Skip to main content

Sedimentological Attributes and Quartz Microtexture in the Levee Sediments of a Submarine Channel in Context of the East Antarctic Ice Sheet Fluctuations: A Study from Site U-1359 of IODP-318 Expedition

  • Chapter
  • First Online:
Dynamics of the Earth System: Evolution, Processes and Interactions

Part of the book series: Society of Earth Scientists Series ((SESS))

Abstract

Sedimentological characterization of the marine sediments has been used for understanding the sediment distribution and processes occurring off the coast of East Antarctica. These sediments represent several glacial-interglacial cycles. The location of site U1359 on the eastern levee of Jussieu submarine channel in the continental rise makes it an important site for grain size analyses and quartz grains texture. The site is also important from the processes point of view as presently the area is influenced by various agents starting from the turbidity current to various bottom water currents. The grain size analyses, as well as the quartz grain textural analyses, supports the previously inferred stages of ice retreat and ice advancements in the Wilkes Land sector and displays utility of quartz microtexture and grain size study in inferring the past sedimentological processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson JB (1999) Antarctic marine geology. Cambridge University Press, Cambridge, UK, 289 pp.

    Google Scholar 

  • Bamber JL, Vaughan DG, Joughin I (2000) Widespread complex flow in the interior of the Antarctic Ice Sheet. Science 287:1248. https://doi.org/10.1126/science.287.5456.1248

    Article  Google Scholar 

  • Bindoff NL, Rosenberg MA, Warner MJ (2000) On the circulation and water masses over the Antarctic continental slope and rise between 80 and 150 E. Deep Sea Res Part II 47(12–13):2299–2326

    Article  Google Scholar 

  • Cooper AK, O’Brien PE, Richter C (eds) (2004) Proceedings of the Ocean Drilling Program, scientific results, College Station, TX, Ocean Drilling Program. https://doi.org/10.2973/0dp.proc.sr.188.2004

  • Damiani D, Giorgetti G, Turbanti IM (2006) Clay mineral fluctuations and surface textural analysis of quartz grains in Pliocene-Quaternary marine sediments from Wilkes Land continental rise (East-Antarctica): paleoenvironmental significance. Mar Geol 226(3–4):281–295

    Article  Google Scholar 

  • De Santis L, Brancolini G, Donda F (2003) Seismic-stratigraphic analysis of the Wilkes Land continental margin (East Antarctica). Influence of glacially-driven processes on the Cenozoic deposition. Deep-Sea Res II 50:1563–1594

    Article  Google Scholar 

  • Donda F, Brancolini G, De Santis L, Trincardi F (2003) Seismic facies and sedimentary processes on the continental rise off Wilkes Land (East Antarctica): evidence of bottom current activity. Deep-Sea Res II 50:1509–1528

    Article  Google Scholar 

  • Drewry DJ, Cooper APR (1981) Processes and models of Antarctic glaciomarine sedimentation. Ann Glaciol 2:117–122

    Article  Google Scholar 

  • Eittreim SL, Hampton MA (eds) (1987) The Antarctic continental margin: geology and geophysics of offshore Wilkes Land. Earth science series (N. Y.), 5A

    Google Scholar 

  • Eittreim SL, Smith GL (1987) Seismic sequences and their distribution on the Wilkes Land margin. In: Eittreim SL, Hampton MA (eds) The Antarctic continental margin: geology and geophysics of offshore Wilkes Land. Earth science series (N. Y.), 5A, pp 15–43

    Google Scholar 

  • Eittreim SL, Cooper AK, Wannesson J (1995) Seismic stratigraphic evidence of ice-sheet advances on the Wilkes Land margin of Antarctica. Sed Geol 96(1–2):131–156

    Article  Google Scholar 

  • Escutia C, Brinkhuis H (2014) Greenhouse to Icehouse at the Wilkes land Antarctic margin: IODP expedition 318 synthesis of results. In: Blackman DK, Inagaki F, Larsen H-C, Stein R (eds) Developments in marine geology. Elsevier, Amsterdam, The Netherlands, pp 295–328

    Google Scholar 

  • Escutia C, Eittreim SL, Cooper AK (1997a) Cenozoic sedimentation on the Wilkes Land continental rise, Antarctica. In: Ricci CA (ed) The Antarctic region: geological evolution and processes. Proceedings of international symposium on Antarctic earth science, vol 7, pp 791–795

    Google Scholar 

  • Escutia C, Eittreim SL, Cooper AK (1997b) Cenozoic glaciomarine sequences on the Wilkes Land continental rise, Antarctica. In: Proceedings, vol VII. International symposium on Antarctic earth sciences, pp 791–795

    Google Scholar 

  • Escutia C, Eittreim SL, Cooper AK, Nelson CH (2000) Morphology and acoustic character of the Antarctic Wilkes Land turbidite systems: ice-sheet-sourced versus river sourced fans. J Sediment Res 70(1):84–93. https://doi.org/10.1306/2DC40900-0E4711D7-8643000102C1865D

    Article  Google Scholar 

  • Escutia C, Nelson CH, Acton GD, Cooper AK, Eittreim SL, Warnke DA, Jaramillo J (2002) Current controlled deposition on the Wilkes Land continental rise. In: Stow D et al (eds) Deep-water Contourite systems: modern drifts and ancient series, seismic and sedimentary characteristics. The Geological Society of London, Memoirs 22, pp 373–378. https://doi.org/10.1144/gsl.mem.2002.022.01.26

  • Escutia C, Warnke D, Acton GD, Barcena A, Burckle L, Canals M, Frazee CS (2003) Sediment distribution and sedimentary processes across the Antarctic Wilkes Land margin during the Quaternary. Deep-Sea Res Part II 50(8–9):1481–1508. https://doi.org/10.1016/s0967-0645(03)00073-0

  • Escutia C, De Santis L, Donda F, Dunbar RB, Cooper AK, Brancolini G, Eittreim SL (2005) Cenozoic ice sheet history from East Antarctic Wilkes Land continental margin sediments. Global Planet Change 45(1–3):51–81. https://doi.org/10.1016/j.gloplacha.2004.09.010

    Article  Google Scholar 

  • Escutia C, Brinkhuis H, Klaus A, Expedition 318 Scientists (2011) IODP Expedition 318: Cenozoic East Antarctic ice sheet evolution from Wilkes Land margin sediment. In: Proceedings of the Integrated Ocean Drilling Program, vol 318, College Station, TX (Integrated Ocean Drilling Program Management International, Inc.)

    Google Scholar 

  • Folk RL (1980) Petrology of Sedimentary Rocks. Hemphill Publishing Company, Austin

    Google Scholar 

  • Gordon AL, Tchernia P (1972) Waters of the continental margin off the Adelie Coast, Antarctica. In: Hayes DE (ed) Antarctic oceanology II. The Australian-New Zealand sector. Antarctic research series, vol 19, pp 59–70

    Google Scholar 

  • Hampton MA, Eittreim SL, Richmond BM (1987a) Postbreakup sedimentation on the Wilkes Land Margin, Antarctica. In: Eittreim SL, Hampton MA (eds) The Antarctic continental margin: geology and geophysics of offshore Wilkes Land. Circum-Pacific Council for Energy and Mineral Resources Earth Sciences Series, 5A, Houston, pp 75–88

    Google Scholar 

  • Hampton MA, Eittreim SL, Richmond BM (1987b) Geology of sediment cores from the George V continental margin. In: Eittreim SL, Hampton MA (eds) The Antarctic continental margin: geology and geophysics of offshore Wilkes Land. Circum-Pacific Council for Energy and Mineral Resources Earth Sciences Series, 5A, Houston, pp 75–88

    Google Scholar 

  • Harris PT, Keene JB, Cole A, Pattiaratchi CB (1990) Modelling the evolution of a linear sandbank field, Moreton bay, Queensland: report of results obtained during the cruise of AM brolga in July, 1989. Ocean Sciences Institute, University of Sydney

    Google Scholar 

  • Hayes DE, Frakes LA (1975). Initial reports of the Deep Sea Drilling Project, 28. U.S. Govt. Printing Office, Washington, DC. https://doi.org/10.2973/dsdp.proc.28.1975

  • Helland PE, Holmes MA (1997) Surface textural analysis of quartz sand grains from ODP Site 918 off the southeast coast of Greenland suggests glaciation of southern Greenland at 11 Ma. Palaeogeogr Palaeoclimatol Palaeoecol 135(1):109–121

    Article  Google Scholar 

  • Hill PR, Nadeau OC (1984) Grain-surface textures of late Wisconsinan sands from the Canadian Beaufort Shelf. J Sediment Res 54(4):1349–1357

    Google Scholar 

  • Hodel KL, Reimnitz E, Barnes PW (1988) Microtextures of quartz grains from modern terrestrial and subaqueous environments, north slope of Alaska. J Sediment Res 58(1):24–32

    Google Scholar 

  • Jackson ML (1979) Soil chemical analysis—advanced course, 2nd edn. Published by the Author, Madison, Wisconsin

    Google Scholar 

  • Krinsley DH, Donahue J (1968) Environmental interpretation of sand grain surface textures by electron microscopy. Geol Soc Am Bull 79(6):743–748

    Article  Google Scholar 

  • Krinsley DH, Doornkamp JC (1973) Atlas of sand grain surface textures. Cambridge University Press, Cambridge

    Google Scholar 

  • Krumbein WC (1938) Pettijohn. FJ-1938—manual of sedimentary petrography, New York, London

    Google Scholar 

  • Le Roux JP, Rojas EM (2007) Sediment transport patterns determined from grain size parameters: overview and state of the art. Sediment Geol 202(3):473–488

    Article  Google Scholar 

  • Lindstrom D, Tyler D (1984) Preliminary results of Pine Island and Thwaites glaciers study. Antarct JUS 19(5):53–55

    Google Scholar 

  • MacDonald TR, Ferrigno JG, Williams RS Jr, Lucchitta BK (1989) Velocities of Antarctic outlet glaciers determined from sequential Landsat images. Antarct JUS 24:105–106

    Google Scholar 

  • Mahaney WC, Kalm V (1995) Scanning electron microscopy of Pleistocene tills in Estonia. Boreas 24:13–29

    Article  Google Scholar 

  • Mahaney WC, Kalm V (2000) Comparative scanning electron microscopy study of oriented till blocks, glacial grains and Devonian sands in Estonia and Latvia. Boreas 29(1):35–51

    Article  Google Scholar 

  • Mahaney WC, Claridge GC, Campbell I (1996) Micro texture on quartz grains in tills from Antarctica. Paleogeogr Palaeoclimatol Palaeoecol 121:89–103

    Article  Google Scholar 

  • Marshall B, Gilligan LB (1987) An introduction to remobilization: information from ore-body geometry and experimental considerations. Ore Geol Rev 2(1–3):87–131

    Article  Google Scholar 

  • McCave IN (1978) Grain-size trends and transport along beaches: example from eastern England. Mar Geol 28(1–2):M43–M51

    Article  Google Scholar 

  • Pandey M, Pant NC, Biswas P, Shrivastava PK, Joshi S, Nagi N (2017) Heavy mineral assemblage of marine sediments as an indicator of provenance and East Antarctic ice sheet fluctuations. Geological Society, London, Special Publications, 461, p SP461-2

    Google Scholar 

  • Pant NC, Biswas P, Shrivastava PK, Bhattacharya S, Verma K, Pandey M, IODP Expedition 318 Scientific Party (2013) Provenance of Pleistocene sediments from site U1359 of the Wilkes Land IODP Leg 318—evidence for multiple sourcing from the East Antarctic Craton and Ross Orogen. Geological Society of London, Special Publications, 381. https://doi.org/10.1144/sp381.11

  • Passchier S, Ciarletta DJ, Henao V, Sekkas V (2018) Sedimentary processes and facies on a high-latitude passive continental margin, Wilkes Land, East Antarctica. Geological Society, London, Special Publications, 475, p SP475-3

    Google Scholar 

  • Payne RR, Conolly JR (1972) Turbidite sedimentation off the Antarctic continent. Antarct Oceanol II: Aust-N Z Sect 19:349–364

    Google Scholar 

  • Presti M, Barbara L, Denis D, Schmidt S, De Santis L, Crosta X (2011) Sediment delivery and depositional patterns off Adélie Land (East Antarctica) in relation to late Quaternary climatic cycles. Mar Geol 284(1–4):96–113

    Article  Google Scholar 

  • Rex RW, Margolis SV, Murray B (1970) Possible interglacial dune sands from 300 meters water depth in the Weddell Sea, Antarctica. Geol Soc Am Bull 81:3465–3472

    Article  Google Scholar 

  • Riester DD, Shipp RC, Ehrlich R (1982) Patterns of quartz sand shape variation, Long Island littoral and shelf. J Sediment Res 52(4):1307–1314

    Google Scholar 

  • Roy M, Van de Flierdt T, Hemming SR, Goldstein SL (2007) 40Ar/39Ar ages of hornblende grains and bulk Sm/Nd isotopes of circum-Antarctic glacio-marine sediments: implications for sediment provenance in the Southern Ocean. Chem Geol 244:507–519

    Article  Google Scholar 

  • Russell RD (1939) Effects of transportation of sedimentary particles. In: Trask PD (ed) Recent marine sediments. Society of Economic Paleontologists and Mineralogists, T&A, Oklahoma, p 3247

    Google Scholar 

  • Stapor FW, Tanner WF (1975) Hydrodynamic implications of beach, beach ridge and dune grain size studies. J Sediment Res 45(4):926–931

    Google Scholar 

  • Swift DJP, Ludwick JC, Boehmer WR (1972) Shelf sediment transport: a probability model. In: Swift DJP, Duane DB, Pilkey OH (eds) Shelf sediment transport: process and pattern. Dowden, Hutchingson and Ross, Stroudsburg, pp 195–223

    Google Scholar 

  • Tauxe L, Stickley C, Sugisaki1 S, Bij PK, Bohaty S, Brinkhuis H, Escutia C, Flores JA, Iwai M, McKay R, Passchier S, Pross J, Riesselman C, Röhl U, Sangiorgi F, Welsh K, Williams T (2012) Magneto and biostratigraphic constraints for the paleoceanographic record of the Wilkes Land Margin cores: IODP Expedition 318. American Geophysical Union, Paleocenography 27:PA2214. https://doi.org/10.1029/2012pa002308

  • Verma K, Bhattacharya S, Biswas P, Shrivastava PK, Pandey M, Pant NC, I.O.D.P Expedition Scientific Party (2014) Clay mineralogy of the ocean sediments from the Wilkes Land margin, East Antarctica: implications on the paleoclimate, provenance and sediment dispersal pattern. Int J Earth Sci 103:2315–2326

    Article  Google Scholar 

  • Whalley WB, Krinsley DH (1974) A scanning electron microscope study of surface textures of quartz grains from glacial environments. Sedimentology 21(1):87–105

    Article  Google Scholar 

Download references

Acknowledgements

This work is a result of analyses on sediments of the drill core U1359 provided by the IODP Expedition 318. The National Centre for Polar and Ocean Research funded this project. Dr. N. C. Mehra, Department of Geology, University of Delhi is acknowledged for his support in SEM-EDS analysis. SEM-EDS support from MoES funded project (MoES/PAMC/H&C/51/2013-PC-II) is also thankfully acknowledged. We are grateful to Professor Partha Pratim Chakraborty, Department of Geology, University of Delhi and Rashmi Gupta (CSIR-JRF), Department of Geology, Banaras Hindu University, Varanasi for constructive discussions and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naresh C. Pant .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Biswas, P., Pant, N.C., Pandey, M., Shrivastava, P.K. (2020). Sedimentological Attributes and Quartz Microtexture in the Levee Sediments of a Submarine Channel in Context of the East Antarctic Ice Sheet Fluctuations: A Study from Site U-1359 of IODP-318 Expedition. In: Pandey, D., Ravichandran, M., Nair, N. (eds) Dynamics of the Earth System: Evolution, Processes and Interactions. Society of Earth Scientists Series. Springer, Cham. https://doi.org/10.1007/978-3-030-40659-2_8

Download citation

Publish with us

Policies and ethics