Skip to main content

Application to Marine and Aerial Vehicles

  • Chapter
  • First Online:
Linear Algebra Based Controllers

Abstract

In this chapter, the application of the methodology is extended to marine and aerial vehicles. Here, three representative systems are considered to show that the Linear Algebra-Based Control Design (LAB CD) methodology can be applied to systems of different nature. First, a model of a marine vessel is considered. It is interesting to note that the reference for all the sacrificed variables is not always needed. As a second class of unmanned vehicles, two aerial autonomous devices are considered. First, the control of a planar vertical take-off and landing aircraft is developed. Finally, the control of a quadrotor is considered. The LAB CD methodology is applied, and excellent results are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Børhaug, E., Pavlov, A., Panteley, E., & Pettersen, K. Y. (2011). Straight line path following for formations of underactuated marine surface vessels. IEEE Transactions on Control Systems Technology, 19, 493–506.

    Article  Google Scholar 

  • Fantoni, I., Lozano, R., & Palomino, A. (2003). “Global stabilizing control design for the PVTOL aircraft using saturation functions on the inputs,” Heudiasyc, UMR CNRS 6599, UTC, BP 20529, 60205 Compiegne, France. September 2013.

    Google Scholar 

  • Gandolfo, D., Rosales, C., Patiño, D., Scaglia, G., & Jordan, M. (2014). Trajectory tracking control of a pvtol aircraft based on linear algebra theory. Asian Journal of Control, 16(6), 1849–1858.

    Article  Google Scholar 

  • Hauser, J., Sastry, S., & Meyer, G. (1992). Nonlinear control design for slightly nonminimum phase systems: Application to V/STOL aircraft. Automatica, 28(4), 665–679.

    Article  MathSciNet  Google Scholar 

  • Rosales, C., Gandolfo, D., Scaglia, G., Jordan, M., & Carelli, R. (2015). Trajectory tracking of a mini four-rotor helicopter in dynamic environments-a linear algebra approach. Robotica, 33(8), 1628–1652.

    Article  Google Scholar 

  • Salazar-Cruz, S., Palomino, A., & Lozano, R. (2005, December). Trajectory tracking for a four rotor mini-aircraft. In Proceedings of the 44th IEEE conference on decision and control (pp. 2505–2510). New York: IEEE.

    Chapter  Google Scholar 

  • Serrano, M. E., Scaglia, G. J., Godoy, S. A., Mut, V., & Ortiz, O. A. (2013). Trajectory tracking of underactuated surface vessels: A linear algebra approach. IEEE Transactions on Control Systems Technology, 22(3), 1103–1111.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendix 5.1: Simulink Diagram for the Control of the Marine Vessel Described in Sect. 5.1

Appendix 5.1: Simulink Diagram for the Control of the Marine Vessel Described in Sect. 5.1

The implementation of the model on the Simulink platform is shown below. The general scheme of the implementation is shown in Fig. 5.18. As it can be seen, the connection of the blocks is carried out, following the LAB control structure. The subsystem vessel model, which is specified in Fig. 5.19, outputs the value of the state variables to the LAB controller block. The disturbance block is displayed in Fig. 5.20. This block allows the generation of the disturbances introduced into the ship model. The LAB controller block contains the embedded “controller.m” file, where the linear algebra methodology designed to follow a predefined trajectory is programed.

Fig. 5.18
figure 18

Implementation of the general scheme for the ship model

Fig. 5.19
figure 19

Block connection for the implementation of the vessel model

Fig. 5.20
figure 20

Disturbance block subsystem implementation

The controller is programed in LAB_CONTROLLER.m file:

function [yc]=controlador(entrada) global tpc per1 per2 p m11c m22c m23c m32c m33c d11c d22c d23c d32c d33c b11c b32c Ts xdeseado ydeseado titadeseado rr uu OMrr i vd kx ky kOM ku kr k1 k2 OMref tu tr errx erry global xan yan uan ran van OMan; i=i+1; Ts=0.1; ui = entrada(1); vi = entrada(2); ri = entrada(3); xi = entrada(4); yi = entrada(5); OMi = entrada(6); tiempo = entrada(7); OMrr(i)=OMi; OMrr=unwrap(OMrr,pi); %% --------------------kinematic-------------------------------------------- xd= (xdeseado(i+1) - kx∗(xdeseado(i)-xi) - xi)/Ts; yd= (ydeseado(i+1) - ky∗(ydeseado(i)-yi) - yi)/Ts; titadeseado(i)=atan2(ydeseado(i+1)- ydeseado(i), xdeseado(i+1)- xdeseado(i)); aux = [xd + vi∗sin(OMi) ; yd - vi∗cos(OMi) ]; OMref(i+1)= atan2(aux(2) , aux(1)) ; OMref=unwrap(OMref,pi); OMref(i+1)=(OMref(i+1)+ (Tf1/Ts)∗OMref(i))/(1+Tf1/Ts); rr(i+1)= (OMref(i+1) - kOM∗(OMref(i)-OMrr(i)) - OMrr(i)) / Ts; uu(i+1)=pinv([cos(OMref(i+1));sin(OMref(i+1))])∗aux; udeseado=uu; rdeseado=rr; ud=(udeseado(i+1) - ku∗(udeseado(i)-ui) - ui)/Ts; rd=(rdeseado(i+1) - kr∗(rdeseado(i)-ri) - ri)/Ts; if i==0 van=0; end vd(i)=-1/m22c∗( m23c∗rd + m11c∗ui∗ri + d22c∗vi+ d23c∗ri ); %% --------------------dynamic-------------------------------------------- A=[b11c 0;0 b32c]; f1= m11c∗ud - m22c∗vi∗ri - m23c∗ri^2 + d11c∗ui; f2= m23c∗vd(i) + m33c∗rd + m22c∗vi∗ui + m23c∗ri∗ui - m11c∗vi∗ui + d32c∗vi + d33c∗ri; b=[f1;f2]; yc=pinv(A)∗b; %% -------------------- CONTROL ACTION end

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Scaglia, G., Serrano, M.E., Albertos, P. (2020). Application to Marine and Aerial Vehicles. In: Linear Algebra Based Controllers. Springer, Cham. https://doi.org/10.1007/978-3-030-42818-1_5

Download citation

Publish with us

Policies and ethics