Skip to main content

Part of the book series: Scalable Computing and Communications ((SCC))

  • 615 Accesses

Abstract

In this talk, we first survey the latest deep learning technology, presenting both theoretical and practical perspectives that are most relevant to our topic. Next, we review general problems and tasks in text/language processing, and underline the distinct properties that differentiate language processing from other tasks such as speech and image object recognition. More importantly, we highlight the general issues of language processing, and elaborate on how new deep learning technologies are proposed and fundamentally address these issues. We then place particular emphasis on several important applications: 1) web search, 2) online recommendation and 3) machine translation. For each of the tasks we discuss what particular architectures of deep learning models are suitable given the nature of the task, and how learning can be performed efficiently and effectively using end-to-end optimization strategies. Beyond providing a systematic review of the general theory, we also present hands-on experience in building state-of-the-art systems. In the talk, we will share our practice with concrete examples drawn from our first-hand experience in major research benchmarks and some industrial scale applications which we have been working on extensively in recent years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Baluja, H.A. Rowley, Boosting sex identification performance. Int. J. Comput. Vis. 71(1), 111–119 (2006). https://doi.org/10.1007/s11263-006-8910-9

    Article  Google Scholar 

  2. J. Bekios-Calfa, J.M. Buenaposada, L. Baumela, Revisiting linear discriminant techniques in gender recognition. IEEE Trans. Pattern Anal. Mach. Intell. 33(4), 858–864 (2011). https://doi.org/10.1109/TPAMI.2010.208

    Article  Google Scholar 

  3. Y. Cao, Y. Chen, D. Khosla, Spiking deep convolutional neural networks for energy-efficient object recognition. Int. J. Comput. Vis. 113(1), 54–66 (2015)

    Article  MathSciNet  Google Scholar 

  4. K.Y. Chang, C.S. Chen, A learning framework for age rank estimation based on face images with scattering transform. IEEE Trans. Image Process. 24(3), 785–798 (2015). https://doi.org/10.1109/TIP.2014.2387379

    Article  MathSciNet  MATH  Google Scholar 

  5. H. Chen, A. Gallagher, B. Girod, Face modeling with first name attributes. IEEE Trans. Pattern Anal. Mach. Intell. 36(9), 1860–1873 (2014). https://doi.org/10.1109/TPAMI.2014.2302443

    Article  Google Scholar 

  6. C. Christakou, A. Stafylopatis, A hybrid movie recommender system based on neural networks, in International Conference on Intelligent Systems Design and Applications. Isda’05. Proceedings (2005), pp. 500–505

    Google Scholar 

  7. M.K.K. Devi, R.T. Samy, S.V. Kumar, P. Venkatesh, Probabilistic neural network approach to alleviate sparsity and cold start problems in collaborative recommender systems, in Computational Intelligence and Computing Research (ICCIC), 2010 IEEE International Conference on (2010), pp. 1–4

    Google Scholar 

  8. Z. Dong, Y. Wu, M. Pei, Y. Jia, Vehicle type classification using a semisupervised convolutional neural network. Intell. Transp. Syst. IEEE Trans. 16(4), 1–10 (2015)

    Article  Google Scholar 

  9. E. Eidinger, R. Enbar, T. Hassner, Age and gender estimation of unfiltered faces. IEEE Trans. Inf. Forensics Secur. 9(12), 2170–2179 (2014). https://doi.org/10.1109/TIFS.2014.2359646

    Article  Google Scholar 

  10. G. Feng, G.-B. Huang, Q. Lin, R. Gay, Error minimized extreme learning machine with growth of hidden nodes and incremental learning. Neural Netw. IEEE Trans. 20(8), 1352–1357 (2009)

    Article  Google Scholar 

  11. G. Feng, Y. Lan, X. Zhang, Z. Qian, Dynamic adjustment of hidden node parameters for extreme learning machine. Cybern. IEEE Trans. 45(2), 279–288 (2015). https://doi.org/10.1109/TCYB.2014.2325594

    Article  Google Scholar 

  12. Y. Fu, G. Guo, T.S. Huang, Age synthesis and estimation via faces: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 32(11), 1955–1976 (2010). https://doi.org/10.1109/TPAMI.2010.36

    Article  Google Scholar 

  13. S. Fu, H. He, Z.G. Hou, Learning race from face: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 36(12), 2483–2509 (2014). https://doi.org/10.1109/TPAMI.2014.2321570

    Article  Google Scholar 

  14. J. Gao, X. He, L. Deng, Deep learning for web search and natural language processing. WSDM (2015). https://www.microsoft.com/en-us/research/publication/deep-learning-for-web-search-and-natural-language-processing/

  15. X. Geng, Z.H. Zhou, K. Smith-Miles, Automatic age estimation based on facial aging patterns. IEEE Trans. Pattern Anal. Mach. Intell. 29(12), 2234–2240 (2007). https://doi.org/10.1109/TPAMI.2007.70733

    Article  Google Scholar 

  16. B.A. Golomb, D.T. Lawrence, T.J. Sejnowski, Sexnet: a neural network identifies sex from human faces, in Proceedings of the 1990 Conference on Advances in Neural Information Processing Systems 3 (1990), pp. 572–577

    Google Scholar 

  17. A. Groza, O.M. Popa, Mining arguments from cancer documents using natural language processing and ontologies, in 2016 IEEE 12th International Conference on Intelligent Computer Communication and Processing (ICCP) (2016), pp. 77–84. https://doi.org/10.1109/ICCP.2016.7737126

  18. H. Guang-Bin, C. Lei, S. Chee-Kheong, Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans. Neural Netw. 17(4), 879–92 (2006)

    Article  Google Scholar 

  19. G. Guo, Y. Fu, C.R. Dyer, T.S. Huang, Image-based human age estimation by manifold learning and locally adjusted robust regression. IEEE Trans. Image Process. 17(7), 1178–1188 (2008). https://doi.org/10.1109/TIP.2008.924280

    Article  MathSciNet  Google Scholar 

  20. G. Guo, X. Wang, A study on human age estimation under facial expression changes, in Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on (2012), pp. 2547–2553. https://doi.org/10.1109/CVPR.2012.6247972

  21. H. Han, C. Otto, X. Liu, A.K. Jain, Demographic estimation from face images: human vs. machine performance. IEEE Trans. Pattern Anal. Mach. Intell. 37(6), 1148–1161 (2015). https://doi.org/10.1109/TPAMI.2014.2362759

  22. Q. He, T. Shang, F. Zhuang, Z. Shi, Parallel extreme learning machine for regression based on mapreduce. Neurocomputing 102, 52–58 (2013)

    Article  Google Scholar 

  23. J.C. Hoskins, D.M. Himmelblau, Artificial neural network models of knowledge representation in chemical engineering. Comput. Chem. Eng. 12(9C10), 881–890 (1988)

    Google Scholar 

  24. J.C. Hoskins, D.M. Himmelblau, Neural network models of knowledge representation in process engineering. Comput. Chem. Eng. 12(9–10), 881–890 (1988)

    Article  Google Scholar 

  25. F. Hrbein, J. Eggert, E. Rner, A cortex-inspired neural-symbolic network for knowledge representation, in International Conference on Neural-Symbolic Learning and Reasoning (2007), pp. 34–39

    Google Scholar 

  26. G.-B. Huang, L. Chen, Enhanced random search based incremental extreme learning machine. Neurocomputing 71(16), 3460–3468 (2008)

    Article  Google Scholar 

  27. G.-B. Huang, L. Chen, C.-K. Siew, Universal approximation using incremental constructive feedforward networks with random hidden nodes. Neural Netw. IEEE Trans. 17(4), 879–892 (2006)

    Article  Google Scholar 

  28. G.-B. Huang, Q.-Y. Zhu, C.-K. Siew, Extreme learning machine: theory and applications. Neurocomputing 70(1), 489–501 (2006)

    Article  Google Scholar 

  29. G.-B. Huang, D.H. Wang, Y. Lan, Extreme learning machines: a survey. Int. J. Mach. Learn. Cybern. 2(2), 107–122 (2011)

    Article  Google Scholar 

  30. G.-B. Huang, H. Zhou, X. Ding, R. Zhang, Extreme learning machine for regression and multiclass classification. Syst. Man Cybern B Cybern IEEE Trans. 42(2), 513–529 (2012). https://doi.org/10.1109/TSMCB.2011.2168604

    Article  Google Scholar 

  31. F. Jialue, X. Wei, W. Ying, G. Yihong, Human tracking using convolutional neural networks. IEEE Trans. Neural Netw. 21(10), 1610–1623 (2010)

    Article  Google Scholar 

  32. F.S. Khan, J. van de Weijer, R.M. Anwer, M. Felsberg, C. Gatta, Semantic pyramids for gender and action recognition. IEEE Trans. Image Process. 23(8), 3633–3645 (2014). https://doi.org/10.1109/TIP.2014.2331759

    Article  MathSciNet  MATH  Google Scholar 

  33. Y.H. Kwon, N. da Vitoria Lobo, Age classification from facial images, in Computer Vision and Pattern Recognition, 1994. Proceedings CVPR’94. 1994 IEEE Computer Society Conference on (1994), pp. 762–767. https://doi.org/10.1109/CVPR.1994.323894

  34. A. Lanitis, The fg-net aging database (2002). www-prima.inrialpes.fr/FGnet/html/benchmarks.html

  35. S. Lawrence, C. Giles, A.C. Tsoi, A. Back, Face recognition: a convolutional neural-network approach. IEEE Trans. Neural Netw. 8(1), 98–113 (1997)

    Article  Google Scholar 

  36. S. Lawrence, C.L. Giles, A.C. Tsoi, A.D. Back, Face recognition: a convolutional neural-network approach. IEEE Trans. Neural Netw. 8(1), 98–113 (1997). https://doi.org/10.1109/72.554195

    Article  Google Scholar 

  37. Y. Lecun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  38. G. Levi, T. Hassncer, Age and gender classification using convolutional neural networks, in 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) (2015), pp. 34–42

    Google Scholar 

  39. C. Li, Q. Liu, W. Dong, X. Zhu, J. Liu, H. Lu, Human age estimation based on locality and ordinal information. IEEE Trans. Cybern. 45(11), 2522–2534 (2015). https://doi.org/10.1109/TCYB.2014.2376517

    Article  Google Scholar 

  40. N.-Y. Liang, G.-B. Huang, P. Saratchandran, N. Sundararajan, A fast and accurate online sequential learning algorithm for feedforward networks. Neural Netw. IEEE Trans. 17(6), 1411–1423 (2006)

    Article  Google Scholar 

  41. F. Liu, G. Lin, C. Shen, CRF learning with {CNN} features for image segmentation. Pattern Recogn. 48(10), 2983–2992 (2015). https://doi.org/10.1016/j.patcog.2015.04.019, http://www.sciencedirect.com/science/article/pii/S0031320315001582. Discriminative Feature Learning from Big Data for Visual Recognition

  42. J. Luo, C.M. Vong, P.K. Wong, Sparse bayesian extreme learning machine for multi-classification. Neural Netw. Learn. Syst. IEEE Trans. 25(4), 836–843 (2014)

    Article  Google Scholar 

  43. E. Makinen, R. Raisamo, Evaluation of gender classification methods with automatically detected and aligned faces. IEEE Trans. Pattern Anal. Mach. Intell. 30(3), 541–547 (2008). https://doi.org/10.1109/TPAMI.2007.70800

    Article  Google Scholar 

  44. E. Maldonado, E. Shihab, N. Tsantalis, Using natural language processing to automatically detect self-admitted technical debt. IEEE Trans. Softw. Eng. PP(99), 1–1 (2017). https://doi.org/10.1109/TSE.2017.2654244

  45. Y. Miche, A. Sorjamaa, P. Bas, O. Simula, C. Jutten, A. Lendasse, OP-ELM: optimally pruned extreme learning machine. Neural Netw. IEEE Trans. 21(1), 158–162 (2010)

    Article  Google Scholar 

  46. B. Moghaddam, M.-H. Yang, Learning gender with support faces. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 707–711 (2002). https://doi.org/10.1109/34.1000244

    Article  Google Scholar 

  47. L. Nan-Ying, H. Guang-Bin, P. Saratchandran, N. Sundararajan, A fast and accurate online sequential learning algorithm for feedforward networks. IEEE Trans. Neural Netw. 17(6), 1411–1423 (2006)

    Article  Google Scholar 

  48. X.X. Niu, C.Y. Suen, A novel hybrid CNN-SVM classifier for recognizing handwritten digits. Pattern Recogn. 45(4), 1318–1325 (2012)

    Article  Google Scholar 

  49. N. Pinto, D.D. Cox, J.J. Dicarlo, Why is real-world visual object recognition hard? Plos Comput. Biol. 4(1), 86–89 (2008)

    Article  MathSciNet  Google Scholar 

  50. N. Ramanathan, R. Chellappa, Modeling age progression in young faces, in Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on, vol. 1 (2006), pp. 387–394. https://doi.org/10.1109/CVPR.2006.187

  51. K. Ricanek, T. Tesafaye, Morph: a longitudinal image database of normal adult age-progression, in Automatic Face and Gesture Recognition, 2006. FGR 2006. 7th International Conference on (2006), pp. 341–345. https://doi.org/10.1109/FGR.2006.78

  52. R. Savitha, S. Suresh, H. Kim, A meta-cognitive learning algorithm for an extreme learning machine classifier. Cogn. Comput. 6(2), 253–263 (2014)

    Article  Google Scholar 

  53. P. Sermanet, Y. Lecun, Traffic sign recognition with multi-scale convolutional networks, in Neural Networks (IJCNN), The 2011 International Joint Conference on (2011), pp. 2809–2813

    Google Scholar 

  54. J. Shuiwang, Y. Ming, Y. Kai, 3D convolutional neural networks for human action recognition. Pattern Anal. Mach. Intell. IEEE Trans. 35(1), 221–231 (2013)

    Article  Google Scholar 

  55. J. Tang, C. Deng, G.-B. Huang, B. Zhao, Compressed-domain ship detection on spaceborne optical image using deep neural network and extreme learning machine. Geosci. Remote Sens. IEEE Trans. 53(3), 1174–1185 (2015). https://doi.org/10.1109/TGRS.2014.2335751

    Article  Google Scholar 

  56. M. Toews, T. Arbel, Detection, localization, and sex classification of faces from arbitrary viewpoints and under occlusion. IEEE Trans. Pattern Anal. Mach. Intell. 31(9), 1567–1581 (2009). https://doi.org/10.1109/TPAMI.2008.233

    Article  Google Scholar 

  57. G.S. Xie, X.Y. Zhang, S. Yan, C.L. Liu, Hybrid CNN and dictionary-based models for scene recognition and domain adaptation. IEEE Trans. Circuits Syst. Video Technol. PP(99), 1–1 (2015). https://doi.org/10.1109/TCSVT.2015.2511543

  58. J. Xin, Z. Wang, C. Chen, L. Ding, G. Wang, Y. Zhao, ELM*: distributed extreme learning machine with mapreduce. World Wide Web 17(5), 1189–1204 (2014)

    Article  Google Scholar 

  59. J. Xin, Z. Wang, L. Qu, G. Wang, Elastic extreme learning machine for big data classification. Neurocomputing 149, 464–471 (2015)

    Article  Google Scholar 

  60. Z. Xing, M. Parandehgheibi, F. Xiao, N. Kulkarni, C. Pouliot, Content-based recommendation for podcast audio-items using natural language processing techniques, in 2016 IEEE International Conference on Big Data (Big Data) (2016), pp. 2378–2383. https://doi.org/10.1109/BigData.2016.7840872

  61. Y. Yang, Q.M. Wu, Y. Wang, K.M. Zeeshan, X. Lin, X. Yuan, Data partition learning with multiple extreme learning machines. Cybern. IEEE Trans. 45(6), 1463–1475 (2014)

    Google Scholar 

  62. W. Yin, K. Kann, M. Yu, H. Schütze, Comparative study of CNN and RNN for natural language processing. arXiv preprint arXiv:1702.01923 (2017)

    Google Scholar 

  63. S. Yu, T. Tan, K. Huang, K. Jia, X. Wu, A study on gait-based gender classification. IEEE Trans. Image Process. 18(8), 1905–1910 (2009). https://doi.org/10.1109/TIP.2009.2020535

    Article  MathSciNet  MATH  Google Scholar 

  64. F. Zhang, Q. Zhou, Ensemble detection model for profile injection attacks in collaborative recommender systems based on BP neural network. IET Inf. Secur. 9(1), 24–31 (2014)

    Article  Google Scholar 

  65. H. Zhou, G.-B. Huang, Z. Lin, H. Wang, Y. Soh, Stacked extreme learning machines. Cybern. IEEE Trans. PP(99), 1–1 (2014). https://doi.org/10.1109/TCYB.2014.2363492

  66. B. Zuo, G.B. Huang, D. Wang, W. Han, M.B. Westover, Sparse extreme learning machine for classification. IEEE Trans. Cybern. 44(10), 1858–1870 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingxing Duan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Duan, M., Li, K., Li, K. (2020). Internet of Things and Deep Learning. In: Ranjan, R., Mitra, K., Prakash Jayaraman, P., Wang, L., Zomaya, A.Y. (eds) Handbook of Integration of Cloud Computing, Cyber Physical Systems and Internet of Things. Scalable Computing and Communications. Springer, Cham. https://doi.org/10.1007/978-3-030-43795-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43795-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43794-7

  • Online ISBN: 978-3-030-43795-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics