Skip to main content

Ice Sheets in the Cenozoic

  • Chapter
  • First Online:
Glaciers and Ice Sheets in the Climate System

Abstract

This chapter reviews the history of glaciation on Earth during the Cenozoic era (the past 65 million years) compiled from ocean sediment cores, notably by a deduction from their oxygen isotope ratio records of global ice volume changes. It examines the character of the ice age cycles during the Pleistocene (the last 2.6 million years), whose recent part of the history is informed additionally by ice core records. The treatment covers external and internal forcing factors of climate variability, including orbital-driven variations of incoming solar radiation (Milankovic cycles) and the feedbacks between cryosphere, climate and the carbon cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lüthi D and 10 others (2008) High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature 453:379–382

    Google Scholar 

  2. Petit JR and 18 others (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399(6735):429–436

    Google Scholar 

  3. Laskar J, Robutel P, Joutel F, Gastineau M, Correia ACM, Levrard B (2004) A long-term numerical solution for the insolation quantities of the Earth. Astron Astroph 428:261–285

    Article  Google Scholar 

  4. Jouzel J and 31 others (2007) Orbital and millennial Antarctic climate variability over the last 800,000 years. Science 317(5839):793–796

    Google Scholar 

  5. Milanković M (1930) Mathematische Klimalehre und Astronomische Theorie der Klimaschwankungen. Gebruder Borntreger, Berlin

    Google Scholar 

  6. Hays J, Imbrie J, Shackleton N (1976) Variation in the Earth’s orbit: pacemakers of the ice ages. Science 194:1121–1132

    Article  Google Scholar 

  7. Berger A, Loutre M (1992) Astronomical solutions for paleoclimate studies over the last 3 million years. Earth Planet Sci Lett 111:369–382

    Article  Google Scholar 

  8. Ganopolski A, Calov R (2011) The role of orbital forcing, carbon dioxide and regolith in 100 kyr glacial cycles. Clim Past 7(4):1415–1425

    Article  Google Scholar 

  9. Ganopolski A, Brovkin V (2017) Simulation of climate, ice sheets and \(\text{CO}_2\) evolution during the last four glacial cycles with an Earth system model of intermediate complexity. Clim Past 13:1695–1716

    Google Scholar 

  10. Chappell J, Shackleton NJ (1986) Oxygen isotopes and sea level. Nature 324:137–140

    Article  Google Scholar 

  11. Zachos JC, Dickens GR, Zeebe RE (2008) An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451:279–283

    Article  Google Scholar 

  12. Beerling DJ, Royer DL (2011) Convergent Cenozoic CO\(_2\) history. Nat Geosci 4:418–420

    Article  Google Scholar 

  13. Gasson E and 11 others (2014) Uncertainties in the modelled CO\(_{2}\) threshold for Antarctic glaciation. Clim Past 10:451–466

    Google Scholar 

  14. Duplessy J-C, Labeyrie L, Waelbroeck C (2002) Constraints on the ocean oxygen isotopic enrichment between the Last Glacial Maximum and the Holocene: paleoceanographic implications. Quat Sci Rev 21:315–330

    Article  Google Scholar 

  15. Liebrand D, Lourens LJ, Hodell DA, de Boer B, van de Wal RSW, Pälike H (2011) Antarctic ice sheet and oceanographic response to eccentricity forcing during the early Miocene. Clim Past 7(3):869–880

    Article  Google Scholar 

  16. de Boer B, van de Wal RSW, Lourens LJ, Bintanja R (2013) A continuous simulation of global ice volume over the past 1 million years with 3-D ice-sheet models. Clim Dyn 41:1365–1384

    Google Scholar 

  17. Ehlers J, Gibbard PL (2007) The extent and chronology of Cenozoic global glaciation. Quat Int 164–165:6–20

    Article  Google Scholar 

  18. Becker JJ and 17 others (2009) Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30\_PLUS. Marine Geodesy 32(4):355–371

    Google Scholar 

  19. Krylov AA, Andreeva IA, Vogt C, Backman J, Krupskaya VV, Grikurov GE, Moran K, Shoji H (2008) A shift in heavy and clay mineral provenance indicates a middle Miocene onset of a perennial sea ice cover in the Arctic Ocean. Paleoceanography 23(1):PA1S06

    Google Scholar 

  20. Simms AR, Lisiecki L, Gebbie G, Whitehouse PL, Clark JF (2019) Balancing the last glacial maximum (LGM) sea-level budget. Quat Sci Rev 205:143-153

    Google Scholar 

  21. de Boer BL, Lourens J, van de Wal RSW (2014) Persistent 400,000-year variability of Antarctic ice volume and the carbon cycle is revealed throughout the Plio-Pleistocene. Nat Commun 5:2999

    Google Scholar 

  22. Lisiecki L, Raymo M (2005) A Pliocene-Pleistocene stack of 57 globally distributed benthic \(\delta ^{18}\)O records. Paleoceanography 20:PA1003

    Google Scholar 

  23. NEEM Community Members (2013) Eemian interglacial reconstructed from a Greenland folded ice core. Nature 493(7433):489–494

    Google Scholar 

  24. North Greenland Ice Core Project Members (2004) High-resolution climate record of the Northern Hemisphere reaching into the last interglacial period. Nature 431:147–151

    Google Scholar 

  25. EPICA Community Members (2006) One-to-one coupling of glacial climate variability in Greenland and Antarctica. Nature 444:195–198

    Google Scholar 

  26. Thompson WG, Goldstein SL (2006) A radiometric calibration of the SPECMAP timescale. Quat Sci Rev 25(23–24):3207–3215

    Article  Google Scholar 

  27. Grant KM and 10 others (2014) Sea-level variability over five glacial cycles. Nat Commun 5:5076

    Google Scholar 

  28. Rohling EJ, Foster GL, Grant KM, Marino G, Roberts AP, Tamisiea ME, Williams F (2014) Sea-level and deep-sea-temperature variability over the past 5.3 million years. Nature 508(7497):477–482

    Google Scholar 

  29. MacAyeal D (1993) Binge/purge oscillations of the Laurentide Ice Sheet as a cause of the North Atlantic’s Heinrich events. Paleoceanography 8:775–784

    Google Scholar 

  30. Robinson A, Calov R, Ganopolski A (2011) Greenland ice sheet model parameters constrained using simulations of the Eemian interglacial. Clim Past 7(2):381–396

    Article  Google Scholar 

  31. Helsen MM, van de Berg WJ, van de Wal RSW, van den Broeke MR, Oerlemans J (2013) Coupled regional climate-ice sheet simulation shows limited Greenland ice loss during the Eemian. Clim Past 9:1773–1788

    Article  Google Scholar 

  32. Stone EJ, Lunt DJ, Annan JD, Hargreaves JC (2013) Quantification of the Greenland ice sheet contribution to last interglacial sea level rise. Clim Past 9(2):621–639

    Article  Google Scholar 

  33. Annan JD, Hargreaves JC (2013) A new global reconstruction of temperature changes at the Last Glacial Maximum. Clim Past 9:367–376

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bas de Boer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Boer, B., van de Wal, R. (2021). Ice Sheets in the Cenozoic . In: Fowler, A., Ng, F. (eds) Glaciers and Ice Sheets in the Climate System. Springer Textbooks in Earth Sciences, Geography and Environment. Springer, Cham. https://doi.org/10.1007/978-3-030-42584-5_16

Download citation

Publish with us

Policies and ethics