Skip to main content

Acute Kidney Injury After Transcatheter Aortic Valve Replacement

  • Chapter
  • First Online:
Kidney Disease in the Cardiac Catheterization Laboratory

Abstract

Transcatheter aortic valve replacement (TAVR) has emerged as a safe and effective treatment option for patients with severe aortic stenosis (AS) who are too high risk for surgical valve replacement. Given the heavy burden of comorbidities associated with this population, there is much interest in identifying risk factors for adverse outcomes after TAVR, and one predictor that has repeatedly been identified is the development of acute kidney injury (AKI). Both patient-specific characteristics, such as age and baseline renal function, and intraprocedural factors, such as choice of access site, are associated with the development of AKI. Furthermore, patients who have advanced chronic kidney disease (CKD) or who develop a new dialysis requirement after TAVR are at particularly high risk of adverse events. Newer methods of identifying patients at risk of developing AKI, such as metabolite profiling, show a promise for improved pre-procedural risk stratification over traditional clinical factors. With an aging population and expanding indications for use, the number of patients receiving TAVR is expected to grow. Further investigations into identifying modifiable risk factors and strategies to limit post-TAVR AKI are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nkomo VT, Gardin JM, Skelton TN, Gottdiener JS, Scott CG, Enriquez-Sarano M. Burden of valvular heart diseases: a population-based study. Lancet. 2006;368:1005–11.

    PubMed  Google Scholar 

  2. Mozaffarian D, Benjamin EJ, Go AS, et al. Heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation. 2016;133:e38–360.

    PubMed  Google Scholar 

  3. Supino PG, Borer JS, Preibisz J, Bornstein A. The epidemiology of valvular heart disease: a growing public health problem. Heart Fail Clin. 2006;2:379–93.

    PubMed  Google Scholar 

  4. Lewin MB. The bicuspid aortic valve: adverse outcomes from infancy to old age. Circulation. 2005;111:832–4.

    PubMed  Google Scholar 

  5. Palta S, Pai AM, Gill KS, Pai RG. New insights into the progression of aortic stenosis: implications for secondary prevention. Circulation. 2000;101:2497–502.

    CAS  PubMed  Google Scholar 

  6. Rossebø AB, Pedersen TR, Boman K, et al. Intensive lipid lowering with simvastatin and ezetimibe in aortic stenosis. N Engl J Med. 2008;359:1343–56.

    PubMed  Google Scholar 

  7. Baumgartner H, Falk V, Bax JJ, et al. 2017 ESC/EACTS guidelines for the management of valvular heart disease. Eur Heart J. 2017;38(36):2739–91.

    Google Scholar 

  8. Nishimura RA, Otto CM, Bonow RO, et al. 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association task force on practice guidelines. J Thorac Cardiovasc Surg. 2014;148:e1–e132.

    PubMed  Google Scholar 

  9. Bach DS. Prevalence and characteristics of unoperated patients with severe aortic stenosis. J Heart Valve Dis. 2011;20:284–91.

    PubMed  Google Scholar 

  10. Leon MB, Smith CR, Mack M, et al. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N Engl J Med. 2010;363:1597–607.

    CAS  PubMed  Google Scholar 

  11. Reardon MJ, Van Mieghem NM, Popma JJ, et al. Surgical or transcatheter aortic-valve replacement in intermediate-risk patients. N Engl J Med. 2017;376:1321–31.

    PubMed  Google Scholar 

  12. Nishimura RA, Otto CM, Bonow RO, et al. 2017 AHA/ACC focused update of the 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. J Am Coll Cardiol. 2017;70:252–89.

    PubMed  Google Scholar 

  13. Osnabrugge RLJ, Mylotte D, Head SJ, Van Mieghem NM, Nkomo VT, LeReun CM, Bogers AJJC, Piazza N, Kappetein AP. Aortic stenosis in the elderly: disease prevalence and number of candidates for transcatheter aortic valve replacement: a meta-analysis and modeling study. J Am Coll Cardiol. 2013;62:1002–12.

    PubMed  Google Scholar 

  14. Nishimura RA, Otto CM, Bonow RO, et al. 2017 AHA/ACC focused update of the 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. Circulation. 2017;135:e1159–95.

    PubMed  Google Scholar 

  15. Otto CM, Kumbhani DJ, Alexander KP, Calhoon JH, Desai MY, Kaul S, Lee JC, Ruiz CE, Vassileva CM. 2017 ACC expert consensus decision pathway for transcatheter aortic valve replacement in the management of adults with aortic stenosis: a report of the American College of Cardiology Task Force on clinical expert consensus documents. J Am Coll Cardiol. 2017;69:1313–46.

    PubMed  Google Scholar 

  16. Holmes DRJ, Brennan JM, Rumsfeld JS, et al. Clinical outcomes at 1 year following transcatheter aortic valve replacement. JAMA. 2015;313:1019–28.

    CAS  PubMed  Google Scholar 

  17. Ruggeri L, Gerli C, Franco A, Barile L, Magnano di San Lio MS, Villari N, Zangrillo A. Anesthetic management for percutaneous aortic valve implantation: an overview of worldwide experiences. HSR Proc Intensive Care Cardiovasc Anesth. 2012;4:40–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Durand E, Borz B, Godin M, et al. Transfemoral aortic valve replacement with the Edwards SAPIEN and Edwards SAPIEN XT prosthesis using exclusively local anesthesia and fluoroscopic guidance: feasibility and 30-day outcomes. J Am Coll Cardiol Intv. 2012;5:461–7.

    Google Scholar 

  19. Topol EJ, Teirstein PS. Textbook of interventional cardiology. Philadelphia: Elsevier; 2015.

    Google Scholar 

  20. Leon MB, Piazza N, Nikolsky E, et al. Standardized endpoint definitions for transcatheter aortic valve implantation clinical trials: a consensus report from the Valve Academic Research Consortium. Eur Heart J. 2011;32:205–17.

    PubMed  Google Scholar 

  21. Abosaif NY, Tolba YA, Heap M, Russell J, El Nahas AM. The outcome of acute renal failure in the intensive care unit according to RIFLE: model application, sensitivity, and predictability. Am J Kidney Dis. 2005;46:1038–48.

    PubMed  Google Scholar 

  22. Kellum JA, Levin N, Bouman C, Lameire N. Developing a consensus classification system for acute renal failure. Curr Opin Crit Care. 2002;8:509–14.

    PubMed  Google Scholar 

  23. Mehta RL, Kellum JA, Shah SV, Molitoris BA, Ronco C, Warnock DG, Levin A. Acute kidney injury network: report of an initiative to improve outcomes in acute kidney injury. Crit Care. 2007;11:R31.

    PubMed  PubMed Central  Google Scholar 

  24. Kappetein AP, Head SJ, Genereux P, et al. Updated standardized endpoint definitions for transcatheter aortic valve implantation: the Valve Academic Research Consortium-2 consensus document. Eur Heart J. 2012;33:2403–18.

    PubMed  Google Scholar 

  25. Blair JEA, Brummel K, Friedman JL, Atri P, Sweis RN, Russell H, Ricciardi MJ, Malaisrie SC, Davidson CJ, Flaherty JD. Inhospital and post-discharge changes in renal function after transcatheter aortic valve replacement. Am J Cardiol. 2016;117:633–9.

    PubMed  Google Scholar 

  26. Munoz-Garcia AJ, Munoz-Garcia E, Jimenez-Navarro MF, Dominguez-Franco AJ, Alonso-Briales JH, Hernandez-Garcia JM, de Teresa-Galvan E. Clinical impact of acute kidney injury on short- and long-term outcomes after transcatheter aortic valve implantation with the CoreValve prosthesis. J Cardiol. 2015;66:46–9.

    PubMed  Google Scholar 

  27. Yamamoto M, Hayashida K, Mouillet G, Chevalier B, Meguro K, Watanabe Y, Dubois-Rande J-L, Morice M-C, Lefèvre T, Teiger E. Renal function-based contrast dosing predicts acute kidney injury following transcatheter aortic valve implantation. JACC Cardiovasc Interv. 2013;6:479–86.

    PubMed  Google Scholar 

  28. Gupta T, Goel K, Kolte D, et al. Association of chronic kidney disease with in-hospital outcomes of transcatheter aortic valve replacement. J Am Coll Cardiol Intv. 2017;10:2050–60.

    Google Scholar 

  29. Genereux P, Kodali SK, Green P, et al. Incidence and effect of acute kidney injury after transcatheter aortic valve replacement using the new valve academic research consortium criteria. Am J Cardiol. 2013;111:100–5.

    PubMed  Google Scholar 

  30. Elhmidi Y, Bleiziffer S, Piazza N, et al. Incidence and predictors of acute kidney injury in patients undergoing transcatheter aortic valve implantation. Am Heart J. 2011;161:735–9.

    PubMed  Google Scholar 

  31. Elhmidi Y, Bleiziffer S, Deutsch M-A, Krane M, Mazzitelli D, Lange R, Piazza N. Acute kidney injury after transcatheter aortic valve implantation: incidence, predictors and impact on mortality. Arch Cardiovasc Dis. 2014;107:133–9.

    PubMed  Google Scholar 

  32. Barbash IM, Ben-Dor I, Dvir D, Maluenda G, Xue Z, Torguson R, Satler LF, Pichard AD, Waksman R. Incidence and predictors of acute kidney injury after transcatheter aortic valve replacement. Am Heart J. 2012;163:1031–6.

    PubMed  Google Scholar 

  33. Aalaei-Andabili SH, Pourafshar N, Bavry AA, Klodell CT, Anderson RD, Karimi A, Petersen JW, Beaver TM. Acute kidney injury after transcatheter aortic valve replacement. J Card Surg. 2016;31:416–22.

    PubMed  Google Scholar 

  34. Gebauer K, Diller G-P, Kaleschke G, Kerckhoff G, Malyar N, Meyborg M, Reinecke H, Baumgartner H. The risk of acute kidney injury and its impact on 30-day and long-term mortality after transcatheter aortic valve implantation. Int J Nephrol. 2012;2012:483748.

    PubMed  PubMed Central  Google Scholar 

  35. Nuis RJ, Van Mieghem NM, Schultz CJ, et al. Frequency and causes of stroke during or after transcatheter aortic valve implantation. Am J Cardiol. 2012;109:1637–43.

    PubMed  Google Scholar 

  36. Meneguz-Moreno RA, Ramos AI, Siqueira D, et al. Prognostic value of renal function in patients with aortic stenosis treated with transcatheter aortic valve replacement. Catheter Cardiovasc Interv. 2017;89:452–9.

    PubMed  Google Scholar 

  37. Sinning J-M, Ghanem A, Steinhäuser H, Adenauer V, Hammerstingl C, Nickenig G, Werner N. Renal function as predictor of mortality in patients after percutaneous transcatheter aortic valve implantation. JACC Cardiovasc Interv. 2010;3:1141–9.

    PubMed  Google Scholar 

  38. Thongprayoon C, Cheungpasitporn W, Mao MA, Srivali N, Kittanamongkolchai W, Harrison AM, Greason KL, Kashani KB. Persistent acute kidney injury following transcatheter aortic valve replacement. J Card Surg. 2017;32:550–5.

    PubMed  Google Scholar 

  39. Khawaja MZ, Thomas M, Joshi A, Asrress KN, Wilson K, Bolter K, Young CP, Hancock J, Bapat V, Redwood S. The effects of VARC-defined acute kidney injury after transcatheter aortic valve implantation (TAVI) using the Edwards bioprosthesis. EuroIntervention. 2012;8:563–70.

    PubMed  Google Scholar 

  40. Allende R, Webb JG, Munoz-Garcia AJ, et al. Advanced chronic kidney disease in patients undergoing transcatheter aortic valve implantation: insights on clinical outcomes and prognostic markers from a large cohort of patients. Eur Heart J. 2014;35:2685–96.

    PubMed  Google Scholar 

  41. Barbanti M, Latib A, Sgroi C, et al. Acute kidney injury after transcatheter aortic valve implantation with self-expanding CoreValve prosthesis: results from a large multicentre Italian research project. EuroIntervention. 2014;10:133–40.

    PubMed  Google Scholar 

  42. Bock JS, Gottlieb SS. Cardiorenal syndrome: new perspectives. Circulation. 2010;121:2592–600.

    PubMed  Google Scholar 

  43. Thongprayoon C, Cheungpasitporn W, Srivali N, Kittanamongkolchai W, Sakhuja A, Greason KL, Kashani KB. The association between renal recovery after acute kidney injury and long-term mortality after transcatheter aortic valve replacement. PLoS One. 2017;12:e0183350.

    PubMed  PubMed Central  Google Scholar 

  44. Ferro CJ, Law JP, Doshi SN, de Belder M, Moat N, Mamas M, Hildick-Smith D, Ludman P, Townend JN. Dialysis following transcatheter aortic valve implantation, risk factors and outcomes: an analysis from the UK TAVI Registry (Transcatheter Aortic Valve Implantation) Registry. JACC Cardiovasc Interv. 2017;10:2040. https://doi.org/10.1016/j.jcin.2017.05.020.

    Article  PubMed  Google Scholar 

  45. Nuis R-JM, Van Mieghem NM, Tzikas A, Piazza N, Otten AM, Cheng J, van Domburg RT, Betjes M, Serruys PW, de Jaegere PPT. Frequency, determinants, and prognostic effects of acute kidney injury and red blood cell transfusion in patients undergoing transcatheter aortic valve implantation. Catheter Cardiovasc Interv. 2011;77:881–9.

    PubMed  Google Scholar 

  46. Thongprayoon C, Cheungpasitporn W, Srivali N, Harrison AM, Kittanamongkolchai W, Greason KL, Kashani KB. Transapical versus transfemoral approach and risk of acute kidney injury following transcatheter aortic valve replacement: a propensity-adjusted analysis. Ren Fail. 2017;39:13–8.

    PubMed  Google Scholar 

  47. Ghatak A, Bavishi C, Cardoso RN, et al. Complications and mortality in patients undergoing transcatheter aortic valve replacement with Edwards SAPIEN & SAPIEN XT Valves: a meta-analysis of world-wide studies and registries comparing the transapical and transfemoral accesses. J Interv Cardiol. 2015;28:266–78.

    PubMed  Google Scholar 

  48. Fefer P, Bogdan A, Grossman Y, Berkovitch A, Brodov Y, Kuperstein R, Segev A, Guetta V, Barbash IM. Impact of rapid ventricular pacing on outcome after transcatheter aortic valve replacement. J Am Heart Assoc. 2018;7:e009038. https://doi.org/10.1161/JAHA.118.009038.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Shishikura D, Kataoka Y, Pisaniello AD, Delacroix S, Montarello JK, Nicholls SJ, Worthley SG. The extent of aortic atherosclerosis predicts the occurrence, severity, and recovery of acute kidney injury after transcatheter aortic valve replacement. Circ Cardiovasc Interv. 2018;11:1–11.

    Google Scholar 

  50. Thongprayoon C, Cheungpasitporn W, Podboy AJ, Gillaspie EA, Greason KL, Kashani KB. The effects of contrast media volume on acute kidney injury after transcatheter aortic valve replacement: a systematic review and meta-analysis. J Evid Based Med. 2016;9:188–93.

    PubMed  Google Scholar 

  51. Singh V, Rodriguez AP, Thakkar B, et al. Comparison of outcomes of transcatheter aortic valve replacement plus percutaneous coronary intervention versus transcatheter aortic valve replacement alone in the United States. Am J Cardiol. 2016;118:1698–704.

    PubMed  Google Scholar 

  52. Mehran R, Aymong ED, Nikolsky E, et al. A simple risk score for prediction of contrast-induced nephropathy after percutaneous coronary intervention: development and initial validation. J Am Coll Cardiol. 2004;44:1393–9.

    PubMed  Google Scholar 

  53. Palomba H, de Castro I, Neto ALC, Lage S, Yu L. Acute kidney injury prediction following elective cardiac surgery: AKICS score. Kidney Int. 2007;72:624–31.

    CAS  PubMed  Google Scholar 

  54. Ng SY, Sanagou M, Wolfe R, Cochrane A, Smith JA, Reid CM. Prediction of acute kidney injury within 30 days of cardiac surgery. J Thorac Cardiovasc Surg. 2014;147:1875–1883.e1.

    PubMed  Google Scholar 

  55. Zivkovic N, Elbaz-Greener G, Qui F, et al. Bedside risk score for prediction of acute kidney injury post trans-catheter aortic valve replacement. Can J Cardiol. 2017;33:S105–6.

    Google Scholar 

  56. Zaleska-Kociecka M, Skrobisz A, Wojtkowska I, Grabowski M, Dabrowski M, Kusmierski K, Piotrowska K, Imiela J, Stepinska J. Serum beta-2 microglobulin levels for predicting acute kidney injury complicating aortic valve replacement. Interact Cardiovasc Thorac Surg. 2017;25:533–40.

    PubMed  Google Scholar 

  57. Astor BC, Shafi T, Hoogeveen RC, Matsushita K, Ballantyne CM, Inker LA, Coresh J. Novel markers of kidney function as predictors of ESRD, cardiovascular disease, and mortality in the general population. Am J Kidney Dis. 2012;59:653–62.

    CAS  PubMed  Google Scholar 

  58. Dusse F, Edayadiyil-Dudasova M, Thielmann M, Wendt D, Kahlert P, Demircioglu E, Jakob H, Schaefer ST, Pilarczyk K. Early prediction of acute kidney injury after transapical and transaortic aortic valve implantation with urinary G1 cell cycle arrest biomarkers. BMC Anesthesiol. 2016;16:76.

    PubMed  PubMed Central  Google Scholar 

  59. Lewis GD, Asnani A, Gerszten RE. Application of metabolomics to cardiovascular biomarker and pathway discovery. J Am Coll Cardiol. 2008;52:117–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Lewis GD, Gerszten RE. Toward metabolomic signatures of cardiovascular disease. Circ Cardiovasc Genet. 2010;3:119–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Ussher JR, Elmariah S, Gerszten RE, Dyck JRB. The emerging role of metabolomics in the diagnosis and prognosis of cardiovascular disease. J Am Coll Cardiol. 2016;68:2850–70.

    CAS  PubMed  Google Scholar 

  62. Rhee EP, Clish CB, Ghorbani A, et al. A combined epidemiologic and metabolomic approach improves CKD prediction. J Am Soc Nephrol. 2013;24:1330–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Goek O-N, Prehn C, Sekula P, et al. Metabolites associate with kidney function decline and incident chronic kidney disease in the general population. Nephrol Dial Transplant. 2013;28:2131–8.

    CAS  PubMed  Google Scholar 

  64. Yu B, Zheng Y, Nettleton JA, Alexander D, Coresh J, Boerwinkle E. Serum metabolomic profiling and incident CKD among African Americans. Clin J Am Soc Nephrol. 2014;9:1410–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Levey AS, Perrone RD, Madias NE. Serum creatinine and renal function. Annu Rev Med. 1988;39:465–90.

    CAS  PubMed  Google Scholar 

  66. Elmariah S, Farrell LA, Daher M, et al. Metabolite profiles predict acute kidney injury and mortality in patients undergoing transcatheter aortic valve replacement. J Am Heart Assoc. 2016;5:e002712.

    PubMed  PubMed Central  Google Scholar 

  67. Rihal CS, Kashani KB. Prevention of acute kidney injury with the RenalGuard System in patients undergoing transcatheter aortic valve replacement: the PROTECT-TAVI trial (PROphylactic effecT of furosEmide-induCed diuresis with matched isotonic intravenous hydraTion in Transcatheter Aortic Valve Implantation). JACC Cardiovasc Interv. 2015;8:1605–7.

    PubMed  Google Scholar 

  68. Maher ER, Young G, Smyth-Walsh B, Pugh S, Curtis JR. Aortic and mitral valve calcification in patients with end-stage renal disease. Lancet. 1987;2:875–7.

    CAS  PubMed  Google Scholar 

  69. Straumann E, Meyer B, Misteli M, Blumberg A, Jenzer HR. Aortic and mitral valve disease in patients with end stage renal failure on long-term haemodialysis. Br Heart J. 1992;67:236–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Ribeiro S, Ramos A, Brandao A, Rebelo JR, Guerra A, Resina C, Vila-Lobos A, Carvalho F, Remedio F, Ribeiro F. Cardiac valve calcification in haemodialysis patients: role of calcium-phosphate metabolism. Nephrol Dial Transplant. 1998;13:2037–40.

    CAS  PubMed  Google Scholar 

  71. Raggi P, Boulay A, Chasan-Taber S, Amin N, Dillon M, Burke SK, Chertow GM. Cardiac calcification in adult hemodialysis patients. A link between end-stage renal disease and cardiovascular disease? J Am Coll Cardiol. 2002;39:695–701.

    PubMed  Google Scholar 

  72. Varma R, Aronow WS, McClung JA, Garrick R, Vistainer PF, Weiss MB, Belkin RN. Prevalence of valve calcium and association of valve calcium with coronary artery disease, atherosclerotic vascular disease, and all-cause mortality in 137 patients undergoing hemodialysis for chronic renal failure. Am J Cardiol. 2005;95:742–3.

    CAS  PubMed  Google Scholar 

  73. Rattazzi M, Bertacco E, Del Vecchio A, Puato M, Faggin E, Pauletto P. Aortic valve calcification in chronic kidney disease. Nephrol Dial Transplant. 2013;28:2968–76.

    CAS  PubMed  Google Scholar 

  74. Kume T, Kawamoto T, Akasaka T, Watanabe N, Toyota E, Neishi Y, Wada N, Okahashi N, Yoshida K. Rate of progression of valvular aortic stenosis in patients undergoing dialysis. J Am Soc Echocardiogr. 2006;19:914–8.

    PubMed  Google Scholar 

  75. Perkovic V, Hunt D, Griffin SV, du Plessis M, Becker GJ. Accelerated progression of calcific aortic stenosis in dialysis patients. Nephron Clin Pract. 2003;94:c40–5.

    PubMed  Google Scholar 

  76. Shroff R, Long DA, Shanahan C. Mechanistic insights into vascular calcification in CKD. J Am Soc Nephrol. 2013;24:179–89.

    CAS  PubMed  Google Scholar 

  77. Aikawa E, Libby P. A rock and a hard place. Circulation. 2017;135:1951–5.

    PubMed  PubMed Central  Google Scholar 

  78. Adijiang A, Goto S, Uramoto S, Nishijima F, Niwa T. Indoxyl sulphate promotes aortic calcification with expression of osteoblast-specific proteins in hypertensive rats. Nephrol Dial Transplant. 2008;23:1892–901.

    CAS  PubMed  Google Scholar 

  79. Kahn MR, Robbins MJ, Kim MC, Fuster V. Management of cardiovascular disease in patients with kidney disease. Nat Rev Cardiol. 2013;10:261–73.

    CAS  PubMed  Google Scholar 

  80. Liu JY, Birkmeyer NJ, Sanders JH, et al. Risks of morbidity and mortality in dialysis patients undergoing coronary artery bypass surgery. Northern New England Cardiovascular Disease Study Group. Circulation. 2000;102:2973–7.

    CAS  PubMed  Google Scholar 

  81. Charytan DM, Kuntz RE. Risks of coronary artery bypass surgery in dialysis-dependent patients--analysis of the 2001 National Inpatient Sample. Nephrol Dial Transplant. 2007;22:1665–71.

    PubMed  Google Scholar 

  82. Dumonteil N, van der Boon RMA, Tchetche D, et al. Impact of preoperative chronic kidney disease on short- and long-term outcomes after transcatheter aortic valve implantation: a Pooled-RotterdAm-Milano-Toulouse in Collaboration Plus (PRAGMATIC-Plus) initiative substudy. Am Heart J. 2013;165:752–60.

    PubMed  Google Scholar 

  83. Hansen JW, Foy A, Yadav P, et al. Death and dialysis after transcatheter aortic valve replacement. J Am Coll Cardiol Intv. 2017;10:2064–75.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sammy Elmariah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cigarroa, R.J., Elmariah, S. (2020). Acute Kidney Injury After Transcatheter Aortic Valve Replacement. In: Rangaswami, J., Lerma, E., McCullough, P. (eds) Kidney Disease in the Cardiac Catheterization Laboratory . Springer, Cham. https://doi.org/10.1007/978-3-030-45414-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45414-2_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45413-5

  • Online ISBN: 978-3-030-45414-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics