Skip to main content

Chemical Mediation of Antarctic Macroalga-Grazer Interactions

  • Chapter
  • First Online:
Antarctic Seaweeds

Abstract

Macroalgal forests along the western Antarctic Peninsula (WAP) support dense assemblages of small macroalgal-associated invertebrates, particularly amphipods but also others including gastropods. Most of the macroalgal species, including all the larger, ecologically dominant brown macroalgae, elaborate chemical defenses against herbivory to amphipods as well as fish and sea stars. Consequently, the vast majority of the macroalgal biomass in these forests is unpalatable to potential consumers. A great deal of progress has been made on understanding these relationships during the past decade. Although the macroalgae are seldom consumed by the associated invertebrates and fish, many of the invertebrates, particularly the amphipods, benefit from associating with the chemically defended macroalgae because omnivorous fish avoid feeding on them. The amphipods benefit their macroalgal hosts by greatly reducing biofouling by diatoms and other epiphytic algae. This chapter reviews progress in understanding the chemical defenses of Antarctic macroalgae. It also reviews the community-wide mutualistic interaction between macroalgae and its associated amphipods as well as recent studies examining the extent to which this mutualistic interaction also occurs with macroalgal-associated gastropods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This entity is genetically distinct from P. cartilagineum found elsewhere and certainly represents a separate species, but to date, no formal alternative name has been proposed (Hommersand et al. 2009).

References

  • Amsler CD (2008) Algal chemical ecology. Springer-Verlag, Berlin, p xviii. 313

    Book  Google Scholar 

  • Amsler CD (2012) Chemical ecology of seaweeds. In: Wiencke C, Bischof K (eds) Seaweed biology: novel insights into ecophysiology, ecology and utilization. Springer-Verlag, Berlin, pp 177–188

    Chapter  Google Scholar 

  • Amsler CD, Fairhead VA (2006) Defensive and sensory chemical ecology of brown algae. Adv Bot Res 43:1–91

    CAS  Google Scholar 

  • Amsler CD, McClintock JB, Baker BJ (1998) Chemical defense against herbivory in the Antarctic marine macroalgae Iridaea cordata and Phyllophora antarctica (Rhodophyceae). J Phycol 34:53–59

    Article  CAS  Google Scholar 

  • Amsler CD, McClintock JB, Baker BJ (1999) An antarctic feeding triangle: defensive interactions between macroalgae, sea urchins, and sea anemones. Mar Ecol Prog Ser 183:105–114

    Article  Google Scholar 

  • Amsler CD, Iken KB, McClintock JB, Baker BJ (2001) Secondary metabolites from Antarctic marine organisms and their ecological implications. In: McClintock JB, Baker BJ (eds) Marine chemical ecology. CRC, Boca Raton, pp 267–300

    Google Scholar 

  • Amsler CD, Iken K, McClintock JB, Amsler MO, Peters KJ, Hubbard JM, Furrow FB, Baker BJ (2005) Comprehensive evaluation of the palatability and chemical defenses of subtidal macroalgae from the Antarctic Peninsula. Mar Ecol Prog Ser 294:141–159

    Article  CAS  Google Scholar 

  • Amsler CD, McClintock JB, Baker BJ (2008) Macroalgal chemical defenses in polar marine communities. In: Amsler CD (ed) Algal chemical ecology. Springer-Verlag, Berlin, pp 91–103

    Chapter  Google Scholar 

  • Amsler CD, Iken K, McClintock JB, Baker BJ (2009a) Defenses of polar macroalgae against herbivores and biofoulers. Bot Mar 52:535–545

    Article  CAS  Google Scholar 

  • Amsler CD, Amsler MO, McClintock JB, Baker BJ (2009b) Filamentous algal endophytes in macrophytic Antarctic algae: prevalence in hosts and palatability to mesoherbivores. Phycologia 48:324–334

    Article  Google Scholar 

  • Amsler MO, McClintock JB, Amsler CD, Angus RA, Baker BJ (2009c) An evaluation of sponge-associated amphipods from the Antarctic Peninsula. Antarct Sci 21:579–589

    Article  Google Scholar 

  • Amsler CD, McClintock JB, Baker BJ (2012a) Palatability of living and dead detached Antarctic macroalgae to consumers. Antarct Sci 24:589–590

    Article  Google Scholar 

  • Amsler CD, McClintock JB, Baker BJ (2012b) Amphipods exclude filamentous algae from the Western Antarctic Peninsula benthos: experimental evidence. Polar Biol 35:171–177

    Article  Google Scholar 

  • Amsler MO, Amsler CD, von Salm JL, Aumack CF, McClintock JB, Young RM, Baker BJ (2013) Tolerance and sequestration of macroalgal chemical defenses by an Antarctic amphipod: a ‘cheater’ among mutualists. Mar Ecol Prog Ser 490:79–90

    Article  Google Scholar 

  • Amsler CD, McClintock JB, Baker BJ (2014) Chemical mediation of mutualistic interactions between macroalgae and mesograzers structure unique coastal communities along the western Antarctic Peninsula. J Phycol 50:1–10

    Article  PubMed  Google Scholar 

  • Amsler MO, Huang YM, Engl W, McClintock JB, Amsler CD (2015) Abundance and diversity of gastropods associated with dominant subtidal macroalgae from the western Antarctic Peninsula. Polar Biol 38:1171–1181

    Article  Google Scholar 

  • Amsler CD, Amsler MO, Curtis MD, McClintock JB, Baker BJ (2019) Impacts of gastropods on epiphytic microalgae on the brown macroalga Himantothallus grandifolius. Antarct Sci 31:89–97

    Article  Google Scholar 

  • Ankisetty S, Nandiraju S, Win H, Park YC, Amsler CD, McClintock JB, Baker JA, Diyabalanage TK, Pasaribu A, Singh MP, Maiese WM, Walsh RD, Zaworotko MJ, Baker BJ (2004) Chemical investigation of predator-deterred macroalgae from the Antarctic Peninsula. J Nat Prod 67:1295–1302

    Article  CAS  PubMed  Google Scholar 

  • Apt KE (1988) Etiology and development of hyperplasia induced by Streblonema sp. (Phaeophyta) on members of the Laminariales (Phaeophyta). J Phycol 24:28–34

    Article  Google Scholar 

  • Arnold TM, Targett NM (2003) To grow and defend: lack of tradeoffs for brown algal phlorotannins. Oikos 100:406–408

    Article  Google Scholar 

  • Aumack CF, Amsler CD, McClintock JB, Baker BJ (2010) Chemically mediated resistance to mesoherbivory in finely branched macroalgae along the western Antarctic Peninsula. Eur J Phycol 45:19–26

    Article  Google Scholar 

  • Aumack CF, Amsler CD, McClintock JB, Baker BJ (2011a) Changes in amphipod densities among macroalgal habitats in day versus night collections along the Western Antarctic Peninsula. Mar Biol 158:1879–1885

    Article  Google Scholar 

  • Aumack CF, Amsler CD, McClintock JB, Baker BJ (2011b) Impacts of mesograzers on epiphyte and endophyte growth associated with chemically defended macroalgae from the western Antarctic Peninsula: a mesocosm experiment. J Phycol 47:36–41

    Article  PubMed  Google Scholar 

  • Aumack CF, Lowe AT, Amsler CD, Amsler MO, McClintock JB, Baker BJ (2017) Gut content, fatty acid, and stable isotope analyses reveal dietary sources of macroalgal-associated amphipods along the western Antarctic Peninsula. Polar Biol 40:1371–1384

    Article  Google Scholar 

  • Avila C, Taboada S, Núñez-Pons L (2008) Antarctic marine chemical ecology: what is next? Mar Ecol 29:1–71

    Article  CAS  Google Scholar 

  • Baldwin IT, Halitschke R, Paschold A, von Dahl CC, Preston CA (2006) Volatile signaling in plant-plant interactions: “Talking trees” in the genomics era. Science 311:812–815

    Google Scholar 

  • Barrera-Oro E, Moreira E, Seefeldt MA, Valli Francione M, Quartino ML (2019) The importance of macroalgae and associated amphipods in the selective benthic feeding of sister rockcod species Notothenia rossii and N. coriiceps (Nototheniidae) in West Antarctica. Polar Biol 42:317–334

    Article  Google Scholar 

  • Bousfield EL (ed) (1973) Shallow-water gammaridean amphipoda of New England. Comstock, Ithaca

    Google Scholar 

  • Braeckman U, Pasotti F, Vázquez S, Zacher K, Hoffmann R, Elvert M, Marchant H, Buckner C, Quartino ML, Mác Cormack W, Soetaert K, Wenzhöfer F, Vanreusel A (2019) Degradation of macroalgal detritus in shallow coastal Antarctic sediments. Limnol Oceanogr 64:1423–1441

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bregazzi PK (1972) Life cycle and seasonal movements of Cheirimedon femoratus (Pfeffer) and Tryphosella kergueleni (Miers) (Crustacea: Amphipoda). Br Antarct Surv Bull 30:1–34

    Google Scholar 

  • Breithaupt T, Thiel M (eds) (2011) Chemical communication in crustaceans. Springer-Verlag, New York, p 565

    Google Scholar 

  • Brönmark C, Hansson L-A (eds) (2012) Chemical ecology in aquatic systems. Oxford University Press, Oxford

    Google Scholar 

  • Brouwer PEM (1996) Decomposition in situ of the sublittoral Antarctic macroalga Desmarestia anceps Montagne. Polar Biol 16:129–137

    Article  Google Scholar 

  • Bucolo P, Amsler CD, McClintock JB, Baker BJ (2011) Palatability of the Antarctic rhodophyte Palmaria decipiens (Reinsch) RW Ricker and its endo/epiphyte Elachista antarctica Skottsberg to sympatric amphipods. J Exp Mar Biol Ecol 396:202–206

    Article  Google Scholar 

  • Bucolo P, Amsler CD, McClintock JB, Baker BJ (2012) Effects of macroalgal chemical extracts on spore behavior of the Antarctic epiphyte Elachista antarctica Phaeophyceae. J Phycol 48:1403–1410

    Article  PubMed  Google Scholar 

  • Bullard SB, Hay ME (2002) Palatability of marine macro-holoplankton: nematocysts, nutritional quality, and chemistry as defenses against consumers. Limnol Oceanogr 47:1456–1467

    Article  Google Scholar 

  • Campbell HA, Fraser KPP, Bishop CM, Peck LS, Egginton S (2008) Hibernation in an Antarctic fish: on ice for winter. PLoS One 3:e1743

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Casaux R (1998) The contrasting diet of Harpagifer antarcticus (Notothenioidei, Harpagiferidae) at two localities of the South Shetland Islands, Antarctica. Polar Biol 19:283–285

    Article  Google Scholar 

  • Casaux R, Mazzotta A, Barrera-Oro E (1990) Seasonal aspects of the biology and diet of nearshore nototheniid fish at Potter Cove, South Shetland Islands, Antarctica. Polar Biol 11:63–72

    Article  Google Scholar 

  • Casaux R, Baroni A, Ramon A, Carlini A, Bertolin M, DiPrinzio CY (2009) Diet of the leopard seal Hydrurga leptonyx at the Danco Coast, Antarctic Peninsula. Polar Biol 32:307–310

    Article  Google Scholar 

  • Cimino G, Ghiselin MT (2009) Chemical defense and the evolution of opisthobranch gastropods. Proc Calif Acad Sci 60:175–422

    Google Scholar 

  • Clark GF, Stark JS, Palmer AS, Riddle MJ, Johnston EL (2017) The roles of sea-ice, light and sedimentation in structuring shallow Antarctic benthic communities. PLoS One 12:e0168391

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Corbisier TN, Petti MAV, Skowronski RSP, Brito TAS (2004) Trophic relationships in the nearshore zone of Martel Inlet (King George Island, Antarctica): δ13C stable-isotope analysis. Polar Biol 27:75–82

    Article  Google Scholar 

  • Correa JA, Sánchez PA (1996) Ecological aspects of algal infectious diseases. Hydrobiologia 326–327:89–95

    Article  Google Scholar 

  • Cutignano A, Villani G, Fontana A (2012) One metabolite, two pathways: convergence of polypropionate biosynthesis in fungi and marine molluscs. Org Lett 14:992–995

    Article  CAS  PubMed  Google Scholar 

  • Daly JW (2004) Marine toxins and nonmarine toxins: Convergence or symbiotic organisms? J Nat Prod 67:1211–1215

    Article  CAS  PubMed  Google Scholar 

  • Daniels RA (1982) Feeding ecology of some fishes of the Antarctic Peninsula. Fish Bull 80:575–585

    Google Scholar 

  • Daniels RA (1983) Demographic characteristics of an Antarctic plunderfish, Harpagifer bispinis antarcticus. Mar Ecol Prog Ser 13:181–183

    Article  Google Scholar 

  • Dayton PK, Robilliard GA, DeVries AL (1969) Anchor ice formation in McMurdo Sound, Antarctica, and its biological effects. Science 163:273–275

    Article  CAS  PubMed  Google Scholar 

  • Dayton PK, Robillard GA, Paine RT (1970) Benthic faunal zonation as a result of anchor ice at McMurdo Sound, Antarctica. In: Holgate MW (ed) Antarctic ecology, vol 1. Academic, New York, pp 244–258

    Google Scholar 

  • De Broyer C, Jażdżewska A (2014) Chapter 5.17. Biogeographic patterns of Southern Ocean benthic Amphipods. In: De Broyer C, Koubbi P, Griffiths HJ, Raymond B, d’Udekem d’Acoz C, Van de Putte AP, Danis B, David B, Grant S, Gutt J, Held C, Hosie G, Huettmann F, Post A, Ropert-Coudert Y (eds) Biogeographic atlas of the Southern Ocean. Scientific Committee on Antarctic Research, Cambridge, 155–165

    Google Scholar 

  • Dearborn JH, Fell FJ (1974) Ecology of echinoderms from the Antarctic Peninsula. Antarct J US 9:304–306

    Google Scholar 

  • DeLaca TE, Lipps JH (1976) Shallow water marine associations, Antarctic Peninsula. Antarct J US 11:12–20

    Google Scholar 

  • Dicke M, Takken W (eds) (2006) Chemical ecology: from gene to ecosystem. Springer, New York

    Google Scholar 

  • Doyle SR, Momo FR, Brêthes J-C, Ferreyra GA (2012) Metabolic rate and food availability of the Antarctic amphipod Gondogeneia antarctica (Chevreux 1906): seasonal variation in allometric scaling and temperature dependence. Polar Biol 35:413–424

    Article  Google Scholar 

  • Duffy JE, Hay ME (1994) Herbivore resistance to seaweed chemical defense: the roles of mobility and predation risk. Ecology 75:1304–1319

    Article  Google Scholar 

  • Dunton K (2001) δ15N and δ13C measurements of Antarctic Peninsula fauna: trophic relationships and assimilation of benthic seaweeds. Am Zool 41:99–112

    Google Scholar 

  • Eisner T, Meinwald J (eds) (1995) Chemical ecology: the chemistry of biotic interaction. National Academy Press, Washington, DC

    Google Scholar 

  • Faugeron S, Martínez EA, Sánchez PA, Correa JA (2000) Infectious diseases in Mazzaella laminarioides (Rhodophyta): estimating the effect of infections on host reproductive potential. Dis Aquat Org 42:143–148

    Article  CAS  PubMed  Google Scholar 

  • Gauna M, Parodi E, Cáceres E (2009) Epi-endophytic symbiosis between Laminariocolax aecidioides (Ectocarpales, Phaeophyceae) and Undaria pinnatifida (Laminariales, Phaeophyceae) growing on Argentinian coasts. J Appl Phycol 21:11–18

    Article  Google Scholar 

  • Hall-Aspland SA, Rogers TL (2004) Summer diet of leopard seals (Hydrurga leptonyx) in Prydz Bay, Eastern Antarctica. Polar Biol 27:729–734

    Article  Google Scholar 

  • Hay ME (1986) Associational plant defenses and the maintenance of species diversity: turning competitors into accomplices. Am Nat 128:617–641

    Article  Google Scholar 

  • Hay ME (1997) The ecology and evolution of seaweed-herbivore interactions on coral reefs. Coral Reefs 16:S67–S76

    Article  Google Scholar 

  • Hay ME (2009) Marine chemical ecology: chemical signals and cues structure marine populations, communities, and ecosystems. Annu Rev Mar Sci 1:193–212

    Article  Google Scholar 

  • Hay ME, Sutherland JP (1988) The ecology of rubble structures in the South Atlantic Bight: a community profile. US Fish Wildl Serv Biol Rep 85(7.20):1–67

    Google Scholar 

  • Hay ME, Stachowicz JJ, Cruz-Rivera E, Bullard SB, Deal MS, Lindquist N (1998) Bioassays with marine and freshwater macroorganisms. In: Haynes KF, Millar JG (eds) Methods in chemical ecology. Volume 2: Bioassay methods. Kluwer Academic Publishers, Norwell, pp 39–141

    Chapter  Google Scholar 

  • Hennebert E, Jangoux M, Flamming P (2013) Functional biology of asteroid tube feet. In: Lawrence JM (ed) Starfish biology and ecology of the Asteroidea. John Hopkins Press, Baltimore, pp 24–36

    Google Scholar 

  • Herms DA, Mattson WJ (1992) The dilemma of plants: to grow or defend. Q Rev Biol 67:285–335

    Article  Google Scholar 

  • Hommersand MH, Moe RL, Amsler CD, Fredericq S (2009) Notes on the systematics and biogeographical relationships of Antarctic and Sub-Antarctic Rhodophyta with descriptions of four new genera and five new species. Bot Mar 52:509–534

    Article  Google Scholar 

  • Huang YM, Amsler MO, McClintock JB, Amsler CD, Baker BJ (2007) Patterns of gammarid amphipod abundance and species composition associated with dominant subtidal macroalgae along the western Antarctic Peninsula. Polar Biol 30:1417–1430

    Article  Google Scholar 

  • Iken K (1999) Feeding ecology of the Antarctic herbivorous gastropod Laevilacunaria antarctica Martens. J Exp Mar Biol Ecol 236:133–148

    Article  Google Scholar 

  • Iken K, Barrera-Oro ER, Quartino ML, Casaux RJ, Brey T (1997) Grazing in the Antarctic fish Notothenia coriiceps: evidence for selective feeding on macroalgae. Antarct Sci 9:386–391

    Article  Google Scholar 

  • Iken K, Amsler CD, Amsler MO, McClintock JB, Baker BJ (2009) Ecological roles of phlorotannins in Antarctic brown algae. Bot Mar 52:547–557

    Article  CAS  Google Scholar 

  • Inderjit, Mallik AU (2002) Chemical ecology of plants: allelopathy in aquatic and terrestrial ecosystems. Birkhäuser, Basel, p 272

    Google Scholar 

  • Janosik AM, Halanych KM (2010) Unrecognized Antarctic biodiversity: a case study of the genus Odontaster (Odontasteridae; Asteroidea). Integr Comp Biol 50:981–992

    Article  PubMed  Google Scholar 

  • Jormalainen V, Honkanen T (2008) Macroalgal chemical defenses and their roles in structuring temperate marine communities. In: Amsler CD (ed) Algal chemical ecology. Springer-Verlag, Berlin, pp 57–89

    Chapter  Google Scholar 

  • Kang S, Kim S, Park H (2015) Transcriptome of the Antarctic amphipod Gondogeneia antarctica and its response to pollutant exposure. Mar Genomics 24:253–254

    Article  PubMed  Google Scholar 

  • Kylin H (1937) Bemerkungen über die Entwicklungsgeschichte eniger Phaeophyceen. Acta Univ Lund 33:1–34

    Google Scholar 

  • Lamb IM, Zimmerman MH (1977) Benthic marine algae of the Antarctic Peninsula. Ant Res Ser 5:130–229

    Google Scholar 

  • Lane AL, Kubanek J (2008) Secondary metabolite defenses against pathogens and biofoulers. In: Amsler CD (ed) Algal chemical ecology. Springer-Verlag, Berlin, pp 229–243

    Chapter  Google Scholar 

  • Littler M, Littler D (1980) The evolution of thallus form and survival strategies in benthic marine macroalgae: field and laboratory tests of a functional form model. Am Nat 116:25–44

    Article  Google Scholar 

  • Ma WS, Mutka T, Vesley B, Amsler MO, McClintock JB, Amsler CD, Perman JA, Singh MP, Maiese WM, Zaworotko MJ, Kyle DE, Baker BJ (2009) Norselic Acids A-E, highly oxidized anti-infective steroids that deter mesograzer predation, from the Antarctic sponge Crella sp. J Nat Prod 72:1842–1846

    Article  CAS  PubMed  Google Scholar 

  • Marcías ML, Deregibus D, Saravia LA, Campana GL, Quartino ML (2017) Life between tides: spatial and temporal variations of an intertidal macroalgal community at Potter Peninsula, South Shetland Islands, Antarctica. Estuar Coast Shelf Sci 187:193–203

    Article  Google Scholar 

  • Maschek JA, Baker BJ (2008) The chemistry of algal secondary metabolism. In: Amsler CD (ed) Algal chemical ecology. Springer-Verlag, Berlin, pp 1–24

    Google Scholar 

  • McClintock JB (1994) Trophic biology of Antarctic echinoderms. Mar Ecol Prog Ser 111:191–202

    Article  Google Scholar 

  • McClintock JB, Baker BJ (eds) (2001) Marine chemical ecology. CRC, Boca Raton

    Google Scholar 

  • McClintock JB, Amsler CD, Baker BJ (2010) Overview of the chemical ecology of benthic marine invertebrates along the western Antarctic Peninsula. Integr Comp Biol 50:967–980

    Article  PubMed  Google Scholar 

  • McDowell RE, Amsler CD, Dickinson DA, McClintock JB, Baker BJ (2014a) Reactive oxygen species and the Antarctic macroalgal wound response. J Phycol 50:71–80

    Article  CAS  PubMed  Google Scholar 

  • McDowell RE, Amsler CD, McClintock JB, Baker BJ (2014b) Reactive oxygen species as a marine grazing defense: H2O2 and wounded Ascoseira mirabilis both inhibit feeding by an amphipod grazer. J Exp Mar Biol Ecol 458:34–38

    Article  CAS  Google Scholar 

  • McDowell RE, Amsler MO, Li Q, Lancaster JR, Amsler CD (2015) The immediate wound-induced oxidative burst of Saccharina latissima depends on light via photosynthetic electron transport. J Phycol 51:431–441

    Article  CAS  PubMed  Google Scholar 

  • McDowell RE, Amsler CD, Amsler MO, Li Q, Lancaster JR Jr (2016) Control of grazing by light availability via light-dependent, wound-induced metabolites: the role of reactive oxygen species. J Exp Mar Biol Ecol 477:86–91

    Article  CAS  Google Scholar 

  • Miller KA, Pearse JS (1991) Ecological studies of seaweeds in McMurdo Sound, Antarctica. Am Zool 31:35–48

    Article  Google Scholar 

  • Moles J, Núñez-Pons L, Taboada S, Figuerola B, Cristobo J, Avila C (2015) Anti-predatory chemical defences in Antarctic benthic fauna. Mar Biol 162:1813–1821

    Article  CAS  Google Scholar 

  • Müller-Schwarze D (ed) (2006) Chemical ecology of vertebrates. Cambridge University Press, Cambridge

    Google Scholar 

  • North AW (1996) Locomotory activity and behaviour of the Antarctic teleost Notothenia coriiceps. Mar Biol 126:125–132

    Article  Google Scholar 

  • Núñez-Farfán J, Fornoni J, Valverde PL (2007) The evolution of resistance and tolerance to herbivores. Annu Rev Ecol Evol Syst 38:541–566

    Article  Google Scholar 

  • Núñez-Pons L, Avila C (2014) Deterrent activities in the crude lipophilic fractions of Antarctic benthic organisms: chemical defences against keystone predators. Polar Res 33:1

    Article  Google Scholar 

  • Núñez-Pons L, Rodríguez-Arias M, Gómez-Garreta A, Ribera-Siguán A, Avila C (2012) Feeding deterrency in Antarctic marine organisms: bioassays with the omnivore amphipod Cheirimedon femoratus. Mar Ecol Prog Ser 462:163–174

    Article  Google Scholar 

  • Obermüller B, Puntarulo S, Abele D (2007) UV-tolerance and instantaneous physiological stress responses of two Antarctic amphipod species Gondogeneia antarctica and Djerboa furcipes during exposure to UV radiation. Mar Environ Res 64:267–285

    Article  PubMed  CAS  Google Scholar 

  • Pabis K, Sicinski J (2010) Polychaete fauna associated with holdfasts of the large brown alga Himantothallus grandifolius in Admiralty Bay, King George Island, Antarctic. Polar Biol 33:1277–1288

    Article  Google Scholar 

  • Pawson DL (1969) Echinoidea. Antarct Map Folio Ser 11:38–41

    Google Scholar 

  • Pearse JS, Giese AC (1966) Food, reproduction and organic constitution of the common antarctic echinoid Sterechinus neumayeri (Meissner). Biol Bull 130:387–401

    Article  CAS  PubMed  Google Scholar 

  • Peters AF (2003) Molecular identification, taxonomy and distribution of brown algal endophytes, with emphasis on species from Antarctica. Proc Int Seaweed Symp 17:293–302

    Google Scholar 

  • Peters KJ, Amsler CD, Amsler MO, McClintock JB, Dunbar RB, Baker BJ (2005) A comparative analysis of the nutritional and elemental composition of macroalgae from the western Antarctic Peninsula. Phycologia 44:453–463

    Article  Google Scholar 

  • Picken GB (1979) Growth, production and biomass of the antarctic gastropod Laevilacunaria antarctica Martens 1885. J Exp Mar Biol Ecol 40:71–79

    Article  Google Scholar 

  • Picken GB (1980) The distribution, growth, and reproduction of the Antarctic limpet Nacella (Patinigera) concinna (Strebel) 1908. J Exp Mar Biol Ecol 42:71–85

    Article  Google Scholar 

  • Potin P (2008) Oxidative burst and related responses in biotic interactions of algae. In: Amsler CD (ed) Algal chemical ecology. Springer-Verlag, Berlin, pp 245–271

    Chapter  Google Scholar 

  • Puglisi MP, Becerro MA (eds) (2019) Chemical ecology: the ecological impacts of marine natural products. CRC, Boca Raton, p 400

    Google Scholar 

  • Purchon RD (1977) Feeding methods and adaptive radiation in the Gastropoda. In: Purchon RD (ed) The biology of the mollusca, 2nd edn. Pergamon, Amsterdam, pp 41–99

    Chapter  Google Scholar 

  • Reichardt W, Dieckmann G (1985) Kinetics and trophic role of bacterial degradation of macro-algae in Antarctic coastal waters. In: Siegfried WR, Condy P, Laws RM (eds) Antarctic nutrient cycles and food webs. Springer-Verlag, Berlin, pp 115–122

    Chapter  Google Scholar 

  • Richardson MG (1971) The ecology and physiological aspects of Antarctic weed dwelling amphipods (Preliminary report, II). Brit Antarct Surv Rep N9/1971(-72)/H:1–16

    Google Scholar 

  • Richardson MG (1977) The ecology including physiological aspects of selected Antarctic marine invertebrates associated with inshore macrophytes. PhD Dissertation. Department of Zoology, University of Durham

    Google Scholar 

  • Rosenthal GA, Berenbaum MR (2012) Herbivores: their interactions with secondary plant metabolites. Ecological and evolutionary processes, 2nd edn. Academic Press, New York, p 493

    Google Scholar 

  • Santhanam R (2018) Biology and ecology of edible marine gastropod molluscs. Apple Academic Press, Oakville

    Book  Google Scholar 

  • Saucède T, Pierrat B, David B (2014) Chapter 5.26. Echinoids. In: De Broyer C, Koubbi P, Griffiths HJ, Raymond B, d’Udekem d’Acoz C, Van de Putte AP, Danis B, David B, Grant S, Gutt J, Held C, Hosie G, Huettmann F, Post A, Ropert-Coudert Y (eds) Biogeographic atlas of the Southern Ocean. Scientific Committee on Antarctic Research, Cambridge, pp 213–220

    Google Scholar 

  • Schoenrock KM, Amsler CD, McClintock JB, Baker BJ (2013) Endophyte presence as a potential stressor on growth and survival in Antarctic macroalgal hosts. Phycologia 52:595–599

    Article  Google Scholar 

  • Schoenrock KM, Amsler CD, McClintock JB, Baker BJ (2015a) A comprehensive study of Antarctic algal symbioses: minimal impacts of endophyte presence in most species of macroalgal hosts. Eur J Phycol 50:271–278

    Article  CAS  Google Scholar 

  • Schoenrock KM, Amsler CD, McClintock JB, Baker BJ (2015b) Life history bias in endophyte infection of the Antarctic rhodophyte, Iridaea cordata. Bot Mar 58:1–8

    Article  Google Scholar 

  • Schram JB, McClintock JB, Amsler CD, Baker BJ (2015) Impacts of acute elevated seawater temperature on the feeding preferences of an Antarctic amphipod toward chemically deterrent macroalgae. Mar Biol 162:425–433

    Article  CAS  Google Scholar 

  • Schram JB, Amsler MO, Amsler CD, Schoenrock KM, McClintock JB, Angus RA (2016) Antarctic crustacean grazer assemblages exhibit resistance following exposure to decreased pH. Mar Biol 163:106

    Article  CAS  Google Scholar 

  • Schwarz AM, Hawes I, Andrew N, Norkko A, Cummings V, Thrush S (2003) Macroalgal photosynthesis near the southern global limit for growth; Cape Evans, Ross Sea, Antarctica. Polar Biol 26:789–799

    Article  Google Scholar 

  • Sotka EE, Whalen KE (2008) Herbivore offense in the sea: the detoxification and transport of secondary metabolites. In: Amsler CD (ed) Algal chemical ecology. Springer-Verlag, Berlin, pp 203–228

    Chapter  Google Scholar 

  • Sotka EE, Forbey J, Horn M, Poore AGB, Raubenheimer D, Whalen KE (2009) The emerging role of pharmacology in understanding consumer-prey interactions in marine and freshwater systems. Integr Comp Biol 49:291–313

    Article  CAS  PubMed  Google Scholar 

  • Steneck RS, Graham MH, Bourque BJ, Corbett D, Erlandson JM, Estes JA, Tegner MJ (2002) Kelp forest ecosystems: biodiversity, stability, resilience and future. Environ Conserv 29:436–459

    Article  Google Scholar 

  • Thomas F, Cosse A, Le Panse S, Kloareg B, Potin P, Leblanc C (2014) Kelps feature systemic defense responses: insights into the evolution of innate immunity in multicellular eukaryotes. New Phytol 204:567–576

    Article  CAS  PubMed  Google Scholar 

  • Valdivia N, Pardo LM, Macaya EC, Huovinen P, Gómez I (2019) Different ecological mechanisms lead to similar grazer controls on the functioning of periphyton Antarctic and sub-Antarctic communities. Prog Oceanogr 174:7–16

    Article  Google Scholar 

  • von Salm JL, Schoenrock KM, McClintock JB, Amsler CD, Baker BJ (2019) The status of marine chemical ecology in Antarctica: form and function of unique high-latitude chemistry. In: Puglisi-Weening MP, Becerro MA (eds) Chemical ecology: the ecological impacts of marine natural products. CRC, Boca Raton, pp 27–69

    Google Scholar 

  • Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346

    Article  CAS  PubMed  Google Scholar 

  • Wiencke C, Amsler CD (2012) Seaweeds and their communities in polar regions. In: Wiencke C, Bischof K (eds) Seaweed biology: novel insights into ecophysiology, ecology and utilization. Springer-Verlag, Berlin, pp 265–294

    Chapter  Google Scholar 

  • Wiencke C, Clayton MN (2002) Antarctic seaweeds. In: Synopsis of the Antarctic benthos, vol 9. ARG Gantner Verlag KG, Ruggell

    Google Scholar 

  • Wiencke C, Amsler CD, Clayton MN (2014) Chapter 5.1. Macroalgae. In: De Broyer C, Koubbi P, Griffiths HJ, Raymond B, d’Udekem d’Acoz C, Van de Putte AP, Danis B et al (eds) Biogeographic atlas of the Southern Ocean. Scientific Committee on Antarctic Research, Cambridge, 66–73

    Google Scholar 

  • Wyatt TD (ed) (2014) Pheromones and animal behavior: chemical signals and signatures. Cambridge Press, Cambridge

    Google Scholar 

  • Yang EC, Boo SM, Bhattacharya D, Saunders GW, Knoll AH, Fredericq S, Graf L, Yoon HS (2016) Divergence time estimates and the evolution of major lineages in the florideophyte red algae. Sci Rep 6:21361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young RM, von Salm JL, Amsler MO, Lopez-Bautista J, Amsler CD, McClintock JB, Baker BJ (2013) Site-specific variability in the chemical diversity of the Antarctic red alga Plocamium cartilagineum. Mar Drugs 11:2126–2139

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zamzow JP, Amsler CD, McClintock JB, Baker BJ (2010) Habitat choice and predator avoidance by Antarctic amphipods: the roles of algal chemistry and morphology. Mar Ecol Prog Ser 400:155–163

    Article  Google Scholar 

  • Zamzow JP, Aumack CF, Amsler CD, McClintock JB, Amsler MO, Baker BJ (2011) Gut contents and stable isotope analyses of the Antarctic fish, Notothenia coriiceps Richardson, from two macroalgal communities. Antarct Sci 23:107–116

    Article  Google Scholar 

  • Zenteno L, Cárdenas L, Valdivia N, Gómez I, Höfer J, Garrido I, Pardo LM (2019) Unraveling the multiple bottom-up supplies of an Antarctic nearshore benthic community. Prog Oceanogr 174:55–63

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to all our Antarctic field team members over the years, in particular to M. Amsler who also provided constructive comments on an earlier version of this chapter. The original version of this chapter also benefited from the constructive comments of Martin Thiel and an anonymous reviewer. Our Antarctic chemical ecology research has been generously supported by numerous awards from the NSF Antarctic Organisms and Ecosystem program, most recently by PLR-1341333 (CDA, JBM) and PLR-1341339 (BJB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles D. Amsler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Amsler, C.D., McClintock, J.B., Baker, B.J. (2020). Chemical Mediation of Antarctic Macroalga-Grazer Interactions. In: Gómez, I., Huovinen, P. (eds) Antarctic Seaweeds. Springer, Cham. https://doi.org/10.1007/978-3-030-39448-6_17

Download citation

Publish with us

Policies and ethics