Skip to main content

Mechanisms Underlying the Development of Cardiac Arrhythmias

  • Chapter
  • First Online:
Management of Cardiac Arrhythmias

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 1627 Accesses

Abstract

Normal cardiac rhythm is fairly regular and typically ranges between 50 and 90 beats per minute in adults at rest and up to 220 beats per minute during physical activity and/or emotional stress. A cardiac arrhythmia simply defined is a variation from the normal heart rhythm that is not physiologically justified. Arrhythmia can be regular or irregular (such as tachycardia and fibrillation, respectively) as well as slower or faster than the normal resting rate (brady- and tachyarrhythmias, respectively). In this chapter, our principal focus is on mechanisms underlying the development of tachyarrhythmias. These are generally divided into two major categories: (1) enhanced or abnormal impulse formation (i.e., focal activity) and (2) abnormal conduction leading to reentry

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maltsev VA, Vinogradova TM, Lakatta EG. The emergence of a general theory of the initiation and strength of the heartbeat. J Pharmacol Sci. 2006;100(5):338–69.

    CAS  PubMed  Google Scholar 

  2. Lakatta EG. A paradigm shift for the heart’s pacemaker. Heart Rhythm. 2010;7(4):559–64.

    PubMed  Google Scholar 

  3. DiFrancesco D. The pacemaker current If plays an important role in regulating SA node pacemaker activity. Cardiovasc Res. 1995;30(2):307–8.

    CAS  PubMed  Google Scholar 

  4. Huser J, Blatter LA, Lipsius SL. Intracellular Ca2+ release contributes to automaticity in cat atrial pacemaker cells. J Physiol. 2000;524(Pt 2):415–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Levy MN. Sympathetic-parasympathetic interactions in the heart. Circ Res. 1971;29(5):437–45.

    CAS  PubMed  Google Scholar 

  6. Schulze-Bahr E, Neu A, Friederich P, Kaupp UB, Breithardt G, Pongs O, et al. Pacemaker channel dysfunction in a patient with sinus node disease. J Clin Invest. 2003;111(10):1537–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Nof E, Luria D, Brass D, Marek D, Lahat H, Reznik-Wolf H, et al. Point mutation in the HCN4 cardiac ion channel pore affecting synthesis, trafficking, and functional expression is associated with familial asymptomatic sinus bradycardia. Circulation. 2007;116(5):463–70.

    CAS  PubMed  Google Scholar 

  8. Laish-Farkash A, Marek D, Brass D, Pras E, Dascal N, Arad M, et al. A novel mutation in the HCN4 gene causes familial sinus bradycardia in two unrelated Moroccan families. Heart Rhythm. 2008;5S:S275.

    Google Scholar 

  9. Laish-Farkash A, Glikson M, Brass D, Marek-Yagel D, Pras E, Dascal N, et al. A novel mutation in the HCN4 gene causes symptomatic sinus bradycardia in Moroccan Jews. J Cardiovasc Electrophysiol. 2010;12(12):1365–72.

    Google Scholar 

  10. Nof E, Antzelevitch C, Glickson M. The contribution of HCN4 to normal sinus nose function in humans and animal models. Pacing Clin Electrophysiol. 2010;33(1):100–6.

    PubMed  Google Scholar 

  11. Zicha S, Fernandez-Velasco M, Lonardo G, L’Heureux N, Nattel S. Sinus node dysfunction and hyperpolarization-activated (HCN) channel subunit remodeling in a canine heart failure model. Cardiovasc Res. 2005;66(3):472–81.

    CAS  PubMed  Google Scholar 

  12. Wit AL, Rosen MR. Afterdepolarizations and triggered activity: distinction from automaticity as an arrhythmogenic mechanism. In: Fozzard HA, et al., editors. The heart and cardiovascular system. New York: Raven Press; 1992. p. 2113–64.

    Google Scholar 

  13. Zhang L, Benson DW, Tristani-Firouzi M, Ptacek LJ, Tawil R, Schwartz PJ, et al. Electrocardiographic features in Andersen-Tawil syndrome patients with KCNJ2 mutations: characteristic T-U-wave patterns predict the KCNJ2 genotype. Circulation. 2005;111(21):2720–6.

    PubMed  Google Scholar 

  14. Tsuboi M, Antzelevitch C. Cellular basis for electrocardiographic and arrhythmic manifestations of Andersen-Tawil syndrome (LQT7). Heart Rhythm. 2006;3(3):328–35.

    PubMed  PubMed Central  Google Scholar 

  15. Barajas-Martinez H, Hu D, Ontiveros G, Caceres G, Burashnikov E, Scaglione J, et al. Biophysical characterization of a novel KCNJ2 mutation associated with Andersen-Tawil syndrome and CPVT mimicry. Biophys J. 2009;96:260a.

    Google Scholar 

  16. Tristani-Firouzi M. Andersen-Tawil syndrome: An ever-expanding phenotype? Heart Rhythm. 2006;3(11):1351–2.

    PubMed  Google Scholar 

  17. Tristani-Firouzi M, Etheridge SP. Kir 2.1 channelopathies: the Andersen-Tawil syndrome. Pflugers Arch. 2010;460(2):289–94.

    CAS  PubMed  Google Scholar 

  18. Tristani-Firouzi M, Jensen JL, Donaldson MR, Sansone V, Meola G, Hahn A, et al. Functional and clinical characterization of KCNJ2 mutations associated with LQT7 (Andersen syndrome). J Clin Invest. 2002;110(3):381–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Vassalle M. The relationship among cardiac pacemakers. Overdrive suppression. Circ Res. 1977;41(3):269–77.

    CAS  PubMed  Google Scholar 

  20. Gadsby DC, Cranefield PF. Electrogenic sodium extrusion in cardiac Purkinje fibers. J Gen Physiol. 1979;73(6):819–37.

    CAS  PubMed  Google Scholar 

  21. Jalife J, Moe GK. A biological model of parasystole. Am J Cardiol. 1979;43:761–72.

    CAS  PubMed  Google Scholar 

  22. Jalife J, Antzelevitch C, Moe GK. The case for modulated parasystole. Pacing Clin Electrophysiol. 1982;5:911–26.

    CAS  PubMed  Google Scholar 

  23. Nau GJ, Aldariz AE, Acunzo RS, Halpern MS, Davidenko JM, Elizari MV, et al. Modulation of parasystolic activity by nonparasystolic beats. Circulation. 1982;66:462–9.

    CAS  PubMed  Google Scholar 

  24. Antzelevitch C, Bernstein MJ, Feldman HN, Moe GK. Parasystole, reentry, and tachycardia: a canine preparation of cardiac arrhythmias occurring across inexcitable segments of tissue. Circulation. 1983;68(5):1101–15.

    CAS  PubMed  Google Scholar 

  25. Jalife J, Moe GK. Effect of electrotonic potentials on pacemaker activity of canine Purkinje fibers in relation to parasystole. Circ Res. 1976;39:801–8.

    CAS  PubMed  Google Scholar 

  26. Roden DM. Drug-induced prolongation of the QT interval. N Engl J Med. 2004;350(10):1013–22.

    CAS  PubMed  Google Scholar 

  27. Roden DM. Long QT syndrome: reduced repolarization reserve and the genetic link. J Intern Med. 2006;259(1):59–69.

    CAS  PubMed  Google Scholar 

  28. Burashnikov A, Antzelevitch C. Acceleration-induced action potential prolongation and early afterdepolarizations. J Cardiovasc Electrophysiol. 1998;9(9):934–48.

    CAS  PubMed  Google Scholar 

  29. Liu DW, Antzelevitch C. Characteristics of the delayed rectifier current (IKr and IKs) in canine ventricular epicardial, midmyocardial, and endocardial myocytes. A weaker IKs contributes to the longer action potential of the M cell. Circ Res. 1995;76(3):351–65.

    CAS  PubMed  Google Scholar 

  30. Zygmunt AC, Eddlestone GT, Thomas GP, Nesterenko VV, Antzelevitch C. Larger late sodium conductance in M cells contributes to electrical heterogeneity in canine ventricle. Am J Physiol. 2001;281:H689–97.

    CAS  Google Scholar 

  31. Burashnikov A, Antzelevitch C. Prominent IKs in epicardium and endocardium contributes to development of transmural dispersion of repolarization but protects against development of early afterdepolarizations. J Cardiovasc Electrophysiol. 2002;13:172–7.

    PubMed  Google Scholar 

  32. Aiba T, Tomaselli GF. Electrical remodeling in the failing heart. Curr Opin Cardiol. 2010;25(1):29–36.

    PubMed  PubMed Central  Google Scholar 

  33. Ferrier GR, Saunders JH, Mendez C. A cellular mechanism for the generation of ventricular arrhythmias by acetylstrophanthidin. Circ Res. 1973;32(5):600–9.

    CAS  PubMed  Google Scholar 

  34. Rosen MR, Gelband H, Merker C, Hoffman BF. Mechanisms of digitalis toxicity. Effects of ouabain on phase four of canine Purkinje fiber transmembrane potentials. Circulation. 1973;47(4):681–9.

    CAS  PubMed  Google Scholar 

  35. Saunders JH, Ferrier GR, Moe GK. Conduction block associated with transient depolarizations induced by acetylstrophanthidin in isolated canine Purkinje fibers. Circ Res. 1973;32:610–7.

    CAS  PubMed  Google Scholar 

  36. Rozanski GJ, Lipsius SL. Electrophysiology of functional subsidiary pacemakers in canine right atrium. Am J Physiol. 1985;249:H594–603.

    CAS  PubMed  Google Scholar 

  37. Priori SG, Corr PB. Mechanisms underlying early and delayed afterdepolarizations induced by catecholamines. Am J Physiol. 1990;258:H1796–805.

    CAS  PubMed  Google Scholar 

  38. Wit AL, Cranefield PF. Triggered and automatic activity in the canine coronary sinus. Circ Res. 1977;41:435–45.

    Google Scholar 

  39. Aronson RS. Afterpotentials and triggered activity in hypertrophied myocardium from rats with renal-hypertension. Circ Res. 1981;48:720–7.

    CAS  PubMed  Google Scholar 

  40. Vermeulen JT, McGuire MA, Opthof T, Coronel R, de Bakker JM, Klopping C, et al. Triggered activity and automaticity in ventricular trabeculae of failing human and rabbit hearts. Cardiovasc Res. 1994;28(10):1547–54.

    CAS  PubMed  Google Scholar 

  41. Lazzara R, El-Sherif N, Scherlag BJ. Electrophysiological properties of canine Purkinje cells in one-day-old myocardial infarction. Circ Res. 1973;33:722–34.

    CAS  PubMed  Google Scholar 

  42. Priori SG, Napolitano C, Tiso N, Memmi M, Vignati G, Bloise R, et al. Mutations in the cardiac ryanodine receptor gene (hRyR2) underlie catecholaminergic polymorphic ventricular tachycardia. Circulation. 2001;103(2):196–200.

    CAS  PubMed  Google Scholar 

  43. Wehrens XH, Lehnart SE, Reiken SR, Deng SX, Vest JA, Cervantes D, et al. Protection from cardiac arrhythmia through ryanodine receptor-stabilizing protein calstabin2. Science. 2004;304(5668):292–6.

    CAS  PubMed  Google Scholar 

  44. Nam GB, Burashnikov A, Antzelevitch C. Cellular mechanisms underlying the development of catecholaminergic ventricular tachycardia. Circulation. 2005;111(21):2727–33.

    PubMed  PubMed Central  Google Scholar 

  45. Tomaselli GF, Zipes DP. What causes sudden death in heart failure? Circ Res. 2004;95(8):754–63.

    CAS  PubMed  Google Scholar 

  46. Burashnikov A, Antzelevitch C. Reinduction of atrial fibrillation immediately after termination of the arrhythmia is mediated by late phase 3 early afterdepolarization-induced triggered activity. Circulation. 2003;107(18):2355–60.

    PubMed  Google Scholar 

  47. Burashnikov A, Antzelevitch C. Late-phase 3 EAD. A unique mechanism contributing to initiation of atrial fibrillation. Pacing Clin Electrophysiol. 2006;29(3):290–5.

    PubMed  PubMed Central  Google Scholar 

  48. Tan AY, Zhou S, Ogawa M, Song J, Chu M, Li H, et al. Neural mechanisms of paroxysmal atrial fibrillation and paroxysmal atrial tachycardia in ambulatory canines. Circulation. 2008;118(9):916–25.

    PubMed  PubMed Central  Google Scholar 

  49. Watanabe I, Okumura Y, Ohkubo K, Kawauchi K, Takagi Y, Sugimura H, et al. Steady-state and nonsteady-state action potentials in fibrillating canine atrium: alternans of action potential and late phase 3 early afterdepolarization as a precursor of atrial fibrillation. Heart Rhythm. 2005;2:S259.

    Google Scholar 

  50. Patterson E, Po SS, Scherlag BJ, Lazzara R. Triggered firing in pulmonary veins initiated by in vitro autonomic nerve stimulation. Heart Rhythm. 2005;2(6):624–31.

    PubMed  Google Scholar 

  51. Ogawa M, Morita N, Tang L, Karagueuzian HS, Weiss JN, Lin SF, et al. Mechanisms of recurrent ventricular fibrillation in a rabbit model of pacing-induced heart failure. Heart Rhythm. 2009;6(6):784–92.

    PubMed  PubMed Central  Google Scholar 

  52. Antzelevitch C, Sicouri S. Mechanisms underlying arrhythmogenesis in long QT syndrome. Card Electrophysiol Clin. 2012;4(1):17–27.

    Google Scholar 

  53. Vincent GM. Atrial Arrhythmias in the Inherited Long QT Syndrome. J Cardiovasc Electrophysiol. 2003;14(10):1034–5.

    PubMed  Google Scholar 

  54. van der Hooft CS, Heeringa J, van HG KJA, Kingma JH, Stricker BH. Drug-induced atrial fibrillation. J Am Coll Cardiol. 2004;44(11):2117–24.

    PubMed  Google Scholar 

  55. Burashnikov A, Antzelevitch C. Absence of early afterdepolarizations in canine atria under long QT syndrome. Heart Rhythm. 2011;8(5S):S328.

    Google Scholar 

  56. Dobrev D, Wehrens XHT. Calcium-mediated cellular triggered activity in atrial fibrillation. J Physiol. 2017;595(12):4001–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Denham NC, Pearman CM, Caldwell JL, Madders GWP, Eisner DA, Trafford AW, et al. Calcium in the pathophysiology of atrial fibrillation and heart failure. Front Physiol. 2018;9:1380.

    PubMed  PubMed Central  Google Scholar 

  58. Mayer AG. Rhythmical pulsations is scyphomedusae. Washington, DC: Publication 47 of the Carnegie Institute; 1906. p. 1–62.

    Google Scholar 

  59. Mines GR. On circulating excitations in heart muscles and their possible relation to tachycardia and fibrillation. Trans R Soc Can. 1914;8:43–52.

    Google Scholar 

  60. Mines GR. On dynamic equilibrium in the heart. J Physiol(Lond). 1913;46:350–83.

    Google Scholar 

  61. Garrey WE. The nature of fibrillatory contruction of the heart - its relation to tissue mass and form. Am J Physiol. 1914;33:397–414.

    Google Scholar 

  62. Allessie MA, Bonke FIM, Schopman JG. Circus movement in rabbit atrial muscle as a mechanism of tachycardia. Circ Res. 1973;33:54–62.

    CAS  PubMed  Google Scholar 

  63. Allessie MA, Bonke FIM, Schopman JG. Circus movement in rabbit atrial muscle as a mechanism of tachycardia. III. The “leading circle” concept: a new model of circus movement in cardiac tissue without the involvement of an anatomical obstacle. Circ Res. 1977;41(1):9–18.

    CAS  PubMed  Google Scholar 

  64. Weiner N, Rosenblueth A. The mathematical formulation of the problem of conduction of impulses in a network of connected excitable elements, specifically in cardiac muscle. Arch Inst Cardiol Mex. 1946;16:205–65.

    Google Scholar 

  65. Jalife J, Delmar M, Davidenko JM, Anumonwo JMB. Basic cardiac electrophysiology for the clinician. Armonk: Futura Publishing; 1999.

    Google Scholar 

  66. Gray RA, Jalife J, Panfilov AV, Baxter WT, Cabo C, Davidenko JM, et al. Mechanisms of cardiac fibrillation. Science. 1995;270(5239):1222–3.

    CAS  PubMed  Google Scholar 

  67. Garfinkel A, Kim YH, Voroshilovsky O, Qu Z, Kil JR, Lee MH, et al. Preventing ventricular fibrillation by flattening cardiac restitution. Proc Natl Acad Sci USA. 2000;97(11):6061–6.

    CAS  PubMed  Google Scholar 

  68. Jalife J. Ventricular fibrillation: mechanisms of initiation and maintenance. Annu Rev Physiol. 2000;62:25–50.

    CAS  PubMed  Google Scholar 

  69. Narayan SM, Shivkumar K, Krummen DE, Miller JM, Rappel WJ. Panoramic electrophysiological mapping but not electrogram morphology identifies stable sources for human atrial fibrillation: stable atrial fibrillation rotors and focal sources relate poorly to fractionated electrograms. Circ Arrhythm Electrophysiol. 2013;6(1):58–67.

    PubMed  PubMed Central  Google Scholar 

  70. Narayan SM, Wright M, Derval N, Jadidi A, Forclaz A, Nault I, et al. Classifying fractionated electrograms in human atrial fibrillation using monophasic action potentials and activation mapping: evidence for localized drivers, rate acceleration, and nonlocal signal etiologies. Heart Rhythm. 2011;8(2):244–53.

    PubMed  Google Scholar 

  71. Allessie MA, de Groot NM, Houben RP, Schotten U, Boersma E, Smeets JL, et al. Electropathological substrate of long-standing persistent atrial fibrillation in patients with structural heart disease: longitudinal dissociation. Circ Arrhythm Electrophysiol. 2010;3(6):606–15.

    PubMed  Google Scholar 

  72. de Groot NM, Houben RP, Smeets JL, Boersma E, Schotten U, Schalij MJ, et al. Electropathological substrate of longstanding persistent atrial fibrillation in patients with structural heart disease: epicardial breakthrough. Circulation. 2010;122(17):1674–82.

    PubMed  Google Scholar 

  73. Yamabe H, Kanazawa H, Ito M, Kaneko S, Ogawa H. Prevalence and mechanism of rotor activation identified during atrial fibrillation by noncontact mapping: Lack of evidence for a role in the maintenance of atrial fibrillation. Heart Rhythm. 2016;13(12):2323–30.

    PubMed  Google Scholar 

  74. Lee G, Kumar S, Teh A, Madry A, Spence S, Larobina M, et al. Epicardial wave mapping in human long-lasting persistent atrial fibrillation: transient rotational circuits, complex wavefronts, and disorganized activity. Eur Heart J. 2014;35(2):86–97.

    PubMed  Google Scholar 

  75. Lee G, McLellan AJ, Hunter RJ, Lovell MJ, Finlay M, Ullah W, et al. Panoramic characterization of endocardial left atrial activation during human persistent AF: Insights from non-contact mapping. Int J Cardiol. 2017;228:406–11.

    PubMed  Google Scholar 

  76. Lee S, Sahadevan J, Khrestian CM, Cakulev I, Markowitz A, Waldo AL. Simultaneous biatrial high-density (510-512 electrodes) epicardial mapping of persistent and long-standing persistent atrial fibrillation in patients: new insights into the mechanism of its maintenance. Circulation. 2015;132(22):2108–17.

    PubMed  PubMed Central  Google Scholar 

  77. Lee S, Sahadevan J, Khrestian CM, Markowitz A, Waldo AL. Characterization of foci and breakthrough sites during persistent and long-standing persistent atrial fibrillation in patients: studies using high-density (510–512 Electrodes) biatrial epicardial mapping. J Am Heart Assoc. 2017;6(3):e005274.

    PubMed  PubMed Central  Google Scholar 

  78. El-Sherif N, Smith RA, Evans K. Canine ventricular arrhythmias in the late myocardial infarction period. 8. Epicardial mapping of reentrant circuits. Circ Res. 1981;49:255–65.

    CAS  PubMed  Google Scholar 

  79. Valderrabano M, Kim YH, Yashima M, Wu TJ, Karagueuzian HS, Chen PS. Obstacle-induced transition from ventricular fibrillation to tachycardia in isolated swine right ventricles: insights into the transition dynamics and implications for the critical mass. J Am Coll Cardiol. 2000;36(6):2000–8.

    CAS  PubMed  Google Scholar 

  80. Chen PS, Wolf PD, Dixon EG, Danieley ND, Frazier DW, Smith WM, et al. Mechanism of ventricular vulnerability to single premature stimuli in open-chest dogs. Circ Res. 1988;62:1191–209.

    CAS  PubMed  Google Scholar 

  81. Wit AL, Cranefield PF, Hoffman BF. Slow conduction and reentry in the ventricular conducting system. II Single and sustained circus movement in networks of canine and bovine Purkinje fibers. Circ Res. 1972;30:11–22.

    CAS  PubMed  Google Scholar 

  82. Antzelevitch C, Jalife J, Moe GK. Characteristics of reflection as a mechanism of reentrant arrhythmias and its relationship to parasystole. Circulation. 1980;61(1):182–91.

    CAS  PubMed  Google Scholar 

  83. Antzelevitch C, Moe GK. Electrotonically-mediated delayed conduction and reentry in relation to “slow responses” in mammalian ventricular conducting tissue. Circ Res. 1981;49(5):1129–39.

    CAS  PubMed  Google Scholar 

  84. Antzelevitch C. Clinical applications of new concepts of parasystole, reflection, and tachycardia. Cardiol Clin. 1983;1:39–50.

    CAS  PubMed  Google Scholar 

  85. Rozanski GJ, Jalife J, Moe GK. Reflected reentry in nonhomogeneous ventricular muscle as a mechanism of cardiac arrhythmias. Circulation. 1984;69:163–73.

    CAS  PubMed  Google Scholar 

  86. Lukas A, Antzelevitch C. Reflected reentry, delayed conduction, and electrotonic inhibition in segmentally depressed atrial tissues. Can J Physiol Pharmacol. 1989;67(7):757–64.

    CAS  PubMed  Google Scholar 

  87. Davidenko JM, Antzelevitch C. The effects of milrinone on action potential characteristics, conduction, automaticity, and reflected reentry in isolated myocardial fibers. J Cardiovasc Pharmacol. 1985;7(2):341–9.

    CAS  PubMed  Google Scholar 

  88. Rosenthal JE, Ferrier GR. Contribution of variable entrance and exit block in protected foci to arrhythmogenesis in isolated ventricular tissues. Circulation. 1983;67:1–8.

    CAS  PubMed  Google Scholar 

  89. Antzelevitch C, Lukas A. Reflection and circus movement reentry in isolated atrial and ventricular tissues. In: Dangman KH, Miura DS, editors. Electrophysiology and Pharmacology of the Heart A Clinical Guide. New York: Marcel Dekker; 1991. p. 251–75.

    Google Scholar 

  90. Krishnan SC, Antzelevitch C. Flecainide-induced arrhythmia in canine ventricular epicardium. Phase 2 reentry? Circulation. 1993;87(2):562–72.

    CAS  PubMed  Google Scholar 

  91. Lukas A, Antzelevitch C. Phase 2 reentry as a mechanism of initiation of circus movement reentry in canine epicardium exposed to simulated ischemia. Cardiovasc Res. 1996;32:593–603.

    CAS  PubMed  Google Scholar 

  92. Di Diego JM, Antzelevitch C. Pinacidil-induced electrical heterogeneity and extrasystolic activity in canine ventricular tissues. Does activation of ATP-regulated potassium current promote phase 2 reentry? Circulation. 1993;88(3):1177–89.

    PubMed  Google Scholar 

  93. Antzelevitch C, Yan GX. J wave syndromes. Heart Rhythm. 2010;7(4):549–58.

    PubMed  Google Scholar 

  94. Antzelevitch C. Brugada syndrome. Pacing Clin Electrophysiol. 2006;29(10):1130–59.

    PubMed  PubMed Central  Google Scholar 

  95. Antzelevitch C, Sicouri S, Litovsky SH, Lukas A, Krishnan SC, Di Diego JM, et al. Heterogeneity within the ventricular wall. Electrophysiology and pharmacology of epicardial, endocardial, and M cells. Circ Res. 1991;69(6):1427–49.

    CAS  PubMed  Google Scholar 

  96. Antzelevitch C, Sicouri S, Lukas A, Di Diego JM, Nesterenko VV, Liu DW, et al. Clinical implications of electrical heterogeneity in the heart: the electrophysiology and pharmacology of epicardial, M, and endocardial cells. In: Podrid PJ, Kowey PR, editors. Cardiac arrhythmia: mechanism, diagnosis and management. Baltimore: William & Wilkins; 1995. p. 88–107.

    Google Scholar 

  97. Litovsky SH, Antzelevitch C. Transient outward current prominent in canine ventricular epicardium but not endocardium. Circ Res. 1988;62(1):116–26.

    CAS  PubMed  Google Scholar 

  98. Liu DW, Gintant GA, Antzelevitch C. Ionic bases for electrophysiological distinctions among epicardial, midmyocardial, and endocardial myocytes from the free wall of the canine left ventricle. Circ Res. 1993;72(4):671–87.

    CAS  PubMed  Google Scholar 

  99. Furukawa T, Myerburg RJ, Furukawa N, Bassett AL, Kimura S. Differences in transient outward currents of feline endocardial and epicardial myocytes. Circ Res. 1990;67:1287–91.

    CAS  PubMed  Google Scholar 

  100. Stankovicova T, Szilard M, De Scheerder I, Sipido KR. M cells and transmural heterogeneity of action potential configuration in myocytes from the left ventricular wall of the pig heart. Cardiovasc Res. 2000;45:952–60.

    CAS  PubMed  Google Scholar 

  101. McIntosh MA, Cobbe SM, Smith GL. Heterogeneous changes in action potential and intracellular Ca2+ in left ventricular myocyte sub-types from rabbits with heart failure. Cardiovasc Res. 2000;45(2):397–409.

    CAS  PubMed  Google Scholar 

  102. Wettwer E, Amos GJ, Posival H, Ravens U. Transient outward current in human ventricular myocytes of subepicardial and subendocardial origin. Circ Res. 1994;75(3):473–82.

    CAS  PubMed  Google Scholar 

  103. Nabauer M, Beuckelmann DJ, Uberfuhr P, Steinbeck G. Regional differences in current density and rate-dependent properties of the transient outward current in subepicardial and subendocardial myocytes of human left ventricle. Circulation. 1996;93:168–77.

    CAS  PubMed  Google Scholar 

  104. Di Diego JM, Sun ZQ, Antzelevitch C. Ito and action potential notch are smaller in left vs. right canine ventricular epicardium. Am J Physiol. 1996;271:H548–61.

    PubMed  Google Scholar 

  105. Volders PG, Sipido KR, Carmeliet E, Spatjens RL, Wellens HJ, Vos MA. Repolarizing K+ currents ITO1 and IKs are larger in right than left canine ventricular midmyocardium. Circulation. 1999;99(2):206–10.

    CAS  PubMed  Google Scholar 

  106. Koncz I, Gurabi Z, Patocskai B, Panama BK, Szel T, Hu D, et al. Mechanisms underlying the development of the electrocardiographic and arrhythmic manifestations of early repolarization syndrome. J Mol Cell Cardiol. 2014;68C:20–8.

    Google Scholar 

  107. Antzelevitch C, Yan GX, Ackerman MJ, Borggrefe M, Corrado D, Guo J, et al. J-Wave syndromes expert consensus conference report: Emerging concepts and gaps in knowledge. Heart Rhythm. 2016;13:e295.

    PubMed  PubMed Central  Google Scholar 

  108. Takano M, Noma A. Distribution of the isoprenaline-induced chloride current in rabbit heart. Pflugers Arch. 1992;420:223–6.

    CAS  PubMed  Google Scholar 

  109. Zygmunt AC. Intracellular calcium activates chloride current in canine ventricular myocytes. Am J Physiol. 1994;267(5 Pt 2):H1984–95.

    CAS  PubMed  Google Scholar 

  110. Sicouri S, Antzelevitch C. Electrophysiological characteristics and transmural distribution of M cells in the canine ventricle. Circulation. 1991;84:II–179.

    Google Scholar 

  111. Sicouri S, Antzelevitch C. A subpopulation of cells with unique electrophysiological properties in the deep subepicardium of the canine ventricle. The M Cell Circ Res. 1991;68(6):1729–41.

    CAS  Google Scholar 

  112. Anyukhovsky EP, Sosunov EA, Rosen MR. Regional differences in electrophysiologic properties of epicardium, midmyocardium and endocardium: In vitro and in vivo correlations. Circulation. 1996;94:1981–8.

    CAS  PubMed  Google Scholar 

  113. Zygmunt AC, Goodrow RJ, Antzelevitch C. INaCa contributes to electrical heterogeneity within the canine ventricle. Am J Physiol Heart Circ Physiol. 2000;278(5):H1671–8.

    CAS  PubMed  Google Scholar 

  114. Brahmajothi MV, Morales MJ, Rasmusson RL, Campbell DL, Strauss HC. Heterogeneity in K+ channel transcript expression detected in isolated ferret cardiac myocytes. Pacing Clin Electrophysiol. 1997;20:388–96.

    CAS  PubMed  Google Scholar 

  115. De Jong AM, Maass AH, Oberdorf-Maass SU, Van Veldhuisen DJ, Van Gilst WH, Van Gelder IC. Mechanisms of atrial structural changes caused by stretch occurring before and during early atrial fibrillation. Cardiovasc Res. 2011;89(4):754–65.

    PubMed  Google Scholar 

  116. Goette A, Kalman JM, Aguinaga L, Akar J, Cabrera JA, Chen SA, et al. EHRA/HRS/APHRS/SOLAECE expert consensus on atrial cardiomyopathies: Definition, characterization, and clinical implication. Heart Rhythm. 2017;14(1):e3–40.

    PubMed  Google Scholar 

  117. Fenelon G, Shepard RK, Stambler BS. Focal origin of atrial tachycardia in dogs with rapid ventricular pacing-induced heart failure. J Cardiovasc Electrophysiol. 2003;14(10):1093–102.

    PubMed  Google Scholar 

  118. Sanders P, Morton JB, Davidson NC, Spence SJ, Vohra JK, Sparks PB, et al. Electrical remodeling of the atria in congestive heart failure: electrophysiological and electroanatomic mapping in humans. Circulation. 2003;108(12):1461–8.

    PubMed  Google Scholar 

  119. Burashnikov A, Di Diego JM, Sicouri S, Doss MX, Sachinidis A, Barajas-Martinez H, et al. A temporal window of vulnerability for development of atrial fibrillation with advancing heart failure. Eur J Heart Fail. 2014;16(3):271–80.

    PubMed  Google Scholar 

  120. Burashnikov A, Antzelevitch C. Is extensive atrial fibrosis in the setting of heart failure associated with a reduced atrial fibrillation burden? Pacing Clin Electrophysiol. 2018;41(10):1289–97.

    PubMed  PubMed Central  Google Scholar 

  121. Hanna N, Cardin S, Leung TK, Nattel S. Differences in atrial versus ventricular remodeling in dogs with ventricular tachypacing-induced congestive heart failure. Cardiovasc Res. 2004;63(2):236–44.

    CAS  PubMed  Google Scholar 

  122. Brugada P, Brugada J. Right bundle branch block, persistent ST segment elevation and sudden cardiac death: a distinct clinical and electrocardiographic syndrome: a multicenter report. J Am Coll Cardiol. 1992;20(6):1391–6.

    CAS  PubMed  Google Scholar 

  123. Yan GX, Antzelevitch C. Cellular basis for idiopathic VT/VF syndrome. Circulation. 1996;94:I–625.

    Google Scholar 

  124. Antzelevitch C. J wave syndromes: molecular and cellular mechanisms. J Electrocardiol. 2013;46(6):510–8.

    PubMed  Google Scholar 

  125. Antzelevitch C. Genetic, molecular and cellular mechanisms underlying the J wave syndromes. Circ J. 2012;76(5):1054–65.

    PubMed  PubMed Central  Google Scholar 

  126. Kapplinger J, Tester D, Alders M, Benito B, Berthet M, Brugada J, et al. An International Compendium of Mutations in the SCN5A-Encoded Cardiac Sodium Channel in Patients Referred for Brugada Syndrome Genetic Testing. Heart Rhythm. 2010;7:33–46.

    PubMed  Google Scholar 

  127. Ackerman MJ, Priori SG, Willems S, Berul C, Brugada R, Calkins H, et al. HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Heart Rhythm. 2011;8(8):1308–39.

    PubMed  Google Scholar 

  128. Burashnikov E, Pfeiffer R, Barajas-Martinez H, Delpon E, Hu D, Desai M, et al. Mutations in the cardiac L-type calcium channel associated with inherited J wave syndromes and sudden cardiac death. Heart Rhythm. 2010;7:1719.

    Google Scholar 

  129. Cordeiro JM, Marieb M, Pfeiffer R, Calloe K, Burashnikov E, Antzelevitch C. Accelerated inactivation of the L-type calcium due to a mutation in CACNB2b due to a mutation in CACNB2b underlies Brugada syndrome. J Mol Cell Cardiol. 2009;46(5):695–703.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Antzelevitch C, Pollevick GD, Cordeiro JM, Casis O, Sanguinetti MC, Aizawaz Y, et al. Loss-of-function mutations in the cardiac calcium channel underline a new clinical entity characterized by ST segment elevation, short QT intervals, and sudden cardiac death. Circ Res. 2006;99:1279.

    Google Scholar 

  131. Gurnett CA, De WM, Campbell KP. Dual function of the voltage-dependent Ca2+ channel alpha 2 delta subunit in current stimulation and subunit interaction. Neuron. 1996;16(2):431–40.

    CAS  PubMed  Google Scholar 

  132. Barajas-Martinez H, Hu D, Ferrer T, Onetti CG, Wu Y, Burashnikov E, et al. Molecular genetic and functional association of Bugada and early repolarization syndromes with S422L missense mutation in KCNJ8. Heart Rhythm. 2012;9(4):548–55.

    PubMed  Google Scholar 

  133. Barajas-Martinez H, Hu D, Pfeiffer R, Burashnikov E, Powers A, Knilans TK, et al. A genetic variant in DPP10 linked to inherited J-wave syndrome associated with sudden cardiac death by augmentation of Kv4.3 channel current. Heart Rhythm. 2012;9:1919–20.

    Google Scholar 

  134. Delaney JT, Muhammad R, Blair MA, Kor K, Fish FA, Roden DM, et al. A KCNJ8 mutation associated with early repolarization and atrial fibrillation. Europace. 2012;14(10):1428–32.

    PubMed  PubMed Central  Google Scholar 

  135. Medeiros-Domingo A, Tan BH, Crotti L, Tester DJ, Eckhardt L, Cuoretti A, et al. Gain-of-function mutation S422L in the KCNJ8-encoded cardiac K(ATP) channel Kir6.1 as a pathogenic substrate for J-wave syndromes. Heart Rhythm. 2010;7(10):1466–71.

    PubMed  PubMed Central  Google Scholar 

  136. Hu D, Barajas-Martinez H, Medeiros-Domingo A, Crotti L, Tester DJ, Veltmann C, et al. Novel mutations in the sodium channel 2 subunit gene (SCN2B) associated with Brugada syndrome and atrial fibrillation. Circulation. 2012;126(21 Supplement):A16521.

    Google Scholar 

  137. Riuro H, Beltran-Alvarez P, Tarradas A, Selga E, Campuzano O, Verges M, et al. A missense mutation in the sodium channel beta2 subunit reveals SCN2B as a new candidate gene for Brugada syndrome. Hum Mutat. 2013;34(7):961–6.

    CAS  PubMed  Google Scholar 

  138. Giudicessi JR, Ye D, Crotti L, Albertson RM, Kritzberger CJ, Hund T, et al. Transient outward current (Ito) gain-of-function mutations in the KCND3-encoded KV4.3 K+ channel alpha subunit and Brugada syndrome. Heart Rhythm. 2011;8(5S):S106.

    Google Scholar 

  139. Delpon E, Cordeiro JM, Nunez L, Thomsen PE, Guerchicoff A, Pollevick GD, et al. Functional effects of KCNE3 mutation and its role in the development of Brugada syndrome. Circ Arrhythm Electrophysiol. 2008;1(3):209–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Olesen MS, Holst AG, Svendsen JH, Haunso S, Tfelt-Hansen J. SCN1Bb R214Q found in 3 patients: 1 with Brugada syndrome and 2 with lone atrial fibrillation. Heart Rhythm. 2012;9(5):770–3.

    PubMed  Google Scholar 

  141. Kattygnarath D, Maugenre S, Neyroud N, Balse E, Ichai C, Denjoy I, et al. MOG1: a new susceptibility gene for Brugada syndrome. Circ Cardiovasc Genet. 2011;4(3):261–8.

    CAS  PubMed  Google Scholar 

  142. Cerrone M, Lin X, Zhang M, Agullo-Pascual E, Pfenniger A, Chkourko GH, et al. Missense mutations in plakophilin-2 cause sodium current deficit and associate with a Brugada syndrome phenotype. Circulation. 2013;129(10):1092–103.

    PubMed  PubMed Central  Google Scholar 

  143. Hennessey JA, Marcou CA, Wang C, Wei EQ, Wang C, Tester DJ, et al. FGF12 is a candidate Brugada syndrome locus. Heart Rhythm. 2013;10(12):1886–94.

    PubMed  Google Scholar 

  144. Bezzina CR, Barc J, Mizusawa Y, Remme CA, Gourraud JB, Simonet F, et al. Common variants at SCN5A-SCN10A and HEY2 are associated with Brugada syndrome, a rare disease with high risk of sudden cardiac death. Nat Genet. 2013;45(9):1044–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Hu D, Barajas-Martinez H, Pfeiffer R, Dezi F, Pfeiffer J, Buch T, et al. Mutations in SCN10A are responsible for a large fraction of cases of Brugada syndrome. J Am Coll Cardiol. 2014;64(1):66–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Behr ER, Savio-Galimberti E, Barc J, Holst AG, Petropoulou E, Prins BP, et al. Role of common and rare variants in SCN10A: results from the Brugada syndrome QRS locus gene discovery collaborative study. Cardiovasc Res. 2015;106:520.

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Perrin MJ, Adler A, Green S, Al-Zoughool F, Doroshenko P, Orr N, et al. Evaluation of genes encoding for the transient outward current (Ito) identifies the KCND2 gene as a cause of J-wave syndrome associated with sudden cardiac death. Circ Cardiovasc Genet. 2014;7(6):782–9.

    CAS  PubMed  Google Scholar 

  148. Verkerk AO, Wilders R, Schulze-Bahr E, Beekman L, Bhuiyan ZA, Bertrand J, et al. Role of sequence variations in the human ether-a-go-go-related gene (HERG, KCNH2) in the Brugada syndrome. Cardiovasc Res. 2005;68(3):441–53.

    CAS  PubMed  Google Scholar 

  149. Wilders R, Verkerk AO. Role of the R1135H KCNH2 mutation in Brugada syndrome. Int J Cardiol. 2010;144(1):149–51.

    PubMed  Google Scholar 

  150. Ohno S, Zankov DP, Ding WG, Itoh H, Makiyama T, Doi T, et al. KCNE5 (KCNE1L) variants are novel modulators of Brugada syndrome and idiopathic ventricular fibrillation. Circ Arrhythm Electrophysiol. 2011;4(3):352–61.

    CAS  PubMed  Google Scholar 

  151. Boczek NJ, Ye D, Johnson EK, Wang W, Crotti L, Tester DJ, et al. Characterization of SEMA3A-encoded semaphorin as a naturally occurring Kv4.3 protein inhibitor and its contribution to Brugada syndrome. Circ Res. 2014;115(4):460–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Ueda K, Nakamura K, Hayashi T, Inagaki N, Takahashi M, Arimura T, et al. Functional characterization of a trafficking-defective HCN4 mutation, D553N, associated with cardiac arrhythmia. J Biol Chem. 2004;279(26):27194–8.

    CAS  PubMed  Google Scholar 

  153. Noseworthy PA, Tikkanen JT, Porthan K, Oikarinen L, Pietila A, Harald K, et al. The early repolarization pattern in the general population clinical correlates and heritability. J Am Coll Cardiol. 2011;57(22):2284–9.

    PubMed  PubMed Central  Google Scholar 

  154. Reinhard W, Kaess BM, Debiec R, Nelson CP, Stark K, Tobin MD, et al. Heritability of early repolarization: a population-based study. Circ Cardiovasc Genet. 2011;4(2):134–8.

    PubMed  Google Scholar 

  155. Nunn LM, Bhar-Amato J, Lowe MD, Macfarlane PW, Rogers P, McKenna WJ, et al. Prevalence of J-point elevation in sudden arrhythmic death syndrome families. J Am Coll Cardiol. 2011;58(3):286–90.

    PubMed  Google Scholar 

  156. Haissaguerre M, Chatel S, Sacher F, Weerasooriya R, Probst V, Loussouarn G, et al. Ventricular fibrillation with prominent early repolarization associated with a rare variant of KCNJ8/KATP channel. J Cardiovasc Electrophysiol. 2009;20(1):93–8.

    PubMed  Google Scholar 

  157. Watanabe H, Nogami A, Ohkubo K, Kawata H, Hayashi Y, Ishikawa T, et al. Electrocardiographic characteristics and SCN5A mutations in idiopathic ventricular fibrillation associated with early repolarization. Circ Arrhythm Electrophysiol. 2011;4(6):874–81.

    CAS  PubMed  Google Scholar 

  158. Matsuo K, Akahoshi M, Seto S, Yano K. Disappearance of the Brugada-type electrocardiogram after surgical castration: a role for testosterone and an explanation for the male preponderance? Pacing Clin Electrophysiol. 2003;26(7 Pt 1):1151–3.

    Google Scholar 

  159. Antzelevitch C. Androgens and male predominance of the Brugada syndrome phenotype. Pacing Clin Electrophysiol. 2003;26(7 Pt 1):1429–31.

    PubMed  Google Scholar 

  160. Korte AK, Derde L, van Wijk J, Tjan DH. Sudden cardiac arrest as a presentation of Brugada syndrome unmasked by thyroid storm. BMJ Case Rep. 2015;2015:bcr2015212351.

    PubMed  PubMed Central  Google Scholar 

  161. Nademanee K, Raju H, de Noronha SV, Papadakis M, Robinson L, Rothery S, et al. Fibrosis, Connexin-43, and Conduction Abnormalities in the Brugada Syndrome. J Am Coll Cardiol. 2015;66(18):1976–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Wilde AA, Postema PG, Di Diego JM, Viskin S, Morita H, Fish JM, et al. The pathophysiological mechanism underlying Brugada syndrome: depolarization versus repolarization. J Mol Cell Cardiol. 2010;49(4):543–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Morita H, Zipes DP, Nishii N, Miura D, Nagase S, Hata Y, et al. Impact of sodium channel dysfuction on arrhythmogenesis in Brugada syndrome. Circulation. 2009;120:S696.

    Google Scholar 

  164. Di Diego JM, Argenziano M, Chen K, Tabler M, Antzelevitch C. In a Whole-Heart model of the Brugada Syndrome, Delayed Conduction in the RVOT “does not” Contribute to Inscription of the Electrocardiographic J wave /ST segment elevation. Heart Rhythm. 2018;15:S242.

    Google Scholar 

  165. Ghosh S, Cooper DH, Vijayakumar R, Zhang J, Pollak S, Haissaguerre M, et al. Early repolarization associated with sudden death: insights from noninvasive electrocardiographic imaging. Heart Rhythm. 2010;7(4):534–7.

    PubMed  Google Scholar 

  166. Nam GB, Kim YH, Antzelevitch C. Augmentation of J waves and electrical storms in patients with early repolarization. N Engl J Med. 2008;358(19):2078–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Nam GB, Ko KH, Kim J, Park KM, Rhee KS, Choi KJ, et al. Mode of onset of ventricular fibrillation in patients with early repolarization pattern vs. Brugada syndrome. Eur Heart J. 2010;31(3):330–9.

    PubMed  Google Scholar 

  168. Schwartz PJ. The idiopathic long QT syndrome: progress and questions. Am Heart J. 1985;109(2):399–411.

    CAS  PubMed  Google Scholar 

  169. Moss AJ, Schwartz PJ, Crampton RS, Tzivoni D, Locati EH, MacCluer JW, et al. The long QT syndrome: prospective longitudinal study of 328 families. Circulation. 1991;84:1136–44.

    CAS  PubMed  Google Scholar 

  170. Zipes DP. The long QT interval syndrome. A Rosetta stone for sympathetic related ventricular tachyarrhythmias. Circulation. 1991;84(3):1414–9.

    CAS  PubMed  Google Scholar 

  171. Plaster NM, Tawil R, Tristani-Firouzi M, Canun S, Bendahhou S, Tsunoda A, et al. Mutations in Kir2.1 cause the developmental and episodic electrical phenotypes of Andersen’s syndrome. Cell. 2001;105:511–9.

    CAS  PubMed  Google Scholar 

  172. Wang Q, Shen J, Splawski I, Atkinson DL, Li ZZ, Robinson JL, et al. SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome. Cell. 1995;80:805–11.

    CAS  PubMed  Google Scholar 

  173. Mohler PJ, Schott JJ, Gramolini AO, Dilly KW, Guatimosim S, du Bell WH, et al. Ankyrin-B mutation causes type 4 long-QT cardiac arrhythmia and sudden cardiac death. Nature. 2003;421(6923):634–9.

    CAS  PubMed  Google Scholar 

  174. Curran ME, Splawski I, Timothy KW, Vincent GM, Green ED, Keating MT. A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell. 1995;80:795–803.

    CAS  PubMed  Google Scholar 

  175. Wang Q, Curran ME, Splawski I, Burn TC, Millholland JM, Van Raay TJ, et al. Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias. Nat Genet. 1996;12:17–23.

    PubMed  Google Scholar 

  176. Splawski I, Tristani-Firouzi M, Lehmann MH, Sanguinetti MC, Keating MT. Mutations in the hminK gene cause long QT syndrome and suppress IKs function. Nat Genet. 1997;17:338–40.

    CAS  PubMed  Google Scholar 

  177. Ye B, Tester DJ, Vatta M, Makielski JC, Ackerman MJ. Molecular and functional characterization of novel cav3-encoded caveolin-3 mutations in congenital long QT syndrome [abstract]. Heart Rhythm. 2006;3:S1.

    Google Scholar 

  178. Domingo AM, Kaku T, Tester DJ, Torres PI, Itty A, Ye B, et al. Sodium channel ß4 subunit mutation causes congenital long QT syndrome. Heart Rhythm. 2006;3:S34–S.

    Google Scholar 

  179. Tester DJ, Will ML, Haglund CM, Ackerman MJ. Compendium of cardiac channel mutations in 541 consecutive unrelated patients referred for long QT syndrome genetic testing. Heart Rhythm. 2005;2(5):507–17.

    PubMed  Google Scholar 

  180. Wang Q, Shen J, Li Z, Timothy KW, Vincent GM, Priori SG, et al. Cardiac sodium channel mutations in patients with long QT syndrome, an inherited cardiac arrhythmia. Hum Mol Genet. 1995;4:1603–7.

    CAS  PubMed  Google Scholar 

  181. Giudicessi JR, Wilde AAM, Ackerman MJ. The genetic architecture of long QT syndrome: A critical reappraisal. Trends Cardiovasc Med. 2018;28(7):453–64.

    PubMed  PubMed Central  Google Scholar 

  182. Strande NT, Riggs ER, Buchanan AH, Ceyhan-Birsoy O, DiStefano M, Dwight SS, et al. Evaluating the clinical validity of gene-disease associations: an evidence-based framework developed by the clinical genome resource. Am J Hum Genet. 2017;100(6):895–906.

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Boczek NJ, Gomez-Hurtado N, Ye D, Calvert ML, Tester DJ, Kryshtal D, et al. Spectrum and prevalence of CALM1-, CALM2-, and CALM3-encoded calmodulin variants in long QT syndrome and functional characterization of a novel long QT syndrome-associated calmodulin missense variant, E141G. Circ Cardiovasc Genet. 2016;9(2):136–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Crotti L, Johnson CN, Graf E, De Ferrari GM, Cuneo BF, Ovadia M, et al. Calmodulin mutations associated with Recurrent Cardiac Arrest in Infants. Circulation. 2013;127(9):1009–17.

    CAS  PubMed  Google Scholar 

  185. Splawski I, Timothy KW, Sharpe LM, Decher N, Kumar P, Bloise R, et al. Cav1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell. 2004;119(1):19–31.

    CAS  PubMed  Google Scholar 

  186. Bednar MM, Harrigan EP, Anziano RJ, Camm AJ, Ruskin JN. The QT interval. Prog Cardiovasc Dis. 2001;43(5 Pt 2):1–45.

    CAS  PubMed  Google Scholar 

  187. Tomaselli GF, Marban E. Electrophysiological remodeling in hypertrophy and heart failure. Cardiovasc Res. 1999;42:270–83.

    CAS  PubMed  Google Scholar 

  188. Sipido KR, Volders PG, De Groot SH, Verdonck F, Van de WF, Wellens HJ, et al. Enhanced Ca2+ release and Na/Ca exchange activity in hypertrophied canine ventricular myocytes: potential link between contractile adaptation and arrhythmogenesis. Circulation. 2000;102(17):2137–44.

    CAS  PubMed  Google Scholar 

  189. Volders PG, Sipido KR, Vos MA, Spatjens RL, Leunissen JD, Carmeliet E, et al. Downregulation of delayed rectifier K(+) currents in dogs with chronic complete atrioventricular block and acquired torsades de pointes. Circulation. 1999;100(24):2455–61.

    CAS  PubMed  Google Scholar 

  190. Undrovinas AI, Maltsev VA, Sabbah HN. Repolarization abnormalities in cardiomyocytes of dogs with chronic heart failure: role of sustained inward current. Cell Mol Life Sci. 1999;55(3):494–505.

    CAS  PubMed  Google Scholar 

  191. Maltsev VA, Sabbah HN, Higgins RS, Silverman N, Lesch M, Undrovinas AI. Novel, ultraslow inactivating sodium current in human ventricular cardiomyocytes. Circulation. 1998;98(23):2545–52.

    CAS  PubMed  Google Scholar 

  192. Itoh H, Crotti L, Aiba T, Spazzolini C, Denjoy I, Fressart V, et al. The genetics underlying acquired long QT syndrome: impact for genetic screening. Eur Heart J. 2016;37(18):1456–64.

    PubMed  Google Scholar 

  193. Belardinelli L, Antzelevitch C, Vos MA. Assessing predictors of drug-induced torsade de pointes. Trends Pharmacol Sci. 2003;24:619–25.

    CAS  PubMed  Google Scholar 

  194. Antzelevitch C, Shimizu W. Cellular mechanisms underlying the long QT syndrome. Curr Opin Cardiol. 2002;17(1):43–51.

    PubMed  Google Scholar 

  195. Shimizu W, Antzelevitch C. Effects of a K+ channel opener to reduce transmural dispersion of repolarization and prevent torsade de pointes in LQT1, LQT2, and LQT3 models of the long-QT syndrome. Circulation. 2000;102(6):706–12.

    CAS  PubMed  Google Scholar 

  196. Antzelevitch C. Heterogeneity of cellular repolarization in LQTS: the role of M cells. Eur Heart J Suppl. 2001;3(K):K2–16.

    CAS  Google Scholar 

  197. Shimizu W, Antzelevitch C. Cellular basis for the ECG features of the LQT1 form of the long QT syndrome: effects of beta-adrenergic agonists and antagonists and sodium channel blockers on transmural dispersion of repolarization and torsade de pointes. Circulation. 1998;98(21):2314–22.

    CAS  PubMed  Google Scholar 

  198. Shimizu W, Antzelevitch C. Sodium channel block with mexiletine is effective in reducing dispersion of repolarization and preventing torsade de pointes in LQT2 and LQT3 models of the long-QT syndrome. Circulation. 1997;96(6):2038–47.

    CAS  PubMed  Google Scholar 

  199. Shimizu W, Antzelevitch C. Differential effects of beta-adrenergic agonists and antagonists in LQT1, LQT2 and LQT3 models of the long QT syndrome. J Am Coll Cardiol. 2000;35:778–86.

    CAS  PubMed  Google Scholar 

  200. Antzelevitch C, Shimizu W, Yan GX, Sicouri S, Weissenburger J, Nesterenko VV, et al. The M cell: its contribution to the ECG and to normal and abnormal electrical function of the heart. J Cardiovasc Electrophysiol. 1999;10(8):1124–52.

    CAS  PubMed  Google Scholar 

  201. Anyukhovsky EP, Sosunov EA, Gainullin RZ, Rosen MR. The controversial M cell. J Cardiovasc Electrophysiol. 1999;10:244–60.

    CAS  PubMed  Google Scholar 

  202. Li GR, Feng J, Yue L, Carrier M. Transmural heterogeneity of action potentials and Ito1 in myocytes isolated from the human right ventricle. Am J Physiol. 1998;275:H369–77.

    CAS  PubMed  Google Scholar 

  203. Gussak I, Brugada P, Brugada J, Wright RS, Kopecky SL, Chaitman BR, et al. Idiopathic short QT interval: a new clinical syndrome? Cardiology. 2000;94(2):99–102.

    CAS  PubMed  Google Scholar 

  204. Gussak I, Brugada P, Brugada J, Antzelevitch C, Osbakken M, Bjerregaard P. ECG phenomenon of idiopathic and paradoxical short QT intervals. Cardiac Electrophysiol Rev. 2002;6:49–53.

    Google Scholar 

  205. Patel C, Yan GX, Antzelevitch C. Short QT syndrome: from bench to bedside. Circ Arrhythm Electrophysiol. 2010;3(4):401–8.

    PubMed  PubMed Central  Google Scholar 

  206. Gaita F, Giustetto C, Bianchi F, Wolpert C, Schimpf R, Riccardi R, et al. Short QT syndrome: a familial cause of sudden death. Circulation. 2003;108(8):965–70.

    PubMed  Google Scholar 

  207. Brugada R, Hong K, Dumaine R, Cordeiro JM, Gaita F, Borggrefe M, et al. Sudden death associated with short-QT syndrome linked to mutations in HERG. Circulation. 2004;109(1):30–5.

    CAS  PubMed  Google Scholar 

  208. Bellocq C, Van Ginneken AC, Bezzina CR, Alders M, Escande D, Mannens MM, et al. Mutation in the KCNQ1 gene leading to the short QT-interval syndrome. Circulation. 2004;109(20):2394–7.

    PubMed  Google Scholar 

  209. Priori SG, Pandit SV, Rivolta I, Berenfeld O, Ronchetti E, Dhamoon A, et al. A novel form of short QT syndrome (SQT3) is caused by a mutation in the KCNJ2 gene. Circ Res. 2005;96(7):800–7.

    CAS  PubMed  Google Scholar 

  210. Antzelevitch C, Pollevick GD, Cordeiro JM, Casis O, Sanguinetti MC, Aizawa Y, et al. Loss-of-function mutations in the cardiac calcium channel underlie a new clinical entity characterized by ST-segment elevation, short QT intervals, and sudden cardiac death. Circulation. 2007;115(4):442–9.

    PubMed  PubMed Central  Google Scholar 

  211. Templin C, Ghadri JR, Rougier JS, Baumer A, Kaplan V, Albesa M, et al. Identification of a novel loss-of-function calcium channel gene mutation in short QT syndrome (SQTS6). Eur Heart J. 2011;32(9):1077–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Roussel J, Labarthe F, Thireau J, Ferro F, Farah C, Roy J, et al. Carnitine deficiency induces a short QT syndrome. Heart Rhythm. 2016;13(1):165–74.

    PubMed  Google Scholar 

  213. Extramiana F, Antzelevitch C. Amplified transmural dispersion of repolarization as the basis for arrhythmogenesis in a canine ventricular-wedge model of short QT syndrome. Circulation. 2004;110(24):3661–6.

    PubMed  Google Scholar 

  214. Patel C, Antzelevitch C. Cellular basis for arrhythmogenesis in an experimental model of the SQT1 form of the short QT syndrome. Heart Rhythm. 2008;5(4):585–90.

    PubMed  PubMed Central  Google Scholar 

  215. Nof E, Burashnikov A, Antzelevitch C. Cellular basis for atrial fibrillation in an experimental model of short QT1: Implications for a pharmacological approach to therapy. Heart Rhythm. 2010;7(2):251–7.

    PubMed  Google Scholar 

  216. Anttonen O, Vaananen H, Junttila J, Huikuri HV, Viitasalo M. Electrocardiographic transmural dispersion of repolarization in patients with inherited short QT syndrome. Ann Noninvasive Electrocardiol. 2008;13(3):295–300.

    PubMed  PubMed Central  Google Scholar 

  217. Gupta P, Patel C, Patel H, Narayanaswamy S, Malhotra B, Green JT, et al. Tp-e/QT ratio as an index of arrhythmogenesis. J Electrocardiol. 2008;41(6):567–74.

    PubMed  Google Scholar 

  218. Anttonen O, Junttila MJ, Maury P, Schimpf R, Wolpert C, Borggrefe M, et al. Differences in twelve-lead electrocardiogram between symptomatic and asymptomatic subjects with short QT interval. Heart Rhythm. 2009;6(2):267–71.

    PubMed  Google Scholar 

  219. Milberg P, Tegelkamp R, Osada N, Schimpf R, Wolpert C, Breithardt G, et al. Reduction of dispersion of repolarization and prolongation of postrepolarization refractoriness explain the antiarrhythmic effects of quinidine in a model of short QT syndrome. J Cardiovasc Electrophysiol. 2007;18(6):658–64.

    PubMed  Google Scholar 

  220. Lahat H, Pras E, Olender T, Avidan N, Ben Asher E, Man O, et al. A missense mutation in a highly conserved region of CASQ2 is associated with autosomal recessive catecholamine-induced polymorphic ventricular tachycardia in Bedouin families from Israel. Am J Hum Genet. 2001;69(6):1378–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Gomez-Hurtado N, Boczek NJ, Kryshtal DO, Johnson CN, Sun J, Nitu FR, et al. Novel CPVT-Associated Calmodulin Mutation in CALM3 (CALM3-A103V) Activates Arrhythmogenic Ca Waves and Sparks. Circ Arrhythm Electrophysiol. 2016;9(8):e004161.

    CAS  PubMed  Google Scholar 

  222. Roux-Buisson N, Cacheux M, Fourest-Lieuvin A, Fauconnier J, Brocard J, Denjoy I, et al. Absence of triadin, a protein of the calcium release complex, is responsible for cardiac arrhythmia with sudden death in human. Hum Mol Genet. 2012;21(12):2759–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Makita N, Yagihara N, Crotti L, Johnson CN, Beckmann BM, Roh MS, et al. Novel calmodulin mutations associated with congenital arrhythmia susceptibility. Circ Cardiovasc Genet. 2014;7(4):466–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  224. Tester DJ, Arya P, Will M, Haglund CM, Farley AL, Makielski JC, et al. Genotypic heterogeneity and phenotypic mimicry among unrelated patients referred for catecholaminergic polymorphic ventricular tachycardia genetic testing. Heart Rhythm. 2006;3(7):800–5.

    PubMed  Google Scholar 

  225. Mohler PJ, Splawski I, Napolitano C, Bottelli G, Sharpe L, Timothy K, et al. A cardiac arrhythmia syndrome caused by loss of ankyrin-B function. Proc Natl Acad Sci USA. 2004;101:9137–42.

    CAS  PubMed  Google Scholar 

  226. Devalla HD, Gelinas R, Aburawi EH, Beqqali A, Goyette P, Freund C, et al. TECRL, a new life-threatening inherited arrhythmia gene associated with overlapping clinical features of both LQTS and CPVT. EMBO Mol Med. 2016;8(12):1390–408.

    CAS  PubMed  PubMed Central  Google Scholar 

  227. Cerrone M, Montnach J, Lin X, Zhao YT, Zhang M, Agullo-Pascual E, et al. Plakophilin-2 is required for transcription of genes that control calcium cycling and cardiac rhythm. Nat Commun. 2017;8(1):106.

    PubMed  PubMed Central  Google Scholar 

  228. Tester DJ, Ackerman JP, Giudicessi JR, Ackerman NC, Cerrone M, Delmar M, et al. Plakophilin-2 Truncation Variants in Patients Clinically Diagnosed With Catecholaminergic Polymorphic Ventricular Tachycardia and Decedents With Exercise-Associated Autopsy Negative Sudden Unexplained Death in the Young. JACC Clin Electrophysiol. 2019;5(1):120–7.

    PubMed  Google Scholar 

  229. Power JM, Beacom GA, Alferness CA, Raman J, Wijffels M, Farish SJ, et al. Susceptibility to atrial fibrillation: a study in an ovine model of pacing-induced early heart failure. J Cardiovasc Electrophysiol. 1998;9(4):423–35.

    CAS  PubMed  Google Scholar 

  230. Shi Y, Ducharme A, Li D, Gaspo R, Nattel S, Tardif JC. Remodeling of atrial dimensions and emptying function in canine models of atrial fibrillation. Cardiovasc Res. 2001;52(2):217–25.

    CAS  PubMed  Google Scholar 

  231. Fish JM, Antzelevitch C. Role of sodium and calcium channel block in unmasking the Brugada syndrome. Heart Rhythm. 2004;1(2):210–7.

    PubMed  PubMed Central  Google Scholar 

Download references

Financial Support

Supported by grants from the NIH (HL47678 and HL138103), W. W Smith Charitable Trust (H1802) and the Martha and Wistar Morris Fund.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Burashnikov, A., Antzelevitch, C. (2020). Mechanisms Underlying the Development of Cardiac Arrhythmias. In: Yan, GX., Kowey, P., Antzelevitch, C. (eds) Management of Cardiac Arrhythmias. Contemporary Cardiology. Humana, Cham. https://doi.org/10.1007/978-3-030-41967-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41967-7_2

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-41966-0

  • Online ISBN: 978-3-030-41967-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics