Skip to main content

Expendable and Reusable Launch Vehicle Design

  • Chapter
  • First Online:
Aerospace System Analysis and Optimization in Uncertainty

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 156))

  • 883 Accesses

Abstract

For many countries (United States of America, Russia, Europe, Japan, etc.), the launch vehicles are cornerstones of an independent access to space. The space agency strategies for Solar system exploration, Earth monitoring and observation, human spaceflight are developed in accordance with their launch vehicle capabilities. Launch vehicle designs are long term projects (around a decade) involving large budgets and requiring efficient organization.

Loïc Brevault, Mathieu Balesdent, and Ali Hebbal

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Audet, C. and Dennis Jr, J. E. (2002). Analysis of generalized pattern searches. SIAM Journal on Optimization, 13(3):889–903.

    Article  MathSciNet  Google Scholar 

  • Blair, J., Ryan, R., and Schutzenhofer, L. (2001). Launch vehicle design process: characterization, technical integration, and lessons learned. NASA/TP-2001-210992, NASA, Langley Research Center.

    Google Scholar 

  • Castellini, F. (2012). Multidisciplinary design optimization for expendable launch vehicles.

    Google Scholar 

  • Denis, P. (1998). ONERA’s aerodynamic prediction code- missile. In RTO/AGARD, Symposium on Missile Aerodynamics, Sorrento, Italy, May 11-14, 1998, ONERA, TP, number 1998-56.

    Google Scholar 

  • Eberhart, R. and Kennedy, J. (1995). A new optimizer using particle swarm theory. In Sixth IEEE International Symposium on Micro Machine and Human Science, Nagoya, Japan.

    Google Scholar 

  • Hansen, N. and Ostermeier, A. (1996). Adapting arbitrary normal mutation distributions in evolution strategies: The covariance matrix adaptation. In 1996 IEEE International Conference on Evolutionary Computation (CEC), Nagoya, Japan.

    Google Scholar 

  • Hartfield, R., Jenkins, R., Burkhalter, J., and Foster, W. (2003). A review of analytical methods for solid rocket motor grain analysis. In 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Huntsville, AL, USA.

    Google Scholar 

  • Jaeger, L., Gogu, C., Segonds, S., and Bes, C. (2013). Aircraft multidisciplinary design optimization under both model and design variables uncertainty. Journal of Aircraft, 50(2):528–538.

    Article  Google Scholar 

  • Martins, J. R. R. A. and Lambe, A. (2013). Multidisciplinary design optimization: a survey of architectures. AIAA Journal, 51(9):2049–2075.

    Article  Google Scholar 

  • McBride, B. J. and Gordon, S. (1996). Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications: II. National Aeronautics and Space Administration, Office of Management.

    Google Scholar 

  • Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al. (2011). Scikit-learn: Machine learning in python. Journal of machine learning research, 12(Oct):2825–2830.

    MathSciNet  MATH  Google Scholar 

  • Ricciardi, A. (1989). Complete geometrical analysis of cylindrical star grains. In 25th Joint Propulsion Conference, Monterey, CA, USA.

    Google Scholar 

  • Rohrschneider, R. and Olds, J. (2001). A comparison of modern and historic mass estimating relationships on a two stage to orbit launch vehicle. In AIAA Space 2001 Conference and Exposition, Atlanta, GA, USA, page 4542.

    Google Scholar 

  • Sierra, M. R. and Coello, C. A. C. (2005). Improving PSO-based multi-objective optimization using crowding, mutation and epsilon-dominance. In International Conference on Evolutionary Multi-Criterion Optimization, Guanajuato, Mexico.

    Google Scholar 

  • Summerfield, M. (1951). A theory of unstable combustion in liquid propellant rocket systems. Journal of the American Rocket Society, 21(5):108–114.

    Article  Google Scholar 

  • Sutton, G. P. and Biblarz, O. (2010). Rocket propulsion elements. John Wiley & Sons.

    Google Scholar 

  • Vila, J. and Patureau de Mirand, A. (2017). Weighting options for the next generation of Ariane launchers. In 68th International Astronautical Congress, Adelaide, Australia.

    Google Scholar 

  • Zang, T. A., Hemsch, M. J., Hilburger, M. W., Kenny, S. P., Luckring, J. M., Maghami, P., Padula, S. L., and Stroud, W. J. (2002). Needs and opportunities for uncertainty-based multidisciplinary design methods for aerospace vehicles. NASA/TM-2002-211462, NASA Langley Research Center.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brevault, L., Balesdent, M., Hebbal, A. (2020). Expendable and Reusable Launch Vehicle Design. In: Aerospace System Analysis and Optimization in Uncertainty. Springer Optimization and Its Applications, vol 156. Springer, Cham. https://doi.org/10.1007/978-3-030-39126-3_12

Download citation

Publish with us

Policies and ethics