Skip to main content

Medical Image Enhancement Using Deep Learning

  • Chapter
  • First Online:
Deep Learning in Healthcare

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 171))

Abstract

This chapter aims to introduce medical image enhancement technology using 2-dimentional and 3-dimentional deep learning. The article starts from basic methods about convolutional layer, deconvolution layer, loss function and evaluation functions for beginners to easily understand. Then, typical state-of-the-art super-resolution methods using 2D or 3D convolution neural networks will be introduced. From the experimental results of the network introduced in this chapter, readers can not only make a comparison about the network structure but also have a general understanding about network performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Elad, M., Arie, F.: Restoration of a single superresolution image from several blurred, noisy, and undersampled measured images. IEEE Trans. Image Process. 6(12), 1646–1658 (1997)

    Article  Google Scholar 

  2. Park, S., Park, M., Kang, M.: Super-resolution image reconstruction: a technical overview. IEEE Signal Process. Mag. 20(3), 21–36 (2003)

    Article  Google Scholar 

  3. Protter, M., et al.: Generalizing the nonlocal-means to super-resolution reconstruction. IEEE Trans. Image Process. 18(1), 36–51 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cui, Z., Chang, H., Shan, S., Zhong, B., Chen, X.: Deep network cascade for image super-resolution. In: European Conference on Computer Vision, pp. 49–64 (2014)

    Chapter  Google Scholar 

  5. Freedman, G., Fattal, R.: Image and video upscaling from local self-examples. ACM Trans. Graph. 30(11), 12 (2011)

    Google Scholar 

  6. Glasner, D., Bagon, S., Irani, M.: Super-resolution from a single image. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 349–356 (2019)

    Google Scholar 

  7. Huang, J.B., Singh, A., Ahuja, N.: Single image super-resolution from transformed self-exemplars. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5197–5206 (2015)

    Google Scholar 

  8. Yang, J., Lin, Z., Cohen, S.: Fast image super-resolution based on in-place example regression. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1059–1066 (2013)

    Google Scholar 

  9. Bahrami, K., et al.: Convolutional neural network for reconstruction of 7T-like images from 3T MRI using appearance and anatomical features. Deep Learning and Data Labeling for Medical Applications, pp. 39–47. Springer, Cham (2016)

    Google Scholar 

  10. Bevilacqua, M., Roumy, A., Guillemot, C., Morel, M.L.A.: Low-complexity single-image super-resolution based on nonnegative neighbor embedding. In: British Machine Vision Conference, pp. 1–10 (2012)

    Google Scholar 

  11. Chang, H., Yeung, D.Y., Xiong, Y.: Super-resolution through neighbor embedding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2004)

    Google Scholar 

  12. Dai, D., Timofte, R., Van Gool, L.: Jointly optimized regressors for image super-resolution. Eurographics 7, 8 (2015)

    Google Scholar 

  13. Freeman, W.T., Pasztor, E.C., Carmichael, O.T.: Learning low-level vision. Int. J. Comput. Vis. 40(11), 25–47 (2000)

    Article  MATH  Google Scholar 

  14. Jia, K., Wang, X., Tang, X.: Image transformation based on learning dictionaries across image spaces. IEEE Trans. Pattern Anal. Mach. Intell. 35(11), 367–380 (2013)

    Article  Google Scholar 

  15. Kim, K.I., Kwon, Y.: Single-image super-resolution using sparse regression and natural image prior. IEEE Trans. Pattern Anal. Mach. Intell. 32(6), 1127–1133 (2010)

    Article  Google Scholar 

  16. Schulter, S., Leistner, C., Bischof, H.: Fast and accurate image upscaling with super-resolution forests. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3791–3799 (2015)

    Google Scholar 

  17. Timofte, R., De Smet, V., Van Gool, L.: Anchored neighborhood regression for fast example-based super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1920–1927 (2013)

    Google Scholar 

  18. Timofte, R., De Smet, V., Van Gool, L.: A+: adjusted anchored neighborhood regression for fast super-resolution. In: Asian Conference on Computer Vision, pp. 111–126 (2014)

    Chapter  Google Scholar 

  19. Yang, J., Lin, Z., Cohen, S.: Fast image super-resolution based on in-place example regression. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1059-1066 (2013)

    Google Scholar 

  20. Yang, J., Wang, Z., Lin, Z., Cohen, S., Huang, T.: Coupled dictionary training for image super-resolution. IEEE Trans. Image Process. 21(11), 3467–3478 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Yang, J., Wright, J., Huang, T.S., Ma, Y.: Image super-resolution via sparse representation. IEEE Trans. Image Process. 19(11), 2861–2873 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zeyde, R., Elad, M., Protter, M.: On single image scale-up using sparse-representations. In: International Conference on Curves and Surfaces, pp. 711–730 (2012)

    Chapter  Google Scholar 

  23. Glasner, D., Bagon, S., Irani, M.: Super-resolution from a single image. In: 12th International Conference on Computer Vision (2009)

    Google Scholar 

  24. Baker, S., Kanade, T.: Limits on super-resolution and how to break them. IEEE Trans. Pattern Anal. Mach. Intell. 9, 1167–1183 (2002)

    Article  Google Scholar 

  25. Lin, Z., Shum, H.: Fundamental limits of reconstruction-based superresolution algorithms under local translation. IEEE Trans. Pattern Anal. Mach. Intell. 26(1), 83–97 (2004)

    Article  Google Scholar 

  26. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Li, F.: ImageNet: a large-scale hierarchical image database. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009)

    Google Scholar 

  27. Krizhevsky, A., Sutskever, I., Hinton, G.: ImageNet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  28. Zhao, H., Gallo, O., Frosio, I., Kautz, J.: Loss functions for image restoration with neural networks. IEEE Trans. Comput. Imaging 3(1), 47–57 (2017)

    Article  Google Scholar 

  29. Zhang, L., Zhang, L., Mou, X., Zhang, D.: A comprehensive evaluation of full reference image quality assessment algorithms. In: IEEE International Conference on Image Processing, pp. 1477–1480 (2012)

    Google Scholar 

  30. https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio

  31. Oriani, E.: qpsnr: a quick PSNR/SSIM analyzer for Linux. Accessed 6 April 2011

    Google Scholar 

  32. Pnmpsnr User Manual. Accessed 6 April 2011

    Google Scholar 

  33. Welstead, S.: Fractal and Wavelet Image Compression Techniques, pp. 155–156. SPIE Optical Engineering Press (1999)

    Google Scholar 

  34. Raouf, H., Dietmar, S., Barni, M. (ed.): Fractal Image Compression. Document and image compression, vol. 968, pp. 168–169. CRC Press, Boca Raton. ISBN 9780849335563. Accessed 5 April 2011

    Google Scholar 

  35. Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process 13(4), 600–612 (2004)

    Article  Google Scholar 

  36. Chao, D., et al.: Learning a deep convolutional network for image super-resolution. In: European Conference on Computer Vision. Springer, Cham (2014)

    Google Scholar 

  37. Chao, D., et al.: Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38(2), 295–307 (2016)

    Article  Google Scholar 

  38. Dong, C., Loy, C.C., Tang, X.: Accelerating the super-resolution convolutional neural network. In: European Conference on Computer Vision (2016)

    Google Scholar 

  39. Aharon, M., Elad, M., Bruckstein, A.: K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54(11), 4311–4322 (2006)

    Article  MATH  Google Scholar 

  40. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning, pp. 807–814 (2010)

    Google Scholar 

  41. Kim, J., Lee, J., Lee, K.: Accurate image super-resolution using very deep convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1646–1654 (2016)

    Google Scholar 

  42. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: International Conference on Learning Representations (2015)

    Google Scholar 

  43. Wang, Z., Liu, D., Yang, J., Han, W., Huang, T.: Deeply improved sparse coding for image super-resolution 2(3), 4 (2015). arXiv:1507.08905

  44. Chen, Y., Pock, T.: Trainable nonlinear reaction diffusion: a flexible framework for fast and effective image restoration. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1256–1272 (2017)

    Article  Google Scholar 

  45. Shi, W., et al.: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1874–1883 (2016)

    Google Scholar 

  46. Huang, G., et al.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  47. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  48. Tong, T., et al.: Image super-resolution using dense skip connections. In: Proceedings of the IEEE International Conference on Computer Vision (2017)

    Google Scholar 

  49. Eirikur, A., Radum, T.: NTIRE 2017 challenge on single image super-resolution: dataset and study. In: The IEEE Conference on Computer Vision and Pattern Recognition Workshops (2017)

    Google Scholar 

  50. https://brain-development.org/ixi-dataset/

  51. Greenspan, H., et al.: MRI inter-slice reconstruction using super-resolution. Magn. Reson. Imaging 20(5), 437–446 (2002)

    Article  Google Scholar 

  52. Greenspan, H.: Super-resolution in medical imaging. Comput. J. 52(1), 43–63 (2008)

    Article  Google Scholar 

  53. Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)

    Article  Google Scholar 

  54. Pham, C., et al.: Brain MRI super-resolution using deep 3D convolutional networks. In: IEEE 14th International Symposium on Biomedical Imaging (2017)

    Google Scholar 

  55. Chen, Y., et al.: Brain MRI super resolution using 3D deep densely connected neural networks. In: IEEE 15th International Symposium on Biomedical Imaging (2018)

    Google Scholar 

  56. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  57. Chen, Y., et al.: Efficient and accurate MRI super-resolution using a generative adversarial network and 3d multi-level densely connected network. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham (2018)

    Chapter  Google Scholar 

  58. Goodfellow, I., Pouget-Abadie, J., Mirza, M., et al.: Generative adversarial nets. Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  59. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein gan (2017). arXiv:1701.07875

Download references

Acknowledgements

This work is supported in part by the Grant in Aid for Scientific Research from the Japanese Ministry for Education, Science, Culture and Sports (MEXT) under the Grant Nos. 18K18078, 18H03267, in part by Zhejiang Lab Program under the Grant No. 2018DG0ZX01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yen-Wei Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, Y., Iwamoto, Y., Chen, YW. (2020). Medical Image Enhancement Using Deep Learning. In: Chen, YW., Jain, L. (eds) Deep Learning in Healthcare. Intelligent Systems Reference Library, vol 171. Springer, Cham. https://doi.org/10.1007/978-3-030-32606-7_4

Download citation

Publish with us

Policies and ethics