Skip to main content

How to Live with Dinosaurs: Ecosystems Across the Mesozoic

  • Chapter
  • First Online:
Nature through Time

Abstract

We continue our trip back in time through the Mesozoic, visiting several different ecosystems across the planet. Each of these was strongly influenced by the continental breakup from a single landmass into several tectonic plates and associated landmasses during this period. We will visit localities on several continents, observe how their vertebrate faunas changed over time, and what external factors might have contributed to these differences.

During the Cretaceous, we visit the Iberian Peninsula, where hadrosauroids replaced titanosaurs as the most abundant dinosaur taxon. On the other side of the planet, a succession of geologic formations in Australia shows a gradual change from aquatic to terrestrial faunas resulting from sea-level changes of a now non-existent inland ocean. A visit to two polar ecosystems indicates possible mutual exclusion between amphibians (temnospondyls) and reptiles (crocodylomorphs), because they occupied similar ecological niches. Observing the record of Cretaceous landscapes in what is now Mongolia shows how changes in environment and climate correlate with changes in faunal composition.

Heading back, we check if there are distinct differences in vertebrate diversity in space and time in the Late Jurassic of North America. Then we move south, to Argentina, and back to the Middle and Early Jurassic. Here, we will try to understand where these Late Jurassic faunas originated and what influence the fragmentation of the supercontinent Pangea had on their evolution and diversity. Finally, we will stop our trip in the Late Triassic of Central Europe, examining a typical vertebrate fauna from the time when dinosaurs began their domination of the planet.

Electronic supplementary material

A slide presentation and an explanation of each slide’s content is freely available to everyone upon request via email to one of the editors: edoardo.martinetto@unito.it, ragastal@colby.edu, tschopp.e@gmail.com*The asterisk designates terms explained in the Glossary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alifanov VR (2000) The fossil record of Cretaceous lizards from Mongolia. In: Benton MJ, Shishkin M, Unwin DM, Kurochkin EN (eds) The age of dinosaurs in Russia and Mongolia. Cambridge University Press, Cambridge, pp 368–389

    Google Scholar 

  • Allain R, Aquesbi N, Dejax J, Meyer C, Monbaron M, Montenat C et al (2004) A basal sauropod dinosaur from the Early Jurassic of Morocco. C R Palevol 3(3):199–208

    Google Scholar 

  • Andres B, Norell MA (2005) The first record of a pterosaur from the Early Cretaceous strata of Öösh (Övörkhangai; Mongolia). Am Mus Novit 3472:1–6

    Google Scholar 

  • Arbour VM, Currie PJ, Badamgarav D (2014) The ankylosaurid dinosaurs of the Upper Cretaceous Baruungoyot and Nemegt Formations of Mongolia. Zool J Linnean Soc 172(3):631–652

    Google Scholar 

  • Ash SR, Tidwell WD (1998) Plant megafossils from the Brushy Basin member of the Morrison Formation near Montezuma Creek trading post, southeastern Utah. Mod Geol 22:321–340

    Google Scholar 

  • Balanoff AM, Norell MA, Grellet-Tinner G, Lewin MR (2008) Digital preparation of a probable neoceratopsian preserved within an egg, with comments on microstructural anatomy of ornithischian eggshells. Naturwissenschaften 95(6):493–500

    Google Scholar 

  • Bandyopadhyay S, Gillette DD, Ray S, Sengupta DP (2010) Osteology of Barapasaurus tagorei (Dinosauria: Sauropoda) from the Early Jurassic of India. Palaeontology 53(3):533–569

    Google Scholar 

  • Barrett PM, Butler RJ, Mundil R, Scheyer TM, Irmis RB, Sánchez-Villagra MR (2014) A palaeoequatorial ornithischian and new constraints on early dinosaur diversification. Proc R Soc Lond B Biol Sci 281(1791):20141147

    Google Scholar 

  • Barrett PM, Upchurch P (2005) Sauropodomorph diversity through time. In: Curry Rogers K, Wilson J (eds) The Sauropods: evolution and paleobiology. University of California Press, Berkeley, pp 125–156

    Google Scholar 

  • Barsbold R (1981) Toothless carnivorous dinosaurs of Mongolia. Trudy Sovmestnoi Sovetsko-Mongol’skoi Paleontologicheskoi Ekspeditsii 15:28–39

    Google Scholar 

  • Barsbold R, Perle A (1980) Segnosauria, a new infraorder of carnivorous dinosaurs. Acta Palaeontol Pol 25(2):187–195

    Google Scholar 

  • Becerra MG, Gomez KL, Pol D (2017) A sauropodomorph tooth increases the diversity of dental morphotypes in the Cañadón Asfalto Formation (Early – Middle Jurassic) of Patagonia. C R Palevol 16(8):832–840

    Google Scholar 

  • Berkey CP, Granger W (1923) Later sediments of the desert basins of central Mongolia. Am Mus Novit 77:1–16

    Google Scholar 

  • Berkey CP, Morris FK (1927) Geology of Mongolia: a reconnaissance report based on the investigations of the years 1922-1923, vol 2. American Museum of Natural History, New York

    Google Scholar 

  • Bonaparte JF (1979) Dinosaurs: a jurassic assemblage from Patagonia. Science 205(4413):1377–1379

    Google Scholar 

  • Brusatte SL, Butler RJ, Barrett PM, Carrano MT, Evans DC, Lloyd GT et al (2015) The extinction of the dinosaurs. Biol Rev 90(2):628–642

    Google Scholar 

  • Buffetaut E, Suteethorn V, Cuny G, Tong H, Loeuff JL, Khansubha S, Jongautchariyakul S (2000) The earliest known sauropod dinosaur. Nature 407(6800):72–74

    Google Scholar 

  • Canudo JI, Oms O, Vila B, Galobart À, Fondevilla V, Puértolas-Pascual E et al (2016) The upper Maastrichtian dinosaur fossil record from the southern Pyrenees and its contribution to the topic of the Cretaceous–Palaeogene mass extinction event. Cretac Res 57:540–551

    Google Scholar 

  • Carballido JL, Holwerda FM, Pol D, Rauhut OWM (2017) An early Jurassic sauropod tooth from Patagonia (Cañadón Asfalto Formation): implications for sauropod diversity. Publ Electr Asoc Paleontol Argent 17(2):50–57

    Google Scholar 

  • Chure DJ, Litwin R, Hasiotis ST, Evanoff E, Carpenter K (2006) The fauna and flora of the Morrison Formation: 2006. New Mexico Museum of Natural History and. Sci Bull 36:233–249

    Google Scholar 

  • Cohen KM, Finney SC, Gibbard PL, Fan J-X (2013) The ICS international chronostratigraphic chart. Episodes 36:199–204. (updated)

    Google Scholar 

  • Conrad JL, Norell MA (2006) High-resolution X-ray computed tomography of an Early Cretaceous gekkonomorph (Squamata) from Öösh (Övörkhangai; Mongolia). Hist Biol 18(4):405–431

    Google Scholar 

  • Cook AG, Bryan SE, Draper J (2013) Post-orogenic Mesozoic basins and magmatism. In: Jell P (ed) Geology of Queensland. Geological Survey of Queensland, Brisbane

    Google Scholar 

  • Csiki-Sava Z, Buffetaut E, Ősi A, Pereda-Suberbiola X, Brusatte SL (2015) Island life in the Cretaceous - faunal composition, biogeography, evolution, and extinction of land-living vertebrates on the Late Cretaceous European archipelago. ZooKeys 469:1–161

    Google Scholar 

  • Cúneo R, Ramezani J, Scasso R, Pol D, Escapa I, Zavattieri AM, Bowring SA (2013) High-precision U–Pb geochronology and a new chronostratigraphy for the Cañadón Asfalto Basin, Chubut, central Patagonia: implications for terrestrial faunal and floral evolution in Jurassic. Gondwana Res 24(3):1267–1275

    Google Scholar 

  • Dashzeveg D, Dingus L, Loope DB, Swisher CC, Dulam T, Sweeney MR (2005) New stratigraphic subdivision, depositional environment, and age estimate for the Upper Cretaceous Djadokhta Formation, southern Ulan Nur Basin, Mongolia. Am Mus Novit 3498:1–31

    Google Scholar 

  • Dashzeveg D, Novacek MJ, Norell MA, Clark JM, Chiappe LM, Davidson A et al (1995) Extraordinary preservation in a new vertebrate assemblage from the Late Cretaceous of Mongolia. Nature 374(6521):446–449

    Google Scholar 

  • Davis KE, Page RDM (2014) Reweaving the tapestry: a supertree of birds. PLoS Curr 6. https://doi.org/10.1371/currents.tol.c1af68dda7c999ed9f1e4b2d2df7a08e

  • Díez Díaz V, Tortosa T, Le Loeuff J (2013) Sauropod diversity in the Late Cretaceous of southwestern Europe: the lessons of odontology. Ann Paléontol 99(2):119–129

    Google Scholar 

  • Dingus L, Loope DB, Dashzeveg D, Swisher CC, Minjin C, Novacek MJ, Norell MA (2008) The geology of Ukhaa Tolgod (Djadokhta Formation, Upper Cretaceous, Nemegt Basin, Mongolia). Am Mus Novit 3616:1–40

    Google Scholar 

  • Dodson P, Behrensmeyer AK, Bakker RT, McIntosh JS (1980) Taphonomy and paleoecology of the dinosaur beds of the Jurassic Morrison Formation. Paleobiology 6(2):208–232

    Google Scholar 

  • Duddy LR (2003) Mesozoic. In: Birch WD (ed) Geology of Victoria, 3rd edn. Geological Society of Australia (Victoria Division), Melbourne, pp 239–286

    Google Scholar 

  • Eberth DA (2018) Stratigraphy and paleoenvironmental evolution of the dinosaur-rich Baruungoyot-Nemegt succession (Upper Cretaceous), Nemegt Basin, southern Mongolia. Palaeogeogr Palaeoclimatol Palaeoecol 494:29–50

    Google Scholar 

  • Eberth DA, Kobayashi Y, Lee Y-N, Mateus O, Therrien F, Zelenitsky DK, Norell MA (2009) Assignment of Yamaceratops dorngobiensis and associated redbeds at Shine Us Khudag (eastern Gobi, Dorngobi Province, Mongolia) to the redescribed Javkhlant Formation (Upper Cretaceous). J Vertebr Paleontol 29(1):295–302

    Google Scholar 

  • Escapa IH, Sterli J, Pol D, Nicoli L (2008) Jurassic tetrapods and flora of Cañadón Asfalto Formation in Cerro Cóndor area, Chubut province. Rev Asoc Geol Argent 63(4):613–624

    Google Scholar 

  • Fanti F, Cantelli L, Angelicola L (2018) High-resolution maps of Khulsan and Nemegt localities (Nemegt Basin, southern Mongolia): stratigraphic implications. Palaeogeogr Palaeoclimatol Palaeoecol 494:14–28

    Google Scholar 

  • Foelix RF, Pabst B, Kindlimann R (2011) Die Saurier in Frick. Nat Aargau 37:59–76

    Google Scholar 

  • Fondevilla V, Riera V, Vila B, Sellés AG, Dinarès-Turell J, Vicens E et al (2019) Chronostratigraphic synthesis of the latest Cretaceous dinosaur turnover in south-western Europe. Earth Sci Rev 191:168–189

    Google Scholar 

  • Foster JR (2007) Jurassic west: the dinosaurs of the Morrison Formation and their world. Indiana University Press, Bloomington and Indianapolis

    Google Scholar 

  • Foster JR (2009) Preliminary body mass estimates for mammalian genera of the Morrison Formation (Upper Jurassic, North America). PaleoBios 28(3):114–122

    Google Scholar 

  • Foster JR, Lockley MG (2006) The vertebrate ichnological record of the Morrison Formation (Upper Jurassic, North America). New Mexico Museum of Natural History and. Sci Bull 36:203–216

    Google Scholar 

  • Foster JR, McMullen SK (2017) Paleobiogeographic distribution of Testudinata and neosuchian Crocodyliformes in the Morrison Formation (Upper Jurassic) of North America: evidence of habitat zonation? Palaeogeogr Palaeoclimatol Palaeoecol 468:208–215

    Google Scholar 

  • Funston GF, Mendonca SE, Currie PJ, Barsbold R (2017) A dinosaur community composition dataset for the Late Cretaceous Nemegt Basin of Mongolia. Data Brief 16:660–666

    Google Scholar 

  • Gao K-Q, Norell MA (2000) Taxonomic composition and systematics of Late Cretaceous lizard assemblages from Ukhaa Tolgod and adjacent localities, Mongolian Gobi Desert. Bull Am Mus Nat Hist 249:1–118

    Google Scholar 

  • Gee CT, Dayvault RD, Stockey RA, Tidwell WD (2014) Greater palaeobiodiversity in conifer seed cones in the Upper Jurassic Morrison Formation of Utah, USA. Palaeobiodivers Palaeoenviron 94(2):363–375

    Google Scholar 

  • Hasegawa H, Tada R, Ichinnorov N, Minjin C (2009) Lithostratigraphy and depositional environments of the Upper Cretaceous Djadokhta Formation, Ulan Nuur basin, southern Mongolia, and its paleoclimatic implication. J Asian Earth Sci 35(1):13–26

    Google Scholar 

  • Hasiotis ST (2004) Reconnaissance of Upper Jurassic Morrison Formation ichnofossils, Rocky Mountain region, USA: paleoenvironmental, stratigraphic, and paleoclimatic significance of terrestrial and freshwater ichnocoenoses. Sediment Geol 167(3):177–268

    Google Scholar 

  • Hicks JF, Brinkman DL, Nichols DJ, Watabe M (1999) Paleomagnetic and palynologic analyses of Albian to Santonian strata at Bayn Shireh, Burkhant, and Khuren Dukh, eastern Gobi Desert, Mongolia. Cretac Res 20(6):829–850

    Google Scholar 

  • Hill RV, Witmer LM, Norell MA (2003) A new specimen of Pinacosaurus grangeri (Dinosauria: Ornithischia) from the Late Cretaceous of Mongolia: ontogeny and phylogeny of ankylosaurs. Am Mus Novit 3395:1–29

    Google Scholar 

  • Hocknull SA, White MA, Tischler TR, Cook AG, Calleja ND, Sloan T, Elliott DA (2009) New mid-Cretaceous (Latest Albian) dinosaurs from Winton, Queensland, Australia. PLoS One 4(7):e6190

    Google Scholar 

  • Hofmann R, Sander PM (2014) The first juvenile specimens of Plateosaurus engelhardti from Frick, Switzerland: isolated neural arches and their implications for developmental plasticity in a basal sauropodomorph. Peer J 2:e458

    Google Scholar 

  • Holwerda FM, Pol D (2018) Phylogenetic analysis of Gondwanan basal eusauropods from the Early-Middle Jurassic of Patagonia, Argentina. Span J Palaeontol 33(2):289–298

    Google Scholar 

  • Holwerda FM, Pol D, Rauhut OWM (2015) Using dental enamel wrinkling to define sauropod tooth morphotypes from the Cañadón Asfalto Formation, Patagonia, Argentina. PLoS One 10(2):e0118100

    Google Scholar 

  • von Huene F (1928) Lebensbild des Saurischier-Vorkommens im obersten Keuper von Trossingen in Württemberg. Palaeobiologica 1:103–116

    Google Scholar 

  • Jerzykiewicz T, Russell DA (1991) Late Mesozoic stratigraphy and vertebrates of the Gobi Basin. Cretac Res 12(4):345–377

    Google Scholar 

  • Jordan P, Pietsch JS, Bläsi H, Furrer H, Kündig N, Looser N et al (2016) The middle to late Triassic Bänkerjoch and Klettgau Formations of northern Switzerland. Swiss J Geosci 109(2):257–284

    Google Scholar 

  • Kear BP (2016) Cretaceous marine amniotes of Australia: perspectives on a decade of new research. Mem Mus Vic 74:17–28

    Google Scholar 

  • Kear BP, Fordyce RE, Hiller N, Siversson M (2018) A palaeobiogeographical synthesis of Australasian Mesozoic marine tetrapods. Alcheringa 42(4):461–486

    Google Scholar 

  • Khand Y, Badamgarav D, Ariunchimeg Y, Barsbold R (2000) Cretaceous system in Mongolia and its depositional environments. In: Developments in palaeontology and stratigraphy, vol 17. Elsevier, Amsterdam, pp 49–79

    Google Scholar 

  • Kielan-Jaworowska Z, Barsbold R (1972) Narrative of the Polish-Mongolian palaeontological expeditions 1967-1971. Palaeontol Pol 27:5–13

    Google Scholar 

  • Kielan-Jaworowska Z, Cifelli RL, Luo Z-X (2004) Mammals from the age of dinosaurs: origins, evolution, and structure. Columbia University Press, New York

    Google Scholar 

  • Kielan-Jaworowska Z, Novacek MJ, Trofimov BA, Dashzeveg D (2000) Mammals from the Mesozoic of Mongolia. In: Benton MJ, Shishkin M, Unwin DM, Kurochkin EN (eds) The age of dinosaurs in Russia and Mongolia. Cambridge University Press, Cambridge, pp 573–626

    Google Scholar 

  • Klein N, Sander PM (2007) Bone histology and growth of the prosauropod dinosaur Plateosaurus engelhardti von Meyer, 1837 from the Norian bonebeds of Trossingen (Germany) and Frick (Switzerland). Spec Pap Palaeontol 77:169–206

    Google Scholar 

  • Ksepka DT, Norell MA (2006) Erketu ellisoni, a long-necked sauropod from Bor Guvé (Dornogov Aimag, Mongolia). Am Mus Novit 3508(1):16

    Google Scholar 

  • Lallensack JN, Klein H, Milàn J, Wings O, Mateus O, Clemmensen LB (2017) Sauropodomorph dinosaur trackways from the Fleming Fjord Formation of East Greenland: evidence for Late Triassic sauropods. Acta Palaeontol Pol 62(4):833–843

    Google Scholar 

  • López-Martínez N (2001) La extinción de los dinosaurios y su registro en los Pirineos Meridionales. In: Actas de las II Jornadas sobre Dinosaurios y su Entorno. Colectivo Arqueológico-Paleontológico Salense, Burgos, pp 71–89

    Google Scholar 

  • Maidment SCR, Woodruff DC, Horner JR (2018) A new specimen of the ornithischian dinosaur Hesperosaurus mjosi from the Upper Jurassic Morrison Formation of Montana, U.S.A., and implications for growth and size in Morrison stegosaurs. J Vertebr Paleontol 38(1):e1406366

    Google Scholar 

  • Makovicky PJ, Kilbourne BM, Sadleir RW, Norell MA (2011) A new basal ornithopod (Dinosauria, Ornithischia) from the Late Cretaceous of Mongolia. J Vertebr Paleontol 31(3):626–640

    Google Scholar 

  • Makovicky PJ, Norell MA (2006) Yamaceratops dorngobiensis, a new primitive ceratopsian (Dinosauria: Ornithischia) from the Cretaceous of Mongolia. Am Mus Novit 3530:1–42

    Google Scholar 

  • Maleev EA (1952) A new ankylosaur from the Upper Cretaceous of Mongolia. Dokl Akad Nauk SSSR 87:273–276

    Google Scholar 

  • Maltese A, Tschopp E, Holwerda FM, Burnham D (2018) The real bigfoot: a pes from Wyoming, USA is the largest sauropod pes ever reported and the northern-most occurrence of brachiosaurids in the Upper Jurassic Morrison Formation. Peer J 6:e5250

    Google Scholar 

  • Mannion PD, Upchurch P, Carrano MT, Barrett PM (2011) Testing the effect of the rock record on diversity: a multidisciplinary approach to elucidating the generic richness of sauropodomorph dinosaurs through time. Biol Rev 86(1):157–181

    Google Scholar 

  • McLoughlin S, Pott C, Elliott D (2010) The Winton Formation flora (Albian–Cenomanian, Eromanga Basin): implications for vascular plant diversification and decline in the Australian Cretaceous. Alcheringa 34(3):303–323

    Google Scholar 

  • McPhee BW, Bonnan MF, Yates AM, Neveling J, Choiniere JN (2015) A new basal sauropod from the pre-Toarcian Jurassic of South Africa: evidence of niche-partitioning at the sauropodomorph–sauropod boundary? Sci Rep 5:13224

    Google Scholar 

  • Montanari S, Higgins P, Norell MA (2013) Dinosaur eggshell and tooth enamel geochemistry as an indicator of Mongolian Late Cretaceous paleoenvironments. Palaeogeogr Palaeoclimatol Palaeoecol 370:158–166

    Google Scholar 

  • Nesbitt SJ, Clarke JA, Turner AH, Norell MA (2011) A small alvarezsaurid from the eastern Gobi Desert offers insight into evolutionary patterns in the Alvarezsauroidea. J Vertebr Paleontol 31(1):144–153

    Google Scholar 

  • Norell MA, Balanoff AM, Barta DE, Erickson GM (2018) A second specimen of Citipati osmolskae associated with a nest of eggs from Ukhaa Tolgod, Omnogov Aimag, Mongolia. Am Mus Novit 3899:1–44

    Google Scholar 

  • Norell MA, Barta DE (2016) A new specimen of the ornithischian dinosaur Haya griva, cross-Gobi geologic correlation, and the age of the Zos Canyon Beds. Am Mus Novit 3851:1–20

    Google Scholar 

  • Norell MA, Clark JM, Chiappe LM, Dashzeveg D (1995) A nesting dinosaur. Nature 378(6559):774–776

    Google Scholar 

  • Olivera DE, Zavattieri AM, Quattrocchio ME (2015) The palynology of the Cañadón Asfalto Formation (Jurassic), Cerro Cóndor depocentre, Cañadón Asfalto Basin, Patagonia, Argentina: palaeoecology and palaeoclimate based on ecogroup analysis. Palynology 39(3):362–386

    Google Scholar 

  • Osborn HF (1923) Two Lower Cretaceous dinosaurs from Mongolia. Am Mus Novit 95:1–10

    Google Scholar 

  • Osmólska H (1980) The Late Cretaceous vertebrate assemblages of the Gobi Desert, Mongolia. Mem Soc Geol Fr 139:145–150

    Google Scholar 

  • Owen A, Nichols GJ, Hartley AJ, Weissmann GS, Scuderi LA (2015) Quantification of a distributive fluvial system: the salt wash DFS of the Morrison Formation, SW U.S.A. J Sediment Res 85(5):544–561

    Google Scholar 

  • Pentland AH, Poropat SF (2019) Reappraisal of Mythunga camara Molnar & Thulborn, 2007 (Pterosauria, Pterodactyloidea, Anhangueria) from the upper Albian Toolebuc Formation of Queensland, Australia. Cretac Res 93:151–169

    Google Scholar 

  • Pereda Suberbiola X, Murelaga X, Baceta JI, Corral JC, Badiola A, Astibia H (1999) Nuevos restos fósiles de vertebrados continentales en el Cretácico Superior de Álava (Región Vasco-Cantábrica): sistemática y posición estratigráfica. Geogaceta 26:79–82

    Google Scholar 

  • Peterson F (1988) Stratigraphy and nomenclature of middle and upper Jurassic rocks, Western Colorado Plateau, Utah and Arizona. US Geol Surv Bull 1633-B:B13–B56

    Google Scholar 

  • Pol D, Carballido JL, Rauhut OWM, Rougier GW, Sterli J (2013) Biogeographic distribution patterns of tetrapods during the Jurassic: new information from the Cañadón Asfalto Basin, Patagonia, Argentina. J Vertebr Paleontol 33:192A

    Google Scholar 

  • Pol D, Rauhut OWM (2012) A Middle Jurassic abelisaurid from Patagonia and the early diversification of theropod dinosaurs. Proc R Soc B Biol Sci 279(1741):3170–3175

    Google Scholar 

  • Pol D, Turner AH, Norell MA (2009) Morphology of the Late Cretaceous crocodylomorph Shamosuchus djadochtaensis and a discussion of neosuchian phylogeny as related to the origin of Eusuchia. Bull Am Mus Nat Hist 324:1–103

    Google Scholar 

  • Poropat SF, Mannion PD, Upchurch P, Hocknull SA, Kear BP, Elliott DA (2015) Reassessment of the non-titanosaurian somphospondylan Wintonotitan wattsi (Dinosauria: Sauropoda: Titanosauriformes) from the mid-Cretaceous Winton Formation, Queensland, Australia. Pap Palaeontol 1(1):59–106

    Google Scholar 

  • Poropat SF, Mannion PD, Upchurch P, Hocknull SA, Kear BP, Kundrát M et al (2016) New Australian sauropods shed light on Cretaceous dinosaur palaeobiogeography. Sci Rep 6:34467

    Google Scholar 

  • Poropat SF, Martin SK, Tosolini A-MP, Wagstaff BE, Bean LB, Kear BP et al (2018) Early Cretaceous polar biotas of Victoria, southeastern Australia–an overview of research to date. Alcheringa 42(2):157–229

    Google Scholar 

  • Poropat SF, Nair JP, Syme CE, Mannion PD, Upchurch P, Hocknull SA et al (2017) Reappraisal of Austrosaurus mckillopi Longman, 1933 from the Allaru Mudstone of Queensland, Australia’s first named Cretaceous sauropod dinosaur. Alcheringa 41(4):543–580

    Google Scholar 

  • Prieto-Márquez A, Bolortsetseg M, Horner JR (2012) A diminutive deinonychosaur (Dinosauria: Theropoda) from the Early Cretaceous of Öösh (Övörkhangai, Mongolia). Alcheringa 36(1):117–136

    Google Scholar 

  • Prieto-Márquez A, Dalla Vecchia FM, Gaete R, Galobart À (2013) Diversity, relationships, and biogeography of the lambeosaurine dinosaurs from the European Archipelago, with description of the new aralosaurin Canardia garonnensis. PLoS One 8(7):e69835

    Google Scholar 

  • Raath MA (1972) Fossil vertebrate studies in Rhodesia: a new dinosaur (Reptilia: Saurischia) from near the Trias-Jurassic boundary. Arnoldia (Rhod) 7:1–7

    Google Scholar 

  • Rauhut OWM (2003) A dentary of Patagosaurus (Sauropoda) from the Middle Jurassic of Patagonia. Ameghiniana 40(3):425–432

    Google Scholar 

  • Rauhut OWM, Lopez-Arbarello A (2008) Archosaur evolution during the Jurassic: a southern perspective. Rev Asoc Geol Argent 63(4):557–585

    Google Scholar 

  • Reisdorf AG, Wetzel A, Schlatter R, Jordan P (2011) The Staffelegg Formation: a new stratigraphic scheme for the Early Jurassic of northern Switzerland. Swiss J Geosci 104(1):97–146

    Google Scholar 

  • Remes K, Ortega F, Fierro I, Joger U, Kosma R, Ferrer JMM et al (2009) A new basal sauropod dinosaur from the Middle Jurassic of Niger and the early evolution of Sauropoda. PLoS One 4(9):e6924

    Google Scholar 

  • Rich THV, Vickers-Rich P (2000) Dinosaurs of darkness. Indiana University Press, Bloomington

    Google Scholar 

  • Rougier GW, Davis BM, Novacek MJ (2015) A deltatheroidan mammal from the Upper Cretaceous Baynshiree Formation, eastern Mongolia. Cretac Res 52:167–177

    Google Scholar 

  • Rougier GW, Novacek MJ, McKenna MC, Wible JR (2001) Gobiconodonts from the Early Cretaceous of Oshih (Ashile), Mongolia. Am Mus Novit 3348:1–30

    Google Scholar 

  • Sander PM (1992) The Norian Plateosaurus bonebeds of central Europe and their taphonomy. Palaeogeogr Palaeoclimatol Palaeoecol 93(3):255–299

    Google Scholar 

  • Schulte P, Alegret L, Arenillas I, Arz JA, Barton PJ, Bown PR et al (2010) The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science 327(5970):1214–1218

    Google Scholar 

  • Sellés AG, Vila B, Galobart À (2017) Evidence of reproductive stress in titanosaurian sauropods triggered by an increase in ecological competition. Sci Rep 7(1):13827

    Google Scholar 

  • Shuvalov VF (2000) The Cretaceous stratigraphy and palaeobiogeography of Mongolia. In: Benton MJ, Shishkin M, Unwin DM, Kurochkin EN (eds) The age of dinosaurs in Russia and Mongolia. Cambridge University Press, Cambridge, pp 256–278

    Google Scholar 

  • Tidwell WD, Britt BB, Ash SR (1998) Preliminary floral analysis of the Mygatt-Moore Quarry in the Jurassic Morrison Formation, West-Central Colorado. Mod Geol 22:341

    Google Scholar 

  • Torices A, Currie PJ, Canudo JI, Pereda-Suberbiola X (2015) Theropod dinosaurs from the Upper Cretaceous of the South Pyrenees Basin of Spain. Acta Palaeontol Pol 60(3):611–626

    Google Scholar 

  • Tortosa T, Buffetaut E, Vialle N, Dutour Y, Turini E, Cheylan G (2014) A new abelisaurid dinosaur from the Late Cretaceous of southern France: palaeobiogeographical implications. Ann Paléontol 100(1):63–86

    Google Scholar 

  • Tosolini A-MP, Korasidis VA, Wagstaff BE, Cantrill DJ, Gallagher SJ, Norvick MS (2018) Palaeoenvironments and palaeocommunities from Lower Cretaceous high-latitude sites, Otway Basin, southeastern Australia. Palaeogeogr Palaeoclimatol Palaeoecol 496:62–84

    Google Scholar 

  • Tschopp E, Giovanardi S, Maidment SCR (2016) Temporal distribution of diplodocid sauropods across the Upper Jurassic Morrison Formation (USA). J Vertebr Paleontol Prog Abstr 2016:239

    Google Scholar 

  • Tsogtbaatar K, Weishampel DB, Evans DC, Watabe M (2014) A new hadrosauroid (Plesiohadros djadokhtaensis) from the Late Cretaceous Djadokhtan fauna of southern Mongolia. In: Eberth DA, Evans DC, Ralrick PE (eds) Hadrosaurs. Indiana University Press, Bloomington, pp 108–135

    Google Scholar 

  • Turner AH (2015) A review of Shamosuchus and Paralligator (Crocodyliformes, Neosuchia) from the cretaceous of Asia. PLoS One 10(2):e0118116

    Google Scholar 

  • Turner AH, Hwang SH, Norell MA (2007) A small derived theropod from Öösh, Early Cretaceous, Baykhangor Mongolia. Am Mus Novit 3557:1–27

    Google Scholar 

  • Turner CE, Peterson F (2004) Reconstruction of the Upper Jurassic Morrison Formation extinct ecosystem–a synthesis. Sediment Geol 167(3–4):309–355

    Google Scholar 

  • Valdes P (1994) Atmospheric general circulation models of the Jurassic. In: Allen JRL, Hoskins BJ, Sellwood BW, Spicer RA, Valdes PJ (eds) Palaeoclimates and their modelling: with special reference to the Mesozoic era. Springer, Dordrecht, pp 109–118

    Google Scholar 

  • Vila B, Gaete R, Galobart A, Oms O, Peralba J, Escuer J (2006) Nuevos hallazgos de dinosaurios y otros tetrápodos continentales en los Pirineos sur-centrales y orientales: resultados preliminares. In: Actas de las III Jornadas sobre Dinosaurios y su Entorno. Salas de los infantes, Burgos, pp 365–378

    Google Scholar 

  • Vila B, Sellés AG, Brusatte SL (2016) Diversity and faunal changes in the latest Cretaceous dinosaur communities of southwestern Europe. Cretac Res 57:552–564

    Google Scholar 

  • Wang SC, Dodson P (2006) Estimating the diversity of dinosaurs. Proc Natl Acad Sci 103(37):13601–13605

    Google Scholar 

  • Watabe M, Tsuihiji T, Suzuki S, Tsogtbaatar K (2009) The first discovery of pterosaurs from the Upper Cretaceous of Mongolia. Acta Palaeontol Pol 54(2):231–242

    Google Scholar 

  • Whitlock JA, Trujillo KC, Hanik GM (2018) Assemblage-level structure in Morrison Formation dinosaurs, Western Interior, USA. Geol Intermt West 5:9–22

    Google Scholar 

  • Woodruff DC, Foster JR (2017) The first specimen of Camarasaurus (Dinosauria: Sauropoda) from Montana: the northernmost occurrence of the genus. PLoS One 12(5):e0177423

    Google Scholar 

  • Zhang Y (1988) The Middle Jurassic dinosaur fauna from Dashanpu, Zigong, Sichuan, vol. 1: sauropod dinosaur (I): Shunosaurus. Sichuan Publishing House of Science and Technology, Chengdu

    Google Scholar 

Download references

Acknowledgments

We thank RA Gastaldo and E Martinetto for their extremely thoughtful reviews of an early draft of this chapter. DE Barta thanks the staff of the Mongolian Academy of Sciences, Mark Norell and Mike Novacek (AMNH), Dave Varricchio (MSU), Konstantin Mikhailov (PIN), and Adam Halamski (ZPAL) for discussion and the opportunities they have provided to study Mongolian fossils in the field and collections. The following persons and institutions were involved with the excavations in Frick, Switzerland: Jasmina Hugi, René Kindlimann, Ben Pabst, Esther Premru, Monica Rümbeli, Beat Scheffold, Iwan Stössel, Lui Unterrassner, Martin Sander, Nicole Klein, the Arbeitskreis Frick and the community of Frick, Hochschule Aalen, Canton Aargau, the MNF of the University of Zurich, the Paul Scherrer Institute Villigen, the Saurierkommission Frick, the University of Bonn, and the Universitätsspital Zürich. The Swiss National Science Foundation (grant nos. 205321_162775 to TMS and 31003A_163346 to WB), the Ministerio de Ciencia e Innovación, the Ministerio de Economía y Competitividad [grant numbers CGL2011-30069-C02-01,02, CGL2016-73230-P], the Departament de Cultura de la Generalitat de Catalunya [grant number 20014/100927], the Richard Gilder Graduate School and the Division of Paleontology (AMNH, to ET and DEB) are acknowledged for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuel Tschopp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tschopp, E. et al. (2020). How to Live with Dinosaurs: Ecosystems Across the Mesozoic. In: Martinetto, E., Tschopp, E., Gastaldo, R.A. (eds) Nature through Time. Springer Textbooks in Earth Sciences, Geography and Environment. Springer, Cham. https://doi.org/10.1007/978-3-030-35058-1_8

Download citation

Publish with us

Policies and ethics