacteriovorus. J Dalian Fisher Univers. 2000;15:288–92. (in Chinese)

    CAS  Google Scholar 

  • Yang J, Xu L, Cai J. Prospects and problems of the use of BALOs to control pathogens in mariculture. J ZhangJiang Ocean Univers. 2004;24:79–82. (in Chinese)

    CAS  Google Scholar 

  • Yang K, Wang X, Xiong J, Qiu Q, Huang L, Zhang H, et al. Comparison of the bacterial community structures between healthy and diseased juvenile shrimp (Litopenaeus vannamei) digestive tract. J Fisher China. 2016;40:1765–73. (in Chinese)

    Google Scholar 

  • Yu Q, Yin Q, Zhao D. The investigation of Bdellovibrio bacteriovorus in the water of main rivers in Chengdu. Modern Preven Med. 1994;3:190–4. (in Chinese)

    Google Scholar 

  • Zeng D, Lei A, Peng M, Li Y. Effect of Bdellovibrio bacteriovorus on total number of bacteria in pond water. Guangxi Agri Sci. 2004a;35:399–400. (in Chinese)

    Google Scholar 

  • Zeng D, Lei A, Peng M, Li Y. Primary study on preventing and curing bacterial septicemia of Ictalurus punctatus by Bdellovibrio bacteriovorus. Guangxi Agri Sci. 2004b;35:218–20. (in Chinese)

    Google Scholar 

  • Zeng S, Huang Z, Hou D, Liu J, Weng S, He J. Composition, diversity and function of intestinal microbiota in pacific white shrimp (Litopenaeus vannamei) at different culture stages. Peer J. 2017;5:e3986. https://doi.org/10.7717/peerj.3986.

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Shen JZ, Chen JY. The effects of Bdellovibrio bacteriovorus on the water quality and bacterial population in the grass carp ponds. J Hydroecol. 2009a;2:6–10. (in Chinese)

    Google Scholar 

  • Zhang W, Hu Y, Wang H, Sun L. Identification and characterization of a virulence-associated protease from a pathogenic Pseudomonas fluorescens strain. Vet Microbiol. 2009b;139:183–8.

    CAS  PubMed  Google Scholar 

  • Zhang Z, Song Z, Li D. Isolation of Bdellovibrio bacteria from the gut of eel and the study of its prevention of bacterial diseases in aquaculture. Fujian Fisher. 2009c;2:54–8. (in Chinese)

    Google Scholar 

  • Zhang H, Sun Z, Liu B, Xuan Y, Jiang M, Pan Y, et al. Dynamic changes of microbial communities in Litopenaeus vannamei cultures and the effects of environmental factors. Aquacult. 2016;455:97–108.

    Google Scholar 

  • Zhou J, Bao Z, Guo L, Liu T, Wang H, Liu L, et al. Study on the biological characteristics of bdellovibrio BD04 in water area of southern four lakes. Anim Husb Feed Sci. 2011;32:7–9. (in Chinese)

    Google Scholar 

  • Zmyslowska I, Korzekwa K, Szarek J. Aeromonas hydrophila in fish aquaculture. J Comp Pathol. 2009;141:313.

    Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude to the National Science Foundation of China (NSFC) and Guangdong Provincial founding bodies, as well as ProBioti Biotech (Guangzhou) company Limited, for the financial supports in our pursuits of this little tiny creature to the benefit of our mankind.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junpeng Cai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Najnine, F., Cao, Q., Zhao, Y., Cai, J. (2020). Antibacterial Activities of Bdellovibrio and like Organisms in Aquaculture. In: Jurkevitch, E., Mitchell, R. (eds) The Ecology of Predation at the Microscale. Springer, Cham. https://doi.org/10.1007/978-3-030-45599-6_4

Download citation

Publish with us

Policies and ethics