Skip to main content

Sterols from the Post-Lanosterol Part of Cholesterol Synthesis: Novel Signaling Players

  • Chapter
  • First Online:
Mammalian Sterols

Abstract

While steroid hormones are well-recognized signaling molecules that bind to steroid hormone receptors there is a gap in our knowledge regarding other sterol molecules, particularly the intermediates of cholesterol synthesis. Lanosterol is the first sterol in the cholesterol synthesis pathway and theoretically, 72 different sterols can be formed before cholesterol is produced. These sterols are similar molecules by chemical properties and differ mostly by the number of double bonds and substituents on the sterol ring. While textbooks still claim that sterol intermediates of the cholesterol biosynthetic pathway are dedicated to cholesterol, there is increasing evidence that each of these sterols has a biological role, but not all have yet been discovered. In this chapter, we review the current knowledge about the post-lanosterol sterols of cholesterol synthesis and review the directions of current research in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Haines TH. Do sterols reduce proton and sodium leaks through lipid bilayers? Prog Lipid Res. 2001;40(4):299–324.

    CAS  PubMed  Google Scholar 

  2. Acimovic J, Rozman D. Steroidal triterpenes of cholesterol synthesis. Molecules. 2013;18(4):4002–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Kandutsch AA, Russell AE. Preputial gland tumor sterols. 3. A metabolic pathway from lanosterol to cholesterol. J Biol Chem. 1960;235:2256–61.

    CAS  PubMed  Google Scholar 

  4. Belic A, Pompon D, Monostory K, Kelly D, Kelly S, Rozman D. An algorithm for rapid computational construction of metabolic networks: a cholesterol biosynthesis example. Comput Biol Med. 2013;43(5):471–80.

    CAS  PubMed  Google Scholar 

  5. Wendt KU, Schulz GE, Corey EJ, Liu DR. Enzyme mechanisms for polycyclic triterpene formation. Angew Chem Int Ed Engl. 2000;39(16):2812–33.

    CAS  PubMed  Google Scholar 

  6. Reinhart MP, Billheimer JT, Faust JR, Gaylor JL. Subcellular localization of the enzymes of cholesterol biosynthesis and metabolism in rat liver. J Biol Chem. 1987;262(20):9649–55.

    CAS  PubMed  Google Scholar 

  7. Acimovic J, Goyal S, Kosir R, Golicnik M, Perse M, Belic A, et al. Cytochrome P450 metabolism of the post-lanosterol intermediates explains enigmas of cholesterol synthesis. Sci Rep. 2016;6:28462.

    PubMed  PubMed Central  Google Scholar 

  8. Upadhyay A, Amanullah A, Mishra R, Kumar A, Mishra A. Lanosterol suppresses the aggregation and cytotoxicity of misfolded proteins linked with neurodegenerative diseases. Mol Neurobiol. 2017;55:1169–82.

    PubMed  Google Scholar 

  9. Zhao L, Chen XJ, Zhu J, Xi YB, Yang X, Hu LD, et al. Lanosterol reverses protein aggregation in cataracts. Nature. 2015;523(7562):607–11.

    CAS  PubMed  Google Scholar 

  10. Rozman D, Monostory K. Perspectives of the non-statin hypolipidemic agents. Pharmacol Ther. 2010;127(1):19–40.

    CAS  PubMed  Google Scholar 

  11. Xu F, Rychnovsky SD, Belani JD, Hobbs HH, Cohen JC, Rawson RB. Dual roles for cholesterol in mammalian cells. Proc Natl Acad Sci USA. 2005;102(41):14551–6.

    CAS  PubMed  Google Scholar 

  12. Song BL, Javitt NB, DeBose-Boyd RA. Insig-mediated degradation of HMG CoA reductase stimulated by lanosterol, an intermediate in the synthesis of cholesterol. Cell Metab. 2005;1(3):179–89.

    CAS  PubMed  Google Scholar 

  13. Hubler Z, Allimuthu D, Bederman I, Elitt MS, Madhavan M, Allan KC, et al. Accumulation of 8,9-unsaturated sterols drives oligodendrocyte formation and remyelination. Nature. 2018;560(7718):372–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Santori FR, Huang P, van de Pavert SA, Douglass EF Jr, Leaver DJ, Haubrich BA, et al. Identification of natural RORgamma ligands that regulate the development of lymphoid cells. Cell Metab. 2015;21(2):286–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Mitsche MA, McDonald JG, Hobbs HH, Cohen JC. Flux analysis of cholesterol biosynthesis in vivo reveals multiple tissue and cell-type specific pathways. elife. 2015;4:e07999.

    PubMed  PubMed Central  Google Scholar 

  16. Sato R. Sterol metabolism and SREBP activation. Arch Biochem Biophys. 2010;501(2):177–81.

    CAS  PubMed  Google Scholar 

  17. Byskov AG, Andersen CY, Nordholm L, Thogersen H, Guoliang X, Wassmann O, et al. Chemical structure of sterols that activate oocyte meiosis. Nature. 1995;374(6522):559–62.

    CAS  PubMed  Google Scholar 

  18. Rozman D, Waterman MR. Lanosterol 14alpha-demethylase (CYP51) and spermatogenesis. Drug Metab Dispos. 1998;26(12):1199–201.

    CAS  PubMed  Google Scholar 

  19. Byskov AG, Andersen CY, Leonardsen L, Baltsen M. Meiosis activating sterols (MAS) and fertility in mammals and man. J Exp Zool. 1999;285(3):237–42.

    CAS  PubMed  Google Scholar 

  20. Bennati AM, Schiavoni G, Franken S, Piobbico D, Della Fazia MA, Caruso D, et al. Disruption of the gene encoding 3beta-hydroxysterol Delta-reductase (Tm7sf2) in mice does not impair cholesterol biosynthesis. FEBS J. 2008;275(20):5034–47.

    CAS  PubMed  Google Scholar 

  21. Tsai PL, Zhao C, Turner E, Schlieker C. The Lamin B receptor is essential for cholesterol synthesis and perturbed by disease-causing mutations. elife. 2016;5:e16011.

    PubMed  PubMed Central  Google Scholar 

  22. Janowski BA, Willy PJ, Devi TR, Falck JR, Mangelsdorf DJ. An oxysterol signalling pathway mediated by the nuclear receptor LXR alpha. Nature. 1996;383(6602):728–31.

    CAS  PubMed  Google Scholar 

  23. Rozman D, Cotman M, Frangez R. Lanosterol 14alpha-demethylase and MAS sterols in mammalian gametogenesis. Mol Cell Endocrinol. 2002;187(1–2):179–87.

    CAS  PubMed  Google Scholar 

  24. Tsafriri A, Cao X, Ashkenazi H, Motola S, Popliker M, Pomerantz SH. Resumption of oocyte meiosis in mammals: on models, meiosis activating sterols, steroids and EGF-like factors. Mol Cell Endocrinol. 2005;234(1–2):37–45.

    CAS  PubMed  Google Scholar 

  25. Motola S, Cao X, Popliker M, Tsafriri A. Involvement of mitogen-activated protein kinase (MAPK) pathway in LH- and meiosis-activating sterol (MAS)-induced maturation in rat and mouse oocytes. Mol Reprod Dev. 2008;75(10):1533–41.

    CAS  PubMed  Google Scholar 

  26. Beltowski J, Semczuk A. Liver X receptor (LXR) and the reproductive system – a potential novel target for therapeutic intervention. Pharmacol Rep. 2010;62(1):15–27.

    CAS  PubMed  Google Scholar 

  27. Cotman M, Jezek D, Fon Tacer K, Frangez R, Rozman D. A functional cytochrome P450 lanosterol 14 alpha-demethylase CYP51 enzyme in the acrosome: transport through the Golgi and synthesis of meiosis-activating sterols. Endocrinology. 2004;145(3):1419–26.

    CAS  PubMed  Google Scholar 

  28. Keber R, Acimovic J, Majdic G, Motaln H, Rozman D, Horvat S. Male germ cell-specific knockout of cholesterogenic cytochrome P450 lanosterol 14alpha-demethylase (Cyp51). J Lipid Res. 2013;54(6):1653–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Sharpe LJ, Brown AJ. Controlling cholesterol synthesis beyond 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR). J Biol Chem. 2013;288(26):18707–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Lange Y, Echevarria F, Steck TL. Movement of zymosterol, a precursor of cholesterol, among three membranes in human fibroblasts. J Biol Chem. 1991;266(32):21439–43.

    CAS  PubMed  Google Scholar 

  31. Hac-Wydro K, Wydro P, Flasinski M. The comparison of zymosterol vs cholesterol membrane properties--the effect of zymosterol on lipid monolayers. Colloids Surf B Biointerfaces. 2014;123:524–32.

    CAS  PubMed  Google Scholar 

  32. Hu X, Wang Y, Hao L-Y, Liu X, Lesch CA, Sanchez BM, et al. Sterol metabolism controls TH17 differentiation by generating endogenous RORγ agonists. Nat Chem Biol. 2015;11(2):141–7.

    CAS  PubMed  Google Scholar 

  33. Cook DN, Kang HS, Jetten AM. Retinoic acid-related orphan receptors (RORs): regulatory functions in immunity, development, circadian rhythm, and metabolism. Nucl Receptor Res. 2015;2:101185.

    Google Scholar 

  34. Luu W, Hart-Smith G, Sharpe LJ, Brown AJ. The terminal enzymes of cholesterol synthesis, DHCR24 and DHCR7, interact physically and functionally. J Lipid Res. 2015;56(4):888–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Bikle DD. Vitamin D metabolism, mechanism of action, and clinical applications. Chem Biol. 2014;21(3):319–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Fitzky BU, Moebius FF, Asaoka H, Waage-Baudet H, Xu L, Xu G, et al. 7-Dehydrocholesterol-dependent proteolysis of HMG-CoA reductase suppresses sterol biosynthesis in a mouse model of Smith-Lemli-Opitz/RSH syndrome. J Clin Invest. 2001;108(6):905–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Connor WE, Lin DS, Neuringer M. Biochemical markers for puberty in the monkey testis: desmosterol and docosahexaenoic acid. J Clin Endocrinol Metab. 1997;82(6):1911–6.

    CAS  PubMed  Google Scholar 

  38. Rodriguez-Acebes S, de la Cueva P, Fernandez-Hernando C, Ferruelo AJ, Lasuncion MA, Rawson RB, et al. Desmosterol can replace cholesterol in sustaining cell proliferation and regulating the SREBP pathway in a sterol-Delta24-reductase-deficient cell line. Biochem J. 2009;420(2):305–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Pikuleva I, Javitt NB. Novel sterols synthesized via the CYP27A1 metabolic pathway. Arch Biochem Biophys. 2003;420(1):35–9.

    CAS  PubMed  Google Scholar 

  40. Herman GE. X-linked dominant disorders of cholesterol biosynthesis in man and mouse. Biochim Biophys Acta. 2000;1529(1–3):357–73.

    CAS  PubMed  Google Scholar 

  41. Porter FD, Herman GE. Malformation syndromes caused by disorders of cholesterol synthesis. J Lipid Res. 2011;52(1):6–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Keber R, Motaln H, Wagner KD, Debeljak N, Rassoulzadegan M, Acimovic J, et al. Mouse knockout of the cholesterogenic cytochrome P450 lanosterol 14alpha-demethylase (Cyp51) resembles Antley-Bixler syndrome. J Biol Chem. 2011;286(33):29086–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Cragun DL, Trumpy SK, Shackleton CH, Kelley RI, Leslie ND, Mulrooney NP, et al. Undetectable maternal serum uE3 and postnatal abnormal sterol and steroid metabolism in Antley-Bixler syndrome. Am J Med Genet A. 2004;129a(1):1–7.

    PubMed  Google Scholar 

  44. Kanungo S, Soares N, He M, Steiner RD. Sterol metabolism disorders and neurodevelopment-an update. Dev Disabil Res Rev. 2013;17(3):197–210.

    PubMed  Google Scholar 

  45. Avgerinou GP, Asvesti AP, Katsambas AD, Nikolaou VA, Christofidou EC, Grzeschik KH, et al. CHILD syndrome: the NSDHL gene and its role in CHILD syndrome, a rare hereditary disorder. J Eur Acad Dermatol Venereol. 2010;24(6):733–6.

    CAS  PubMed  Google Scholar 

  46. Turner EM, Schlieker C. Pelger-Huet anomaly and Greenberg skeletal dysplasia: LBR-associated diseases of cholesterol metabolism. Rare diseases. 2016;4(1):e1241363.

    PubMed  PubMed Central  Google Scholar 

  47. Braverman N, Lin P, Moebius FF, Obie C, Moser A, Glossmann H, et al. Mutations in the gene encoding 3 beta-hydroxysteroid-delta 8, delta 7-isomerase cause X-linked dominant Conradi-Hunermann syndrome. Nat Genet. 1999;22(3):291–4.

    CAS  PubMed  Google Scholar 

  48. Corso G, Dello Russo A, Gelzo M. Liver and the defects of cholesterol and bile acids biosynthesis: rare disorders many diagnostic pitfalls. World J Gastroenterol. 2017;23(29):5257–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Honda A, Salen G, Shefer S, Batta AK, Honda M, Xu G, et al. Bile acid synthesis in the Smith-Lemli-Opitz syndrome: effects of dehydrocholesterols on cholesterol 7alpha-hydroxylase and 27-hydroxylase activities in rat liver. J Lipid Res. 1999;40(8):1520–8.

    CAS  PubMed  Google Scholar 

  50. Andersson HC, Kratz L, Kelley R. Desmosterolosis presenting with multiple congenital anomalies and profound developmental delay. Am J Med Genet. 2002;113(4):315–9.

    PubMed  Google Scholar 

  51. Zhang Y, Papazyan R, Damle M, Fang B, Jager J, Feng D, et al. The hepatic circadian clock fine-tunes the lipogenic response to feeding through RORalpha/gamma. Genes Dev. 2017;31(12):1202–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang C, Xie H, Song X, Ning G, Yan J, Chen X, et al. Lanosterol 14alpha-demethylase expression in the mouse ovary and its participation in cumulus-enclosed oocyte spontaneous meiotic maturation in vitro. Theriogenology. 2006;66(5):1156–64.

    CAS  PubMed  Google Scholar 

  53. Yan J, Wang H, Liu Y, Shao C. Analysis of gene regulatory networks in the mammalian circadian rhythm. PLoS Comput Biol. 2008;4(10):e1000193.

    PubMed  PubMed Central  Google Scholar 

  54. Gatticchi L, Cerra B, Scarpelli P, Macchioni L, Sebastiani B, Gioiello A, et al. Selected cholesterol biosynthesis inhibitors produce accumulation of the intermediate FF-MAS that targets nucleus and activates LXRalpha in HepG2 cells. Biochim Biophys Acta. 2017;1862(9):842–52.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damjana Rozman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Skubic, C., Rozman, D. (2020). Sterols from the Post-Lanosterol Part of Cholesterol Synthesis: Novel Signaling Players. In: Rozman, D., Gebhardt, R. (eds) Mammalian Sterols . Springer, Cham. https://doi.org/10.1007/978-3-030-39684-8_1

Download citation

Publish with us

Policies and ethics