Skip to main content

What Have We Learnt from Genomics and Transcriptomics in Classic Hodgkin Lymphoma

  • Chapter
  • First Online:
Hodgkin Lymphoma

Part of the book series: Hematologic Malignancies ((HEMATOLOGIC))

Abstract

The rarity of neoplastic Hodgkin and Reed-Sternberg (HRS) cells in tissue biopsies and technical challenges related to routine formalin fixation have limited for a long time a deeper understanding of classic Hodgkin lymphoma (cHL) genetics and therapeutically exploitable vulnerabilities. Recently, technical advances such as flow cytometry- or laser microdissection-based HRS single cell separation and sequencing as well as circulating tumor DNA genotyping allowed improving our understanding of the genomic basis of cHL. Most strikingly, a comprehensive and unbiased view of the genes/pathways that are deregulated in these diseases is now available. Of note, these pathways have been previously identified by gene expression profiling and functional genomic studies of cHL, indicating that mutations act as signposts highlighting cellular programs that are relevant for the biology of the disease and potential therapeutic targets. Moreover, gene expression profiling techniques that are suitable for both fresh and formalin-fixed biopsy material have provided the framework for more detailed insight into the composition and function of the tumor microenvironment (TME) with future implications for outcome prediction, dynamic biomarker testing, and therapy selection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kuppers R (2009) The biology of Hodgkin's lymphoma. Nat Rev Cancer 9(1):15–27

    Article  PubMed  CAS  Google Scholar 

  2. Steidl C, Connors JM, Gascoyne RD (2011) Molecular pathogenesis of Hodgkin’s lymphoma: increasing evidence of the importance of the microenvironment. J Clin Oncol 29(14):1812–1826

    Article  CAS  PubMed  Google Scholar 

  3. Spina V, Bruscaggin A, Cuccaro A, Martini M, Di Trani M, Forestieri G et al (2018) Circulating tumor DNA reveals genetics, clonal evolution, and residual disease in classical Hodgkin lymphoma. Blood 131(22):2413–2425

    Article  CAS  PubMed  Google Scholar 

  4. Tiacci E, Ladewig E, Schiavoni G, Penson A, Fortini E, Pettirossi V et al (2018) Pervasive mutations of JAK-STAT pathway genes in classical Hodgkin lymphoma. Blood 131(22):2454–2465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Roemer MG, Advani RH, Redd RA, Pinkus GS, Natkunam Y, Ligon AH et al (2016) Classical Hodgkin lymphoma with reduced beta2M/MHC class I expression is associated with inferior outcome independent of 9p24.1 status. Cancer Immunol Res 4(11):910–916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Crescenzo R, Abate F, Lasorsa E, Tabbo F, Gaudiano M, Chiesa N et al (2015) Convergent mutations and kinase fusions lead to oncogenic STAT3 activation in anaplastic large cell lymphoma. Cancer Cell 27(4):516–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Joos S, Menz CK, Wrobel G, Siebert R, Gesk S, Ohl S et al (2002) Classical Hodgkin lymphoma is characterized by recurrent copy number gains of the short arm of chromosome 2. Blood 99(4):1381–1387

    Article  CAS  PubMed  Google Scholar 

  8. Lake A, Shield LA, Cordano P, Chui DT, Osborne J, Crae S et al (2009) Mutations of NFKBIA, encoding IkappaBalpha, are a recurrent finding in classical Hodgkin lymphoma but are not a unifying feature of non-EBV-associated cases. Int J Cancer 125:1334

    Article  CAS  PubMed  Google Scholar 

  9. Emmerich F, Theurich S, Hummel M, Haeffker A, Vry MS, Dohner K et al (2003) Inactivating I kappa B epsilon mutations in Hodgkin/Reed-Sternberg cells. J Pathol 201(3):413–420

    Article  CAS  PubMed  Google Scholar 

  10. Schmitz R, Hansmann ML, Bohle V, Martin-Subero JI, Hartmann S, Mechtersheimer G et al (2009) TNFAIP3 (A20) is a tumor suppressor gene in Hodgkin lymphoma and primary mediastinal B cell lymphoma. J Exp Med 206(5):981–989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schumacher MA, Schmitz R, Brune V, Tiacci E, Doring C, Hansmann ML et al (2010) Mutations in the genes coding for the NF-kappaB regulating factors IkappaBalpha and A20 are uncommon in nodular lymphocyte-predominant Hodgkin's lymphoma. Haematologica 95(1):153–157

    Article  CAS  PubMed  Google Scholar 

  12. Etzel BM, Gerth M, Chen Y, Wunsche E, Facklam T, Beck JF et al (2017) Mutation analysis of tumor necrosis factor alpha-induced protein 3 gene in Hodgkin lymphoma. Pathol Res Pract 213(3):256–260

    Article  CAS  PubMed  Google Scholar 

  13. Johnston PB, Pinter-Brown LC, Warsi G, White K, Ramchandren R (2018) Phase 2 study of everolimus for relapsed or refractory classical Hodgkin lymphoma. Exp Hematol Oncol 7:12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Muppidi JR, Schmitz R, Green JA, Xiao W, Larsen AB, Braun SE et al (2014) Loss of signalling via Galpha13 in germinal centre B-cell-derived lymphoma. Nature 516(7530):254–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Reichel J, Eng K, Elemento O, Cesarman E, Roshal M (2013) Exome sequencing of purified Hodgkin Reed-Sternberg cells reveals recurrent somatic mutations in genes responsible for antigen presentation, chromosome integrity, transcriptional regulation and protein ubiquitination. Blood 122(21):625

    Article  Google Scholar 

  16. Liu Y, Abdul Razak FR, Terpstra M, Chan FC, Saber A, Nijland M et al (2014) The mutational landscape of Hodgkin lymphoma cell lines determined by whole-exome sequencing. Leukemia 28(11):2248–2251

    Article  CAS  PubMed  Google Scholar 

  17. Challa-Malladi M, Lieu YK, Califano O, Holmes AB, Bhagat G, Murty VV et al (2011) Combined genetic inactivation of beta2-microglobulin and CD58 reveals frequent escape from immune recognition in diffuse large B cell lymphoma. Cancer Cell 20(6):728–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Steidl C, Shah SP, Woolcock BW, Rui L, Kawahara M, Farinha P et al (2011) MHC class II transactivator CIITA is a recurrent gene fusion partner in lymphoid cancers. Nature 471(7338):377–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ennishi D, Takata K, Beguelin W, Duns G, Mottok A, Farinha P et al (2019) Molecular and genetic characterization of MHC deficiency identifies EZH2 as therapeutic target for enhancing immune recognition. Cancer Discov 9(4):546–563

    Article  PubMed  Google Scholar 

  20. Grasso CS, Giannakis M, Wells DK, Hamada T, Mu XJ, Quist M et al (2018) Genetic mechanisms of immune evasion in colorectal Cancer. Cancer Discov 8(6):730–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Roemer MG, Advani RH, Ligon AH, Natkunam Y, Redd RA, Homer H et al (2016) PD-L1 and PD-L2 genetic alterations define classical Hodgkin lymphoma and predict outcome. J Clin Oncol 34:2690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kuppers R, Klein U, Schwering I, Distler V, Brauninger A, Cattoretti G et al (2003) Identification of Hodgkin and Reed-Sternberg cell-specific genes by gene expression profiling. J Clin Invest 111(4):529–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schwering I, Brauninger A, Klein U, Jungnickel B, Tinguely M, Diehl V et al (2003) Loss of the B-lineage-specific gene expression program in Hodgkin and Reed-Sternberg cells of Hodgkin lymphoma. Blood 101(4):1505–1512

    Article  CAS  PubMed  Google Scholar 

  24. Mathas S, Janz M, Hummel F, Hummel M, Wollert-Wulf B, Lusatis S et al (2006) Intrinsic inhibition of transcription factor E2A by HLH proteins ABF-1 and Id2 mediates reprogramming of neoplastic B cells in Hodgkin lymphoma. Nat Immunol 7(2):207–215

    Article  CAS  PubMed  Google Scholar 

  25. Stein H, Marafioti T, Foss HD, Laumen H, Hummel M, Anagnostopoulos I et al (2001) Down-regulation of BOB.1/OBF.1 and Oct2 in classical Hodgkin disease but not in lymphocyte predominant Hodgkin disease correlates with immunoglobulin transcription. Blood 97(2):496–501

    Article  CAS  PubMed  Google Scholar 

  26. Jundt F, Kley K, Anagnostopoulos I, Schulze Probsting K, Greiner A, Mathas S et al (2002) Loss of PU.1 expression is associated with defective immunoglobulin transcription in Hodgkin and Reed-Sternberg cells of classical Hodgkin disease. Blood 99(8):3060–3062

    Article  CAS  PubMed  Google Scholar 

  27. Brune V, Tiacci E, Pfeil I, Doring C, Eckerle S, van Noesel CJ et al (2008) Origin and pathogenesis of nodular lymphocyte-predominant Hodgkin lymphoma as revealed by global gene expression analysis. J Exp Med 205(10):2251–2268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Steidl C, Diepstra A, Lee T, Chan FC, Farinha P, Tan K et al (2012) Gene expression profiling of microdissected Hodgkin Reed-Sternberg cells correlates with treatment outcome in classical Hodgkin lymphoma. Blood 120(17):3530–3540

    Article  CAS  PubMed  Google Scholar 

  29. Tiacci E, Doring C, Brune V, van Noesel CJ, Klapper W, Mechtersheimer G et al (2012) Analyzing primary Hodgkin and Reed-Sternberg cells to capture the molecular and cellular pathogenesis of classical Hodgkin lymphoma. Blood 120(23):4609–4620

    Article  CAS  PubMed  Google Scholar 

  30. Devilard E, Bertucci F, Trempat P, Bouabdallah R, Loriod B, Giaconia A et al (2002) Gene expression profiling defines molecular subtypes of classical Hodgkin’s disease. Oncogene 21(19):3095–3102

    Article  CAS  PubMed  Google Scholar 

  31. Sanchez-Aguilera A, Montalban C, de la Cueva P, Sanchez-Verde L, Morente MM, Garcia-Cosio M et al (2006) Tumor microenvironment and mitotic checkpoint are key factors in the outcome of classic Hodgkin lymphoma. Blood 108(2):662–668

    Article  CAS  PubMed  Google Scholar 

  32. Chetaille B, Bertucci F, Finetti P, Esterni B, Stamatoullas A, Picquenot JM et al (2009) Molecular profiling of classical Hodgkin lymphoma tissues uncovers variations in the tumor microenvironment and correlations with EBV infection and outcome. Blood 113(12):2765–3775

    Article  CAS  PubMed  Google Scholar 

  33. Steidl C, Lee T, Shah SP, Farinha P, Han G, Nayar T et al (2010) Tumor-associated macrophages and survival in classic Hodgkin's lymphoma. N Engl J Med 362(10):875–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Roemer MGM, Redd RA, Cader FZ, Pak CJ, Abdelrahman S, Ouyang J et al (2018) Major histocompatibility complex class II and programmed death ligand 1 expression predict outcome after programmed death 1 blockade in classic Hodgkin lymphoma. J Clin Oncol 36(10):942–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Steidl C, Farinha P, Gascoyne RD (2011) Macrophages predict treatment outcome in Hodgkin’s lymphoma. Haematologica 96(2):186–189

    Article  PubMed  PubMed Central  Google Scholar 

  36. Tan KL, Scott DW, Hong F, Kahl BS, Fisher RI, Bartlett NL et al (2012) Tumor-associated macrophages predict inferior outcomes in classic Hodgkin lymphoma: a correlative study from the E2496 intergroup trial. Blood 120(16):3280–3287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Scott DW, Chan FC, Hong F, Rogic S, Tan KL, Meissner B et al (2013) Gene expression-based model using formalin-fixed paraffin-embedded biopsies predicts overall survival in advanced-stage classical hodgkin lymphoma. J Clin Oncol 31(6):692–700

    Article  PubMed  Google Scholar 

  38. Chan FC, Mottok A, Gerrie AS, Power M, Nijland M, Diepstra A et al (2017) Prognostic model to predict post-autologous stem-cell transplantation outcomes in classical Hodgkin lymphoma. J Clin Oncol 35(32):3722–3733

    Article  CAS  PubMed  Google Scholar 

  39. Connors JM, Jurczak W, Straus DJ, Ansell SM, Kim WS, Gallamini A et al (2018) Brentuximab Vedotin with chemotherapy for stage III or IV Hodgkin’s lymphoma. N Engl J Med 378(4):331–344

    Article  CAS  PubMed  Google Scholar 

  40. Ansell SM, Lesokhin AM, Borrello I, Halwani A, Scott EC, Gutierrez M et al (2015) PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med 372(4):311–319

    Article  PubMed  CAS  Google Scholar 

  41. Rothe A, Sasse S, Topp MS, Eichenauer DA, Hummel H, Reiners KS et al (2015) A phase 1 study of the bispecific anti-CD30/CD16A antibody construct AFM13 in patients with relapsed or refractory Hodgkin lymphoma. Blood 125(26):4024–4031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Rossi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rossi, D., Steidl, C. (2020). What Have We Learnt from Genomics and Transcriptomics in Classic Hodgkin Lymphoma. In: Engert, A., Younes, A. (eds) Hodgkin Lymphoma. Hematologic Malignancies. Springer, Cham. https://doi.org/10.1007/978-3-030-32482-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32482-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32481-0

  • Online ISBN: 978-3-030-32482-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics