Skip to main content

Long Noncoding RNAs as Drivers of Acquired Chemoresistance in Hepatocellular Carcinoma

  • Chapter
  • First Online:
The Chemical Biology of Long Noncoding RNAs

Part of the book series: RNA Technologies ((RNATECHN,volume 11))

  • 483 Accesses

Abstract

Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death worldwide. While recent improvements in the clinical management of HCC have yielded more favorable outcomes for patients, five-year survival rates for these individuals remain poor. Effective treatment of HCC is complicated by a complex disease etiology, significant intertumoral and intratumoral heterogeneity, the frequent absence of early-stage symptoms, and a high potential for metastasis. HCC is highly refractory to chemotherapy, largely due to the acquisition of multidrug resistance, which limits effective pharmacological treatments for HCC patients. While the mechanisms underlying the development of chemoresistance in HCC are diverse, a number of recent studies have positioned long noncoding RNAs (lncRNAs) as key participants in the process. Here, we provide an overview of HCC and the obstacles posed by acquired chemoresistance and summarize the empirical evidence supporting a role for lncRNAs in the development of acquired resistance, focusing on the specific molecular mechanisms by which these molecules attenuate chemosensitivity. We also discuss the contribution of extracellular vesicles as mediators of lncRNA-induced chemoresistance. Although newly emerging, the literature has already yielded important insights into the complex mechanisms by which lncRNAs modulate chemoresistance in HCC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abou-Alfa GK, Huitzil-Melendez FD, O’Reilly EM et al (2008) Current management of advanced hepatocellular carcinoma. Gastrointest Cancer Res 2:64–70

    PubMed  PubMed Central  Google Scholar 

  • Abou-Alfa GK, Meyer T, Cheng AL et al (2018) Cabozantinib in patients with advanced and progressing hepatocellular carcinoma. N Engl J Med 379:54–63

    CAS  PubMed  PubMed Central  Google Scholar 

  • Abudoureyimu M, Zhou H, Zhi Y et al (2019) Recent progress in the emerging role of exosome in hepatocellular carcinoma. Cell Prolif 52:e12541

    PubMed  Google Scholar 

  • Adriaens C, Standaert L, Barra J et al (2016) p53 induces formation of NEAT1 lncRNA-containing paraspeckles that modulate replication stress response and chemosensitivity. Nat Med 22:861–868

    CAS  PubMed  Google Scholar 

  • Akinyemiju T, Abera S, Ahmed M et al (2017) The burden of primary liver Cancer and underlying etiologies from 1990 to 2015 at the global, regional, and National Level: results from the global burden of disease study 2015. JAMA Oncol 3:1683–1691

    PubMed  PubMed Central  Google Scholar 

  • Alkofer B, Lepennec V, Chiche L (2011) Hepatocellular cancer in the non-cirrhotic liver. J Visc Surg 148:3–11

    CAS  PubMed  Google Scholar 

  • An J, Lv W, Zhang Y (2017) LncRNA NEAT1 contributes to paclitaxel resistance of ovarian cancer cells by regulating ZEB1 expression via miR-194. Onco Targets Ther 10:5377–5390

    PubMed  PubMed Central  Google Scholar 

  • Balogh J, Victor D III, Asham EH et al (2016) Hepatocellular carcinoma: a review. J Hepatocell Carcinoma 3:41–53

    PubMed  PubMed Central  Google Scholar 

  • Bhan A, Mandal SS (2015) LncRNA HOTAIR: a master regulator of chromatin dynamics and cancer. Biochim Biophys Acta 1856:151–164

    CAS  PubMed  PubMed Central  Google Scholar 

  • Biswas S, Guix M, Rinehart C et al (2007) Inhibition of TGF-beta with neutralizing antibodies prevents radiation-induced acceleration of metastatic cancer progression. J Clin Invest 117:1305–1313

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bray F, Ferlay J, Soerjomataram I et al (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424

    Google Scholar 

  • Bruix J, Cheng AL, Meinhardt G et al (2017a) Prognostic factors and predictors of sorafenib benefit in patients with hepatocellular carcinoma: analysis of two phase III studies. J Hepatol 67:999–1008

    CAS  PubMed  Google Scholar 

  • Bruix J, Qin S, Merle P et al (2017b) Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 389:56–66

    CAS  PubMed  Google Scholar 

  • Cai C, Huo Q, Wang X et al (2017) SNHG16 contributes to breast cancer cell migration by competitively binding miR-98 with E2F5. Biochem Biophys Res Commun 485:272–278

    CAS  PubMed  Google Scholar 

  • Cao X, Xu J, Yue D (2018) LncRNA-SNHG16 predicts poor prognosis and promotes tumor proliferation through epigenetically silencing p21 in bladder cancer. Cancer Gene Ther 25:10–17

    CAS  PubMed  Google Scholar 

  • Caruso S, Calatayud AL, Pilet J et al (2019) Analysis of liver Cancer cell lines identifies agents with likely efficacy against hepatocellular carcinoma and markers of response. Gastroenterology 157:760–776

    CAS  PubMed  Google Scholar 

  • Chen J, Jin R, Zhao J et al (2015) Potential molecular, cellular and microenvironmental mechanism of sorafenib resistance in hepatocellular carcinoma. Cancer Lett 367:1–11

    CAS  PubMed  Google Scholar 

  • Chen ZJ, Zhang Z, Xie BB et al (2016) Clinical significance of up-regulated lncRNA NEAT1 in prognosis of ovarian cancer. Eur Rev Med Pharmacol Sci 20:3373–3377

    PubMed  Google Scholar 

  • Chen Y, Shen Z, Zhi Y et al (2018) Long non-coding RNA ROR promotes radioresistance in hepatocelluar carcinoma cells by acting as a ceRNA for microRNA-145 to regulate RAD18 expression. Arch Biochem Biophys 645:117–125

    CAS  PubMed  Google Scholar 

  • Chen S, Cao Q, Wen W et al (2019) Targeted therapy for hepatocellular carcinoma: challenges and opportunities. Cancer Lett 460:1–9

    CAS  PubMed  Google Scholar 

  • Chiba T, Suzuki E, Negishi M et al (2012) 3-Deazaneplanocin a is a promising therapeutic agent for the eradication of tumor-initiating hepatocellular carcinoma cells. Int J Cancer 130:2557–2567

    CAS  PubMed  Google Scholar 

  • Dean M (2009) ABC transporters, drug resistance, and cancer stem cells. J Mammary Gland Biol Neoplasia 14:3–9

    PubMed  Google Scholar 

  • Dhamija E, Paul SB, Kedia S (2019) Non-alcoholic fatty liver disease associated with hepatocellular carcinoma: An increasing concern. Indian J Med Res 149:9–17

    CAS  PubMed  PubMed Central  Google Scholar 

  • DiStefano JK (2017) Long noncoding RNAs in the initiation, progression, and metastasis of hepatocellular carcinoma. Non-coding RNA Res 2:129–136

    Google Scholar 

  • DiStefano JK (2018) The emerging role of Long noncoding RNAs in human disease. Methods Mol Biol 1706:91–110

    CAS  PubMed  Google Scholar 

  • Doyle L, Ross DD (2003) Multidrug resistance mediated by the breast cancer resistance protein BCRP (ABCG2). Oncogene 22:7340–7358

    PubMed  Google Scholar 

  • El-Serag HB, Kanwal F (2014) Epidemiology of hepatocellular carcinoma in the United States: where are we? Where do we go? Hepatology 60:1767–1775

    PubMed  PubMed Central  Google Scholar 

  • Fang L, Sun J, Pan Z et al (2017) Long non-coding RNA NEAT1 promotes hepatocellular carcinoma cell proliferation through the regulation of miR-129-5p-VCP-IkappaB. Am J Physiol Gastrointest Liver Physiol 313:G150–G156

    PubMed  Google Scholar 

  • Forouzanfar MH, Alexander L, Anderson HR et al (2015) Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990-2013: a systematic analysis for the global burden of disease study 2013. Lancet 386:2287–2323

    PubMed  Google Scholar 

  • Fox AH, Nakagawa S, Hirose T et al (2018) Paraspeckles: where Long noncoding RNA meets phase separation. Trends Biochem Sci 43:124–135

    CAS  PubMed  Google Scholar 

  • Friemel J, Rechsteiner M, Frick L et al (2015) Intratumor heterogeneity in hepatocellular carcinoma. Clin Cancer Res 21:1951–1961

    CAS  PubMed  Google Scholar 

  • Furukawa M, Xiong Y (2005) BTB protein Keap1 targets antioxidant transcription factor Nrf2 for ubiquitination by the Cullin 3-Roc1 ligase. Mol Cell Biol 25:162–171

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gabory A, Jammes H, Dandolo L (2010) The H19 locus: role of an imprinted non-coding RNA in growth and development. BioEssays 32:473–480

    CAS  PubMed  Google Scholar 

  • Galle PR, Forner A, Llovet JM et al (2018) EASL clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol 69:182–236

    Google Scholar 

  • Gao Q, Wang ZC, Duan M et al (2017) Cell culture system for analysis of genetic heterogeneity within hepatocellular carcinomas and response to pharmacologic agents. Gastroenterology 152(232–242):e234

    Google Scholar 

  • Georgescu MM (2010) PTEN tumor suppressor network in PI3K-Akt pathway control. Genes Cancer 1:1170–1177

    CAS  PubMed  PubMed Central  Google Scholar 

  • Golfieri R, Bargellini I, Spreafico C et al (2019) Patients with Barcelona clinic liver Cancer stages B and C hepatocellular carcinoma: time for a subclassification. Liver Cancer 8:78–91

    CAS  PubMed  Google Scholar 

  • Goodell MA, Rosenzweig M, Kim H et al (1997) Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nat Med 3:1337–1345

    CAS  PubMed  Google Scholar 

  • Guo T, Wu P, Liu P et al (2018) Identifying the best anticancer agent combination in TACE for HCC patients: a network meta-analysis. J Cancer 9:2640–2649

    PubMed  PubMed Central  Google Scholar 

  • Gupta RA, Shah N, Wang KC et al (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464:1071–1076

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haraguchi N, Inoue H, Tanaka F et al (2006a) Cancer stem cells in human gastrointestinal cancers. Hum Cell 19:24–29

    PubMed  Google Scholar 

  • Haraguchi N, Utsunomiya T, Inoue H et al (2006b) Characterization of a side population of cancer cells from human gastrointestinal system. Stem Cells 24:506–513

    CAS  PubMed  Google Scholar 

  • Haraguchi N, Ishii H, Mimori K et al (2010) CD13 is a therapeutic target in human liver cancer stem cells. J Clin Invest 120:3326–3339

    CAS  PubMed  PubMed Central  Google Scholar 

  • He Y, Meng XM, Huang C et al (2014) Long noncoding RNAs: novel insights into hepatocelluar carcinoma. Cancer Lett 344:20–27

    CAS  PubMed  Google Scholar 

  • Ho DW, Yang ZF, Yi K et al (2012) Gene expression profiling of liver cancer stem cells by RNA-sequencing. PLoS One 7:e37159

    CAS  PubMed  PubMed Central  Google Scholar 

  • Holczbauer A, Factor VM, Andersen JB et al (2013) Modeling pathogenesis of primary liver cancer in lineage-specific mouse cell types. Gastroenterology 145:221–231

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu C, Li H, Li J et al (2008) Analysis of ABCG2 expression and side population identifies intrinsic drug efflux in the HCC cell line MHCC-97L and its modulation by Akt signaling. Carcinogenesis 29:2289–2297

    CAS  PubMed  Google Scholar 

  • Huang MD, Chen WM, Qi FZ et al (2015) Long non-coding RNA TUG1 is up-regulated in hepatocellular carcinoma and promotes cell growth and apoptosis by epigenetically silencing of KLF2. Mol Cancer 14:165

    PubMed  PubMed Central  Google Scholar 

  • Huang H, Chen J, Ding CM et al (2018) LncRNA NR2F1-AS1 regulates hepatocellular carcinoma oxaliplatin resistance by targeting ABCC1 via miR-363. J Cell Mol Med 22:3238–3245

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ji P, Diederichs S, Wang W et al (2003) MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene 22:8031–8041

    PubMed  Google Scholar 

  • Jia Q, Zhang X, Deng T et al (2013) Positive correlation of Oct4 and ABCG2 to chemotherapeutic resistance in CD90(+)CD133(+) liver cancer stem cells. Cell Reprogram 15:143–150

    CAS  PubMed  Google Scholar 

  • Keklikoglou I, Cianciaruso C, Guc E et al (2019) Chemotherapy elicits pro-metastatic extracellular vesicles in breast cancer models. Nat Cell Biol 21:190–202

    CAS  PubMed  Google Scholar 

  • Kensler TW, Wakabayashi N (2010) Nrf2: friend or foe for chemoprevention? Carcinogenesis 31:90–99

    CAS  PubMed  Google Scholar 

  • Kessler SM, Hosseini K, Hussein UK et al (2019) Hepatocellular carcinoma and nuclear Paraspeckles: induction in Chemoresistance and prediction for poor survival. Cell Physiol Biochem 52:787–801

    CAS  PubMed  Google Scholar 

  • Kim MJ, Choi YK, Park SY et al (2017) PPARdelta Reprograms Glutamine Metabolism in Sorafenib-Resistant HCC. Mol Cancer Res 15:1230–1242

    CAS  PubMed  Google Scholar 

  • Kogure T, Lin WL, Yan IK et al (2011) Intercellular nanovesicle-mediated microRNA transfer: a mechanism of environmental modulation of hepatocellular cancer cell growth. Hepatology 54:1237–1248

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kudo M, Finn RS, Qin S et al (2018) Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. Lancet 391:1163–1173

    CAS  PubMed  Google Scholar 

  • Kulik L, El-Serag HB (2019) Epidemiology and Management of Hepatocellular Carcinoma. Gastroenterology 156(477–491):e471

    Google Scholar 

  • Lai MC, Yang Z, Zhou L et al (2012) Long non-coding RNA MALAT-1 overexpression predicts tumor recurrence of hepatocellular carcinoma after liver transplantation. Med Oncol 29:1810–1816

    CAS  PubMed  Google Scholar 

  • Lan X, Wu YZ, Wang Y et al (2013) CD133 silencing inhibits stemness properties and enhances chemoradiosensitivity in CD133-positive liver cancer stem cells. Int J Mol Med 31:315–324

    CAS  PubMed  Google Scholar 

  • Lee S, Kim KM, Lee SJ et al (2017) Hepatic arterial damage after transarterial chemoembolization for the treatment of hepatocellular carcinoma: comparison of drug-eluting bead and conventional chemoembolization in a retrospective controlled study. Acta Radiol 58:131–139

    PubMed  Google Scholar 

  • Lee M, Ko H, Yun M (2018) Cancer metabolism as a mechanism of treatment resistance and potential therapeutic target in hepatocellular carcinoma. Yonsei Med J 59:1143–1149

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Chen JN, Zeng TT et al (2016a) CD133+ liver cancer stem cells resist interferon-gamma-induced autophagy. BMC Cancer 16:15

    PubMed  PubMed Central  Google Scholar 

  • Li Z, Shen J, Chan MT et al (2016b) TUG1: a pivotal oncogenic long non-coding RNA of human cancers. Cell Prolif 49:471–475

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li R, Harvey AR, Hodgetts SI et al (2017a) Functional dissection of NEAT1 using genome editing reveals substantial localization of the NEAT1_1 isoform outside paraspeckles. RNA 23:872–881

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Ye Y, Feng B et al (2017b) Long noncoding RNA lncARSR promotes doxorubicin resistance in hepatocellular carcinoma via modulating PTEN-PI3K/Akt pathway. J Cell Biochem 118:4498–4507

    CAS  PubMed  Google Scholar 

  • Li J, Yan Y, Ang L et al (2019a) Extracellular vesicles-derived OncomiRs mediate communication between Cancer cells and Cancer-associated hepatic stellate cells in hepatocellular carcinoma microenvironment. Carcinogenesis May 29, pii: bgz096

    Google Scholar 

  • Li L, Knutsdottir H, Hui K et al (2019b) Human primary liver cancer organoids reveal intratumor and interpatient drug response heterogeneity. JCI Insight 4(2):pii: 121490

    Google Scholar 

  • Lian D, Amin B, Du D et al (2017) Enhanced expression of the long non-coding RNA SNHG16 contributes to gastric cancer progression and metastasis. Cancer Biomark 21:151–160

    PubMed  Google Scholar 

  • Liu Z, Chang Q, Yang F et al (2017) Long non-coding RNA NEAT1 overexpression is associated with unfavorable prognosis in patients with hepatocellular carcinoma after hepatectomy: a Chinese population-based study. Eur J Surg Oncol 43:1697–1703

    CAS  PubMed  Google Scholar 

  • Liu TH, Shao YY, Lu LC et al (2019) Considerations of heterogeneity in clinical trials for hepatocellular carcinoma. Expert Rev Gastroenterol Hepatol 13:615–621

    CAS  PubMed  Google Scholar 

  • Llovet JM, Bru C, Bruix J (1999) Prognosis of hepatocellular carcinoma: the BCLC staging classification. Semin Liver Dis 19:329–338

    CAS  PubMed  Google Scholar 

  • Llovet JM, Ricci S, Mazzzaferro V et al (2008) Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 359:378–390

    CAS  PubMed  Google Scholar 

  • Llovet JM, Ducreux M, Lencioni R et al (2012) EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol 56:908–943

    Google Scholar 

  • Llovet JM, Zucman-Rossi J, Pikarsky E et al (2016) Hepatocellular carcinoma. Nat Rev Dis Primers 2:16018

    PubMed  Google Scholar 

  • Loewen G, Jayawickramarajah J, Zhuo Y et al (2014) Functions of lncRNA HOTAIR in lung cancer. J Hematol Oncol 7:90

    PubMed  PubMed Central  Google Scholar 

  • Long Q, Zou X, Song Y et al (2019) PFKFB3/HIF-1alpha feedback loop modulates sorafenib resistance in hepatocellular carcinoma cells. Biochem Biophys Res Commun 513:642–650

    CAS  PubMed  Google Scholar 

  • Luo JH, Ren B, Keryanov S et al (2006) Transcriptomic and genomic analysis of human hepatocellular carcinomas and hepatoblastomas. Hepatology 44:1012–1024

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luo ZF, Zhao D, Li XQ et al (2016) Clinical significance of HOTAIR expression in colon cancer. World J Gastroenterol 22:5254–5259

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mashouri L, Yousefi H, Aref AR et al (2019) Exosomes: composition, biogenesis, and mechanisms in cancer metastasis and drug resistance. Mol Cancer 18:75

    PubMed  PubMed Central  Google Scholar 

  • Matouk IJ, DeGroot N, Mezan S et al (2007) The H19 non-coding RNA is essential for human tumor growth. PLoS One 2:e845

    PubMed  PubMed Central  Google Scholar 

  • Mello SS, Sinow C, Raj N et al (2017) Neat1 is a p53-inducible lincRNA essential for transformation suppression. Genes Dev 31:1095–1108

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mendez-Blanco C, Fondevila F, Garcia-Palomo A et al (2018) Sorafenib resistance in hepatocarcinoma: role of hypoxia-inducible factors. Exp Mol Med 50:134

    PubMed Central  Google Scholar 

  • Mittal S, El-Serag HB (2013) Epidemiology of hepatocellular carcinoma: consider the population. J Clin Gastroenterol 47(Suppl):S2–S6

    PubMed  PubMed Central  Google Scholar 

  • Moran VA, Perera RJ, Khalil AM (2012) Emerging functional and mechanistic paradigms of mammalian long non-coding RNAs. Nucleic Acids Res 40:6391–6400

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nagano T, Fraser P (2011) No-nonsense functions for long noncoding RNAs. Cell 145:178–181

    CAS  PubMed  Google Scholar 

  • Nam HC, Jang B, Song MJ (2016) Transarterial chemoembolization with drug-eluting beads in hepatocellular carcinoma. World J Gastroenterol 22:8853–8861

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nishida N, Kitano M, Sakurai T et al (2015) Molecular mechanism and prediction of Sorafenib Chemoresistance in human hepatocellular carcinoma. Dig Dis 33:771–779

    PubMed  Google Scholar 

  • Niu L, Liu L, Yang S et al (2017) New insights into sorafenib resistance in hepatocellular carcinoma: responsible mechanisms and promising strategies. Biochim Biophys Acta Rev Cancer 1868:564–570

    CAS  PubMed  Google Scholar 

  • Panzitt K, Tschernatsch MM, Guelly C et al (2007) Characterization of HULC, a novel gene with striking up-regulation in hepatocellular carcinoma, as noncoding RNA. Gastroenterology 132:330–342

    CAS  PubMed  Google Scholar 

  • Parent R, Plissonnier ML, Bancel B et al (2014) Diversity of hepatocellular carcinoma clones bearing hematopoietic malignancies-related chromosomal translocation. J Cell Biochem 115:666–677

    CAS  PubMed  Google Scholar 

  • Piao LS, Hur W, Kim TK et al (2012) CD133+ liver cancer stem cells modulate radioresistance in human hepatocellular carcinoma. Cancer Lett 315:129–137

    CAS  PubMed  Google Scholar 

  • Prieto-Dominguez N, Ordonez R, Fernandez A et al (2016) Modulation of autophagy by Sorafenib: effects on treatment response. Front Pharmacol 7:151

    PubMed  PubMed Central  Google Scholar 

  • Qu L, Ding J, Chen C et al (2016a) Exosome-transmitted lncARSR promotes Sunitinib resistance in renal Cancer by acting as a competing endogenous RNA. Cancer Cell 29:653–668

    CAS  PubMed  Google Scholar 

  • Qu Z, Wu J, Wu J et al (2016b) Exosomes derived from HCC cells induce sorafenib resistance in hepatocellular carcinoma both in vivo and in vitro. J Exp Clin Cancer Res 35:159

    PubMed  PubMed Central  Google Scholar 

  • Rachmilewitz J, Goshen R, Ariel I et al (1992) Parental imprinting of the human H19 gene. FEBS Lett 309:25–28

    CAS  PubMed  Google Scholar 

  • Raveh E, Matouk IJ, Gilon M et al (2015) The H19 Long non-coding RNA in cancer initiation, progression and metastasis - a proposed unifying theory. Mol Cancer 14:184

    PubMed  PubMed Central  Google Scholar 

  • Reis SP, Sutphin PD, Singal AG et al (2017) Tumor enhancement and heterogeneity are associated with treatment response to drug-eluting bead chemoembolization for hepatocellular carcinoma. J Comput Assist Tomogr 41:289–293

    PubMed  Google Scholar 

  • Rinn JL, Kertesz M, Wang JK et al (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129:1311–1323

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roninson IB, Chin JE, Choi KG et al (1986) Isolation of human mdr DNA sequences amplified in multidrug-resistant KB carcinoma cells. Proc Natl Acad Sci U S A 83:4538–4542

    CAS  PubMed  PubMed Central  Google Scholar 

  • Safaei R, Larson BJ, Cheng TC et al (2005) Abnormal lysosomal trafficking and enhanced exosomal export of cisplatin in drug-resistant human ovarian carcinoma cells. Mol Cancer Ther 4:1595–1604

    CAS  PubMed  Google Scholar 

  • Saunders NA, Simpson F, Thompson EW et al (2012) Role of intratumoural heterogeneity in cancer drug resistance: molecular and clinical perspectives. EMBO Mol Med 4:675–684

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schultheiss CS, Laggai S, Czepukojc B et al (2017) The long non-coding RNA H19 suppresses carcinogenesis and chemoresistance in hepatocellular carcinoma. Cell Stress 1:37–54

    PubMed  PubMed Central  Google Scholar 

  • Shedden K, Xie XT, Chandaroy P et al (2003) Expulsion of small molecules in vesicles shed by cancer cells: association with gene expression and chemosensitivity profiles. Cancer Res 63:4331–4337

    CAS  PubMed  Google Scholar 

  • Shi GM, Xu Y, Fan J et al (2008) Identification of side population cells in human hepatocellular carcinoma cell lines with stepwise metastatic potentials. J Cancer Res Clin Oncol 134:1155–1163

    CAS  PubMed  Google Scholar 

  • Shi L, Chen ZG, Wu LL et al (2014) miR-340 reverses cisplatin resistance of hepatocellular carcinoma cell lines by targeting Nrf2-dependent antioxidant pathway. Asian Pac J Cancer Prev 15:10439–10444

    PubMed  Google Scholar 

  • Shi L, Wu L, Chen Z et al (2015) MiR-141 activates Nrf2-dependent antioxidant pathway via Down-regulating the expression of Keap1 conferring the resistance of hepatocellular carcinoma cells to 5-fluorouracil. Cell Physiol Biochem 35:2333–2348

    CAS  PubMed  Google Scholar 

  • Shi Y, Yang X, Xue X et al (2018) HANR promotes hepatocellular carcinoma progression via miR-214/EZH2/TGF-beta axis. Biochem Biophys Res Commun 506:189–193

    CAS  PubMed  Google Scholar 

  • Song Z, Liu T, Chen J et al (2019) HIF-1alpha-induced RIT1 promotes liver cancer growth and metastasis and its deficiency increases sensitivity to sorafenib. Cancer Lett 460:96–107

    CAS  PubMed  Google Scholar 

  • Sukowati CH, Rosso N, Croce LS et al (2010) Hepatic cancer stem cells and drug resistance: relevance in targeted therapies for hepatocellular carcinoma. World J Hepatol 2:114–126

    PubMed  PubMed Central  Google Scholar 

  • Sun W, Cabrera R (2018) Systemic treatment of patients with advanced, Unresectable hepatocellular carcinoma: emergence of therapies. J Gastrointest Cancer 49:107–115

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Ma L (2019) New insights into Long non-coding RNA MALAT1 in Cancer and metastasis. Cancers (Basel) 11:216

    CAS  Google Scholar 

  • Sun JY, Yin T, Zhang XY et al (2019) Therapeutic advances for patients with intermediate hepatocellular carcinoma. J Cell Physiol 234:12116–12121

    CAS  PubMed  Google Scholar 

  • Taguchi K, Motohashi H, Yamamoto M (2011) Molecular mechanisms of the Keap1-Nrf2 pathway in stress response and cancer evolution. Genes Cells 16:123–140

    CAS  PubMed  Google Scholar 

  • Takahashi K, Yan IK, Haga H et al (2014a) Modulation of hypoxia-signaling pathways by extracellular linc-RoR. J Cell Sci 127:1585–1594

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi K, Yan IK, Kogure T et al (2014b) Extracellular vesicle-mediated transfer of long non-coding RNA ROR modulates chemosensitivity in human hepatocellular cancer. FEBS Open Bio 4:458–467

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi K, Yan IK, Wood J et al (2014c) Involvement of extracellular vesicle long noncoding RNA (linc-VLDLR) in tumor cell responses to chemotherapy. Mol Cancer Res 12:1377–1387

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tandia M, Mhiri A, Paule B et al (2017) Correlation between clinical response to sorafenib in hepatocellular carcinoma treatment and polymorphisms of P-glycoprotein (ABCB1) and of breast cancer resistance protein (ABCG2): monocentric study. Cancer Chemother Pharmacol 79:759–766

    CAS  PubMed  Google Scholar 

  • Teufel M, Seidel H, Kochert K et al (2019) Biomarkers associated with response to Regorafenib in patients with hepatocellular carcinoma. Gastroenterology 156:1731–1741

    CAS  PubMed  Google Scholar 

  • Tricoli L, Niture S, Chimeh U et al (2019) Role of microRNAs in the development of hepatocellular carcinoma and drug resistance. Front Biosci (Landmark Ed) 24:382–391

    Google Scholar 

  • Tsang WP, Kwok TT (2007) Riboregulator H19 induction of MDR1-associated drug resistance in human hepatocellular carcinoma cells. Oncogene 26:4877–4881

    CAS  PubMed  Google Scholar 

  • Tsochatzis EA, Bosch J, Burroughs AK et al (2014) Liver cirrhosis. Lancet 383:1749–1761

    PubMed  Google Scholar 

  • van Niel G et al (2018) Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol 19:213–228

    PubMed  Google Scholar 

  • Wang KC, Chang HY (2011) Molecular mechanisms of long noncoding RNAs. Mol Cell 43:904–914

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Liu X, Wu H et al (2010) CREB up-regulates long non-coding RNA, HULC expression through interaction with microRNA-372 in liver cancer. Nucleic Acids Res 38:5366–5383

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang ZC, Liu LZ, Liu XY et al (2015) Genetic polymorphisms of the multidrug resistance 1 gene MDR1 and the risk of hepatocellular carcinoma. Tumour Biol 36:7007–7015

    CAS  PubMed  Google Scholar 

  • Woo HY, Heo J (2015) Transarterial chemoembolization using drug eluting beads for the treatment of hepatocellular carcinoma: now and future. Clin Mol Hepatol 21:344–348

    PubMed  PubMed Central  Google Scholar 

  • Wu L, Pan C, Wei X et al (2018) lncRNA KRAL reverses 5-fluorouracil resistance in hepatocellular carcinoma cells by acting as a ceRNA against miR-141. Cell Commun Signal 16:47

    Google Scholar 

  • Wu LL, Cai WP, Lei X et al (2019) NRAL mediates cisplatin resistance in hepatocellular carcinoma via miR-340-5p/Nrf2 axis. J Cell Commun Signal 13:99–112

    PubMed  Google Scholar 

  • Xiao J, Lv Y, Jin F et al (2017) LncRNA HANR promotes tumorigenesis and increase of Chemoresistance in hepatocellular carcinoma. Cell Physiol Biochem 43:1926–1938

    CAS  PubMed  Google Scholar 

  • Xiong H, Ni Z, He J et al (2017) LncRNA HULC triggers autophagy via stabilizing Sirt1 and attenuates the chemosensitivity of HCC cells. Oncogene 36:3528–3540

    CAS  PubMed  Google Scholar 

  • Xu Y, Wang J, Qiu M et al (2015) Upregulation of the long noncoding RNA TUG1 promotes proliferation and migration of esophageal squamous cell carcinoma. Tumour Biol 36:1643–1651

    CAS  PubMed  Google Scholar 

  • Xu F, Zha G, Wu Y et al (2018a) Overexpressing lncRNA SNHG16 inhibited HCC proliferation and chemoresistance by functionally sponging hsa-miR-93. Onco Targets Ther 11:8855–8863

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu X, Tao Y, Shan L et al (2018b) The role of MicroRNAs in hepatocellular carcinoma. J Cancer 9:3557–3569

    PubMed  PubMed Central  Google Scholar 

  • Yamada NO (2017) Extracellular vesicles: emerging mediators of intercellular communication and tumor angiogenesis. Ann Transl Med 5:59

    PubMed  PubMed Central  Google Scholar 

  • Yan B, Wang Z (2012) Long noncoding RNA: its physiological and pathological roles. DNA Cell Biol 31(Suppl 1):S34–S41

    PubMed  Google Scholar 

  • Yanez-Mo M, Siljander PR, Andreu Z et al (2015) Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles 4:27066

    PubMed  Google Scholar 

  • Yang Z, Zhou L, Wu LM et al (2011) Overexpression of long non-coding RNA HOTAIR predicts tumor recurrence in hepatocellular carcinoma patients following liver transplantation. Ann Surg Oncol 18:1243–1250

    PubMed  Google Scholar 

  • Yang L, Du Y, Yu P et al (2016) Long non-coding RNA TUG1 regulates the development of multidrug resistance in hepatocellular carcinoma via P-gp and MDR1. Int J Clin Exp Med 9:21388–21396

    CAS  Google Scholar 

  • Yang N, Li S, Li G et al (2017) The role of extracellular vesicles in mediating progression, metastasis and potential treatment of hepatocellular carcinoma. Oncotarget 8:3683–3695

    PubMed  Google Scholar 

  • Ye CG, Yeung JH, Huang GL et al (2013) Increased glutathione and mitogen-activated protein kinase phosphorylation are involved in the induction of doxorubicin resistance in hepatocellular carcinoma cells. Hepatol Res 43:289–299

    CAS  PubMed  Google Scholar 

  • Yoshimizu T, Miroglio A, Ripoche MA et al (2008) The H19 locus acts in vivo as a tumor suppressor. Proc Natl Acad Sci U S A 105:12417–12422

    CAS  PubMed  PubMed Central  Google Scholar 

  • Young TL, Matsuda T, Cepko CL (2005) The noncoding RNA taurine upregulated gene 1 is required for differentiation of the murine retina. Curr Biol 15:501–512

    CAS  PubMed  Google Scholar 

  • Yu M, Ohira M, Li Y et al (2009) High expression of ncRAN, a novel non-coding RNA mapped to chromosome 17q25.1, is associated with poor prognosis in neuroblastoma. Int J Oncol 34:931–938

    CAS  PubMed  Google Scholar 

  • Yu X, Li Z, Zheng H et al (2017) NEAT1: a novel cancer-related long non-coding RNA. Cell Prolif 50:e12329

    PubMed Central  Google Scholar 

  • Zeng C, Xu Y, Xu L et al (2014) Inhibition of long non-coding RNA NEAT1 impairs myeloid differentiation in acute promyelocytic leukemia cells. BMC Cancer 14:693

    PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Tang B, Song J et al (2019) Lnc-PDZD7 contributes to stemness properties and chemosensitivity in hepatocellular carcinoma through EZH2-mediated ATOH8 transcriptional repression. J Exp Clin Cancer Res 38:92

    PubMed  PubMed Central  Google Scholar 

  • Zhang EB, Yin DD, Sun M et al (2014) P53-regulated long non-coding RNA TUG1 affects cell proliferation in human non-small cell lung cancer, partly through epigenetically regulating HOXB7 expression. Cell Death Dis 5:e1243

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang K, Chen J, Song H et al (2017) SNHG16/miR-140-5p axis promotes esophagus cancer cell proliferation, migration and EMT formation through regulating ZEB1. Oncotarget 9:1028–1040

    PubMed  PubMed Central  Google Scholar 

  • Zheng Q, Zhao J, Yu H et al (2019) Tumor-specific transcripts are frequently expressed in hepatocellular carcinoma with clinical implication and potential function. Hepatology 71:259. https://doi.org/10.1002/hep.30805

    Article  CAS  PubMed  Google Scholar 

  • Zhou S, Schuetz JD, Bunting KD et al (2001) The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med 7:1028–1034

    CAS  PubMed  Google Scholar 

  • Zhou JJ, Cheng D, He XY et al (2017) Knockdown of long non-coding RNA HOTAIR sensitizes hepatocellular carcinoma cell to cisplatin by suppressing the STAT3/ABCB1 signaling pathway. Oncol Lett 14:7986–7992

    PubMed  PubMed Central  Google Scholar 

  • Zhu YJ, Zheng B, Wang HY et al (2017) New knowledge of the mechanisms of sorafenib resistance in liver cancer. Acta Pharmacol Sin 38:614–622

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johanna K. DiStefano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

DiStefano, J.K., Sukowati, C. (2020). Long Noncoding RNAs as Drivers of Acquired Chemoresistance in Hepatocellular Carcinoma. In: Jurga, S., Barciszewski, J. (eds) The Chemical Biology of Long Noncoding RNAs. RNA Technologies, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-030-44743-4_8

Download citation

Publish with us

Policies and ethics