Skip to main content

Arctic Marine Ecosystems, Climate Change Impacts, and Governance Responses: An Integrated Perspective from the Barents Sea

  • Chapter
  • First Online:
Arctic Marine Sustainability

Part of the book series: Springer Polar Sciences ((SPPS))

Abstract

Arctic and sub-Arctic marine ecosystems and their living resources are especially sensitive to climate drivers. Under progressing climate change, ocean warming, sea ice melting, changing oceanic currents, and ocean acidification will lead to shifts in seasonal timing, spatial distribution and productivity of fish species, and affect plankton composition, marine mammals and seabirds. Shifts of boreal and sub-Arctic species into the Arctic and ensuing changes in species composition and biodiversity are already impacting a range issues from ecosystem services to human societies, e.g. fisheries, coastal tourism, cultural services, and biological carbon uptake and cycling. Small-scale fishers may be unable to adapt to the occurring shifts. Decreases in seabirds, marine mammals, and iconic Arctic species could have negative consequences for marine ecotourism and cultural values in the high north. Increasing anthropogenic impacts, such as fisheries and pollution, will interact with climate impacts and exacerbate the pressure on Arctic marine ecosystems.

The Arcto-boreal Barents Sea can serve as a model system for understanding future shifts in marine ecosystems, impacts on human users, and marine governance responses in a changing Arctic. Adaptive, ecosystem-based, internationally collaborative and participatory governance mechanisms will help to address the upcoming challenges in climate change adaptation for Arctic marine social-ecological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aanesen, M., Armstrong, C., Czajkowski, M., Falk-Petersen, J., Hanley, N., & Navrud, S. (2015). Willingness to pay for unfamiliar public goods: Preserving cold-water coral in Norway. Ecological Economics, 112, 53–67. https://doi.org/10.1016/j.ecolecon.2015.02.007.

    Article  Google Scholar 

  • Allison, E. H., & Bassett, H. R. (2015). Climate change in the oceans: Human impacts and responses. Science, 350(6262), 778–782. https://doi.org/10.1126/science.aac8721.

    Article  CAS  Google Scholar 

  • Allison, E. H., Perry, A. L., Badjeck, M.-C., Neil Adger, W., Brown, K., Conway, D., Halls, A. S., et al. (2009). Vulnerability of national economies to the impacts of climate change on fisheries. Fish and Fisheries, 10(2), 173–196. https://doi.org/10.1111/j.1467-2979.2008.00310.x.

    Article  Google Scholar 

  • AMAP. (2013). AMAP assessment 2013: Arctic ocean acidification. Oslo: Arctic Monitoring and Assessment Program. https://www.amap.no/documents/doc/amap-assessment-2013-arctic-ocean-acidification/881

  • Armstrong, C. W., Holen, S., Navrud, S., & Seifert, I. (2012). The economics of ocean acidification – A scoping study. Oslo: NIVA.

    Google Scholar 

  • Arrigo, K. R., van Dijken, G., & Pabi, S. (2008). Impact of a shrinking Arctic ice cover on marine primary production. Geophysical Research Letters, 35(19), 529. https://doi.org/10.1029/2008GL035028.

    Article  Google Scholar 

  • Aune, M., Aschan, M. M., Greenacre, M., Dolgov, A. V., Fossheim, M., & Primicerio, R. (2018). Functional roles and redundancy of demersal Barents Sea fish: Ecological implications of environmental change. edited by Athanassios C Tsikliras. PLoS One, 13(11), e0207451. https://doi.org/10.1371/journal.pone.0207451.

    Article  CAS  Google Scholar 

  • Barrett, R. T. (2007, November). Food web interactions in the southwestern Barents Sea: Black-legged kittiwakes Rissa Tridactyla respond negatively to an increase in Herring Clupea Harengus. Marine Ecology Progress Series, 349, 269–276. https://doi.org/10.3354/meps07116..

    Article  Google Scholar 

  • Beaumont, N. J., Austen, M. C., Atkins, J. P., Burdon, D., Degraer, S., Dentinho, T. P., Derous, S., et al. (2007). Identification, definition and quantification of goods and services provided by marine biodiversity: Implications for the ecosystem approach. Marine Pollution Bulletin, 54(3), 253–265. https://doi.org/10.1016/j.marpolbul.2006.12.003.

    Article  CAS  Google Scholar 

  • Berge, J., Heggland, K., Lønne, O. J., Cottier, F., & Hop, H. (2015). First records of Atlantic Mackerel (Scomber Scombrus) from the Svalbard Archipelago, Norway, with possible explanations for the extensions of its distribution. Arctic, 54, 68. https://doi.org/10.2307/24363888.

    Article  Google Scholar 

  • Blackford, J. C. (2010). Predicting the impacts of ocean acidification: Challenges from an ecosystem perspective. Journal of Marine Systems, 81(1–2), 12–18. https://doi.org/10.1016/j.jmarsys.2009.12.016.

    Article  Google Scholar 

  • Bluhm, B. A., Gebruk, A. V., Gradinger, R., & Hopcroft, R. R. (2011). Arctic marine biodiversity: An update of species richness and examples of biodiversity change. Oceanography, 24(3), 232–248.

    Article  Google Scholar 

  • Bogstad, B., Gjøsæter, H., Haug, T., & Lindstrøm, U. (2015). A review of the battle for food in the Barents Sea: Cod vs. Marine Mammals. Frontiers in Ecology and Evolution, 3, 29. https://doi.org/10.3389/fevo.2015.00029.

    Article  Google Scholar 

  • Bopp, L., Resplandy, L., Orr, J. C., Doney, S. C., Dunne, J. P., Gehlen, M., Halloran, P., et al. (2013). Multiple stressors of ocean ecosystems in the 21st century: Projections with CMIP5 models. Biogeosciences Discussions, 10(2), 3627–3676. https://doi.org/10.5194/bgd-10-3627-2013.

    Article  Google Scholar 

  • Bouchard, C., Geoffroy, M., LeBlanc, M., Majewski, A., Gauthier, S., Walkusz, W., Reist, J. D., & Fortier, L. (2017). Climate warming enhances polar cod recruitment, at least transiently. Progress in Oceanography, 156, 121–129. https://doi.org/10.1016/j.pocean.2017.06.008.

    Article  Google Scholar 

  • Brander, K. (2012). Climate and current anthropogenic impacts on fisheries. Climatic Change, 119, 9–21. https://doi.org/10.1007/s10584-012-0541-2.

    Article  Google Scholar 

  • Browman, H. I., & Stergiou, K. I. (2005). Politics and socio-economics of ecosystem-based management of marine resources. Marine Ecology Progress Series, 300, 241–296. https://doi.org/10.3354/meps300241.

    Article  Google Scholar 

  • Buanes, A., Jentoft, S., Karlsen, G. R., & Maurstad, A. (2004). In whose interest? An exploratory analysis of stakeholders in Norwegian coastal zone planning. Ocean and Coastal Management, 47, 207–223. https://doi.org/10.1016/j.ocecoaman.2004.04.006.

    Article  Google Scholar 

  • Büscher, J. V., Form, A. U., & Riebesell, U. (2017). Interactive effects of ocean acidification and warming on growth, fitness and survival of the cold-water coral Lophelia Pertusa under different food availabilities. Frontiers in Marine Science, 4, 119. https://doi.org/10.3389/fmars.2017.00101.

    Article  Google Scholar 

  • CBD Secretariat. (2014). An updated synthesis of the impacts of ocean acidification on marine biodiversity. (CBD technical series no. 75). Secretariat of the convention on biological diversity. Eds: Hennige, S., Roberts, J. M., & Williamson, P.). Montreal, technical series no. 75, 99 pages.

    Google Scholar 

  • Charles, A. (2012). People, oceans and scale: Governance, livelihoods and climate change adaptation in marine social–ecological systems. Current Opinion in Environmental Sustainability, 4(3), 351–357. https://doi.org/10.1016/j.cosust.2012.05.011.

    Article  Google Scholar 

  • Christiansen, J. S., Mecklenburg, C. W., & Karamushko, O. V. (2014). Arctic marine fishes and their fisheries in light of global change. Global Change Biology, 20, 352–359. https://doi.org/10.1111/gcb.12395.

    Article  Google Scholar 

  • Collins, M., Knutti, R., Arblaster, J., Dufresne, J. L., Fichefet, T., Friedlingstein, P., Gao, X., et al. (2013). Chapter 12 – long-term climate change: Projections, commitments and irreversibility. In IPCC 5th assessment report. Cambridge/New York: Cambridge University Press.

    Google Scholar 

  • Cooley, S. R., & Doney, S. C. (2009). Anticipating ocean acidification’s economic consequences for commercial fisheries. Environmental Research Letters, 4(2), 024007. https://doi.org/10.1088/1748-9326/4/2/024007.

    Article  CAS  Google Scholar 

  • Crowder, L. B., Hazen, E. L., Avissar, N., Bjorkland, R., Latanich, C., & Ogburn, M. B. (2008). The impacts of fisheries on marine ecosystems and the transition to ecosystem-based management. Annual Reviews, 39(1), 259–278. https://doi.org/10.1146/annurev.ecolsys.39.110707.173406.

    Article  Google Scholar 

  • Cury, P. M., Shin, Y. J., Planque, B., Durant, J. M., Fromentin, J.-M., Kramer-Schadt, S., Stenseth, N. C., Travers, M., & Grimm, V. (2008). Ecosystem oceanography for global change in fisheries. Trends in Ecology & Evolution, 23(6), 338–346. https://doi.org/10.1016/j.tree.2008.02.005.

    Article  Google Scholar 

  • Dahlke, F. T., Leo, E., Mark, F. C., & Pörtner, H.-O. (2017). Effects of ocean acidification increase embryonic sensitivity to thermal extremes in Atlantic Cod, Gadus Morhua. Global Change Biology, 23(4), 1499–1510. https://doi.org/10.1111/gcb.13527.

    Article  Google Scholar 

  • Dalpadado, P., Ingvaldsen, R. B., Stige, L. C., Bogstad, B., Knutsen, T., Ottersen, G., & Ellertsen, B. (2012). Climate effects on Barents Sea ecosystem dynamics. ICES Journal of Marine Science, 69(7), 1303–1316. https://doi.org/10.1093/icesjms/fss063.

    Article  Google Scholar 

  • Dannevig, H., & Hovelsrud, G. K. (2015). Understanding the need for adaptation in a natural resource dependent community in Northern Norway: Issue salience, knowledge and values. Climatic Change, 135(2), 261–275.

    Article  Google Scholar 

  • Darnis, G., Robert, D., Pomerleau, C., Link, H., Archambault, P., John Nelson, R., Geoffroy, M., et al. (2012). Current state and trends in Canadian Arctic marine ecosystems: II. Heterotrophic food web, Pelagic-Benthic coupling, and biodiversity. Climatic Change, 115(1), 179–205. https://doi.org/10.1007/s10584-012-0483-8. Springer Netherlands.

    Article  Google Scholar 

  • De Lucia, V., Prip, C., Dalaker Kraabel, K., & Primicerio, R. (2018). Arctic Marine biodiversity in the high seas between regional and global governance. Arctic Review on Law and Politics, 9(0), 264. https://doi.org/10.23865/arctic.v9.1470.

    Article  Google Scholar 

  • Denman, K., Christian, J. R., Steiner, N., Pörtner, H.-O., & Nojiri, Y. (2011). Potential impacts of future ocean acidification on marine ecosystems and fisheries: Current knowledge and recommendations for future research. ICES Journal of Marine Science, 68(6), 1019–1029. https://doi.org/10.1093/icesjms/fsr074.

    Article  Google Scholar 

  • Derocher, Andrew E, Nicholas J Lunn, and Ian Stirling. 2004. Polar bears in a warming climate. Integrative and comparative biology 44 (2). Oxford University Press:Oxford 163–176. doi:https://doi.org/10.1093/icb/44.2.163.

    Chapter  Google Scholar 

  • Descamps, S., Aars, J., Fuglei, E., Kovacs, K. M., Lydersen, C., Pavlova, O., Pedersen, Ã…. Ø., Ravolainen, V., & Strøm, H. (2017). Climate change impacts on wildlife in a high Arctic archipelago – Svalbard, Norway. Global Change Biology, 23(2), 490–502. https://doi.org/10.1111/gcb.13381.

    Article  Google Scholar 

  • deYoung, B., Barange, M., Beaugrand, G., Harris, R., Perry, R. I., Scheffer, M., & Werner, F. (2008). Regime shifts in marine ecosystems: Detection, prediction and management. Trends in Ecology & Evolution, 23(7), 402–409. https://doi.org/10.1016/j.tree.2008.03.008.

    Article  Google Scholar 

  • Doney, S. C., Ruckelshaus, M., Emmett Duffy, J., Barry, J. P., Chan, F., English, C. A., Galindo, H. M., et al. (2012). Climate change impacts on marine ecosystems. Annual Review of Marine Science, 4, 11–37.

    Article  Google Scholar 

  • Drinkwater, K. F. (2006). The regime shift of the 1920s and 1930s in the North Atlantic. Progress in Oceanography, 68(2–4), 134–151.

    Article  Google Scholar 

  • Drinkwater, K. F., Beaugrand, G., Kaeriyama, M., Kim, S., Ottersen, G., Perry, R. I., Pörtner, H.-O., Polovina, J. J., & Takasuka, A. (2010). On the processes linking climate to ecosystem changes. Journal of Marine Systems, 79(3–4), 374–388. https://doi.org/10.1016/j.jmarsys.2008.12.014.

    Article  Google Scholar 

  • Drinkwater, K. F., Miles, M., Medhaug, I., OtterÃ¥, O. H., Kristiansen, T., Sundby, S., & Gao, Y. (2014, May). The Atlantic multidecadal oscillation: Its manifestations and impacts with special emphasis on the Atlantic region north of 60°N. Journal of Marine Systems 133, 117–130. https://doi.org/10.1016/j.jmarsys.2013.11.001.

    Article  Google Scholar 

  • Duarte, C. M., Agustí, S., Wassmann, P., Arrieta, J. M., Alcaraz, M., Coello, A., Marbà, N., et al. (2012). Tipping elements in the Arctic marine ecosystem. Ambio, 41(1), 44–55. https://doi.org/10.1007/s13280-011-0224-7.

    Article  Google Scholar 

  • Durant, J. M., Hjermann, D. Ø., Frederiksen, M., Charrassin, J. B., Le Maho, Y., Sabarros, P. S., Crawford, R. J. M., & Chr Stenseth, N. (2009). Pros and cons of using seabirds as ecological indicators. Climate Research, 39(2), 115–129. https://doi.org/10.3354/cr00798.

    Article  Google Scholar 

  • Durner, G. M., Douglas, D. C., Nielson, R. M., Amstrup, S. C., McDonald, T. L., Stirling, I., Mauritzen, M., et al. (2009). Predicting 21st-century polar bear habitat distribution from global climate models. Ecological Monographs, 79(1), 25–58. https://doi.org/10.1890/07-2089.1.

    Article  Google Scholar 

  • Eide, A., Heen, K., Armstrong, C., Flaaten, O., & Vasiliev, A. (2013). Challenges and successes in the management of a shared fish stock – The case of the Russian–Norwegian Barents Sea Cod fishery. Acta Borealia, 30(1), 1–20. https://doi.org/10.1080/08003831.2012.678723.

    Article  Google Scholar 

  • Ellingsen, I. H., Dalpadado, P., Slagstad, D., & Loeng, H. (2007). Impact of climatic change on the biological production in the Barents Sea. Climatic Change, 87(1–2), 155–175. https://doi.org/10.1007/s10584-007-9369-6.

    Article  CAS  Google Scholar 

  • Eriksen, E., Skjoldal, H. R., Gjøsæter, H., & Primicerio, R. (2017, February). Spatial and temporal changes in the Barents Sea Pelagic compartment during the recent warming. Progress in Oceanography, 151, 206–226. https://doi.org/10.1016/j.pocean.2016.12.009

    Article  Google Scholar 

  • Essington, T. E., & Punt, A. E. (2011). Implementing ecosystem-based fisheries management: Advances, challenges and emerging tools. Fish and Fisheries, 12(2), 123–124. https://doi.org/10.1111/j.1467-2979.2011.00407.x.

    Article  Google Scholar 

  • FAO. (2012). Technical guidelines for responsible fisheries 13: Recreational fisheries 194 pages. Rome: United Nations Food and Agriculture Organization.

    Google Scholar 

  • FAO. (2013). Fishery and aquaculture country profiles – Norway. Rome: United Nations Food and Agriculture Organization. http://www.fao.org/fishery/facp/NOR/en

  • Filin, A., Belikov, S., Drinkwater, K., Gavrilo, M., Jørgensen, L. L., Kovacs, K. M., Luybin, P., McBride, M. M., Reigstad, M., & Strøm, H. (2016). Future climate change and its effects on the ecosystem and human activities. Barents Portal. www.barentsportal.com/barentsportal/index.php/en/mor

  • Fiskeridirektoratet. (2018). Economic and biological figures from Norwegian fisheries (Økonomiske Og Biologiske Nøkkeltal FrÃ¥ Dei Norskefiskeria). Bergen: Norwegian Fisheries Directorate.

    Google Scholar 

  • Fluhr, J., Strøm, H., Pradel, R., Duriez, O., Beaugrand, G., & Descamps, S. (2017). Weakening of the subpolar Gyre as a key driver of North Atlantic seabird demography: A case study with Brünnich’s Guillemots in Svalbard. Marine Ecology Progress Series, 563, 1–11. https://doi.org/10.3354/meps11982.

    Article  Google Scholar 

  • Fogarty, M. J., Gamble, R., & Perretti, C. T. (2016). Dynamic complexity in exploited marine ecosystems. Frontiers in Ecology and Evolution, 4, 1187. https://doi.org/10.3389/fevo.2016.00068.

    Article  Google Scholar 

  • Fossheim, M., Primicerio, R., Johannesen, E., Ingvaldsen, R. B., Aschan, M. M., & Dolgov, A. V. (2015). Recent warming leads to a rapid Borealization of fish communities in the Arctic. Nature Climate Change, 5(7), 673–677. https://doi.org/10.1038/nclimate2647.

    Article  Google Scholar 

  • Frainer, A., Primicerio, R., Kortsch, S., Aune, M., Dolgov, A. V., Fossheim, M., & Aschan, M. M. (2017). Climate-driven changes in functional biogeography of Arctic marine fish communities. Proceedings of the National Academy of Sciences of the United States of America, 114(46), 12202–12207. https://doi.org/10.1073/pnas.1706080114.

    Article  CAS  Google Scholar 

  • Gao, K., & Häder, D.-P. (2017). Effects of ocean acidification and UV radiation on marine photosynthetic carbon fixation. Systems Biology of Marine Ecosystems, 14, 235–250. https://doi.org/10.1007/978-3-319-62094-7_12.

    Article  Google Scholar 

  • Gattuso, J.-P., Magnan, A., Bille, R., Cheung, W. W. L., Howes, E. L., Joos, F., Allemand, D., et al. (2015). Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science, 349(6243), aac4722–aac4722. https://doi.org/10.1126/science.aac4722.

    Article  CAS  Google Scholar 

  • Gjøsaeter, H., Tjelmeland, S., & Bogstad, B. (2012). Ecosystem-based management of fish species in the Barents Sea. In Global progress in ecosystem-based fisheries management (pp. 333–352). Alaska Sea Grant: University of Alaska Fairbanks. https://doi.org/10.4027/gpebfm.2012.017.

    Chapter  Google Scholar 

  • Gullestad, P., Abotnes, A. M., Bakke, G., Skern-Mauritzen, M., Nedreaas, K., & Søvik, G. (2017). Towards ecosystem-based fisheries management in Norway – practical tools for keeping track of relevant issues and prioritising management efforts. Marine Policy, 77, 104–110. https://doi.org/10.1016/j.marpol.2016.11.032.

    Article  Google Scholar 

  • Hamilton, C. D., Lydersen, C., Ims, R. A., & Kovacs, K. M. (2015). Predictions replaced by facts: A keystone species’ behavioural responses to declining Arctic Sea-Ice. Biology Letters, 11(11), 20150803. https://doi.org/10.1098/rsbl.2015.0803.

    Article  CAS  Google Scholar 

  • Hamre, J. (1994). Biodiversity and exploitation of the main fish stocks in the Norwegian – Barents Sea ecosystem. Biodiversity and Conservation, 3(6), 473–492. https://doi.org/10.1007/BF00115154.

    Article  Google Scholar 

  • Hannesson, R., & Herrick, S. F. (2006). Climate change and the economics of the world’s fisheries: Examples of small pelagic stocks. Cheltenham: Edward Elgar.

    Book  Google Scholar 

  • Hansen, Cecilie, Mette Skern-Mauritzen, Gro van der Meeren, Anne Jähkel, and Ken Drinkwater. 2016. Set-up of the Nordic and Barents Seas (NoBa) Atlantis model, Havforskningsinstituttet, Bergen. http://hdl.handle.net/11250/2408609.

  • Hansen, C., Drinkwater, K. F., Jähkel, A., Fulton, E. A., Gorton, R., & Skern-Mauritzen, M. (2019). Sensitivity of the Norwegian and Barents Sea Atlantis end-to-end ecosystem model to parameter perturbations of key species. PLoS One, 14(2), e0210419. https://doi.org/10.1371/journal.pone.0210419.

    Article  CAS  Google Scholar 

  • Harsem, Ø., & Hoel, A. H. (2012). Climate change and adaptive capacity in fisheries management: The case of Norway. International Environmental Agreements: Politics, Law and Economics, 13(1), 49–63. https://doi.org/10.1007/s10784-012-9199-5. Springer Netherlands.

    Article  Google Scholar 

  • Haug, T., Bogstad, B., Chierici, M., Gjøsæter, H., Hallfredsson, E. H., Høines, Ã…. S., Hoel, A. H., et al. (2017). Future harvest of living resources in the Arctic ocean North of the Nordic and Barents Seas: A review of possibilities and constraints. Fisheries Research, 188, 38–57. https://doi.org/10.1016/j.fishres.2016.12.002.

    Article  Google Scholar 

  • Haynie, A. C., & Pfeiffer, L. (2012). Why economics matters for understanding the effects of climate change on fisheries. ICES Journal of Marine Science, 69(7), 1160–1167. https://doi.org/10.1093/icesjms/fss021.

    Article  Google Scholar 

  • Hoegh-Guldberg, O., Rongshuo Cai, E. S., Poloczanska, P. G., Brewer, S., Sundby, K., Hilmi, V. J. F., & Jung, S. (2014). The ocean. In: Climate change impacts, adaptation, and vulnerability. Part B Regional aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 1–77). WGII Contribution to the IPCC Fifth Assessment Report (AR5): Chapter 30.

    Google Scholar 

  • Hoel, A. H., & Olsen, E. (2012). Integrated ocean management as a strategy to meet rapid climate change: The Norwegian case. Ambio, 41(1), 85–95. https://doi.org/10.1007/s13280-011-0229-2.

    Article  Google Scholar 

  • Hoel, A. H., von Quillfeldt, C., & Olsen, E. (2009). Norway and integrated oceans management – The case of the Barents Sea. In A. H. Hoel (Ed.), Best practices in ecosystem-based oceans management in the Arctic (pp. 1–10). Tromsø: Norsk Polarinstitutt.

    Google Scholar 

  • Hollowed, A. B., & Sundby, S. (2014). Change is coming to the Northern oceans. Science, 344(6188), 1084–1085. https://doi.org/10.1126/science.1251166.

    Article  CAS  Google Scholar 

  • Hop, H., & Gjøsæter, H. (2013). Polar Cod ( Boreogadus Saida) and capelin (Mallotus Villosus) as Key species in marine food webs of the Arctic and the Barents Sea. Marine Biology Research, 9(9), 878–894. https://doi.org/10.1080/17451000.2013.775458.

    Article  Google Scholar 

  • Hoppe, C. J. M., Wolf, K. K. E., Schuback, N., Tortell, P. D., & Rost, B. (2018). Compensation of ocean acidification effects in Arctic phytoplankton assemblages. Nature Climate Change, 8(6), 529–533. https://doi.org/10.1038/s41558-018-0142-9.

    Article  CAS  Google Scholar 

  • Hunt, G. L., Jr, P. S., Walters, G., Sinclair, E., Brodeur, R. D., Napp, J. M., & Bond, N. A. (2002). Climate change and control of the southeastern Bering Sea pelagic ecosystem. Deep Sea Research Part II: Topical Studies in Oceanography, 49(26), 5821–5853. https://doi.org/10.1016/S0967-0645(02)00321-1.

    Article  Google Scholar 

  • Hunt, G. L., Blanchard, A. L., Boveng, P., & Dalpadado, P. (2013). The barents and chukchi seas: Comparison of two Arctic shelf ecosystems. Journal of Marine Systems, 49(26), 5821–5853.

    Google Scholar 

  • ICES. (2016). Final report of the Working Group on the Integrated Assessments of the Barents Sea (WGIBAR). Murmansk: ICES.

    Google Scholar 

  • ICES AFWG. (2016). Report of the Arctic Fisheries Working Group (AFWG). Copenhagen: ICES.

    Google Scholar 

  • Ingvarsdóttir, A., Bjørkblom, C., Ravagnan, E., Godal, B. F., Arnberg, M., Joachim, D. L., & Sanni, S. (2012). Journal of Marine Systems, 93(C), 69–76. https://doi.org/10.1016/j.jmarsys.2011.10.014.

    Article  Google Scholar 

  • Jentoft, S., & Mikalsen, K. H. (2014). Do national resources have to be centrally managed? Vested interests and institutional reform in Norwegian fisheries governance. Maritime Studies, 13(1), 5. https://doi.org/10.1186/2212-9790-13-5.

    Article  Google Scholar 

  • Johannesen, E., Ingvaldsen, R. B., Bogstad, B., Dalpadado, P., Eriksen, E., Gjøsæter, H., Knutsen, T., Skern-Mauritzen, M., & Stiansen, J. E. (2012). Changes in Barents Sea ecosystem state, 1970–2009: Climate fluctuations, human impact, and trophic interactions. ICES Journal of Marine Science, 69(5), 880–889. https://doi.org/10.1093/icesjms/fss046.

    Article  Google Scholar 

  • Johnsen, J. P. (2013). Is fisheries governance possible? Fish and Fisheries, 15(3), 428–444. https://doi.org/10.1111/faf.12024.

    Article  Google Scholar 

  • Jorgensen, C., Enberg, K., Dunlop, E. S., Arlinghaus, R., Boukal, D. S., Brander, K., Ernande, B., et al. (2007). Ecology: Managing evolving fish stocks. Science, 318(5854), 1247–1248. https://doi.org/10.1126/science.1148089.

    Article  CAS  Google Scholar 

  • Jørgensen, L. L., Planque, B., Thangstad, T. H., & Certain, G. (2015, June). Vulnerability of Megabenthic species to trawling in the Barents Sea. ICES Journal of Marine Science, 73, 84–97 https://doi.org/10.1093/icesjms/fsv107. 

    Article  Google Scholar 

  • Kaiser, B. A., Kourantidou, M., & Fernandez, L. (2018, March). A case for the commons: The Snow Crab in the Barents. Journal of Environmental Management, 210, 338–348. https://doi.org/10.1016/j.jenvman.2018.01.007.

    Article  Google Scholar 

  • Katsanevakis, S., Stelzenmüller, V., South, A., Sørensen, T. K., Jones, P. J. S., Kerr, S., Badalamenti, F., et al. (2011). Ecosystem-based marine spatial management: Review of concepts, policies, tools, and critical issues. Ocean and Coastal Management, 54(11), 807–820. https://doi.org/10.1016/j.ocecoaman.2011.09.002.

    Article  Google Scholar 

  • Kjesbu, O. S., Bogstad, B., Devine, J. A., Gjøsæter, H., Howell, D., Ingvaldsen, R. B., Nash, R. D. M., & Skjæraasen, J. E. (2014). Synergies between climate and management for Atlantic Cod fisheries at high latitudes. Proceedings of the National Academy of Sciences, 111(9), 3478–3483. https://doi.org/10.1073/pnas.1316342111. 

    Article  CAS  Google Scholar 

  • Klima- og Miljødepartementet. (2011). First update of the integrated management plan for the marine environment of the Barents Sea–Lofoten area. Regjeringen.no. March 11. http://www.regjeringen.no/nb/dep/md/dok/regpubl/stmeld/2010-2011/meld-st-10-20102011.html?id=682050

  • Koenigstein, S., & Goessling-Reisemann, S. (2014). Ocean acidification and warming in the Norwegian and Barents Seas: Impacts on marine ecosystems and human uses. University of Bremen, artec Sustainability Research Center. https://doi.org/10.5281/zenodo.8317.

  • Koenigstein, S., Mark, F. C., Gößling-Reisemann, S., Reuter, H., & Pörtner, H.-O. (2016a). Modelling climate change impacts on marine fish populations: Process-based integration of ocean warming, acidification and other environmental drivers. Fish and Fisheries, 17(4), 972–1004. https://doi.org/10.1111/faf.12155.

    Article  Google Scholar 

  • Koenigstein, S., Ruth, M., & Reisemann, S. G. (2016b). Stakeholder-informed ecosystem modeling of ocean warming and acidification impacts in the Barents Sea region. Frontiers in Marine Science, 3, 93. https://doi.org/10.3389/fmars.2016.00093.

    Article  Google Scholar 

  • Koenigstein, S., Dahlke, F. T., Stiasny, M. H., Storch, D., Clemmesen, C., & Pörtner, H.-O. (2018). Forecasting future recruitment success for Atlantic Cod in the warming and acidifying Barents Sea. Global Change Biology, 24(1), 526–535. https://doi.org/10.1111/gcb.13848.

    Article  Google Scholar 

  • Kordas, R. L., Harley, C. D. G., & O’Connor, M. I. (2011). Community ecology in a warming world: The influence of temperature on interspecific interactions in marine systems. Journal of Experimental Marine Biology and Ecology, 400(1–2), 218–226. https://doi.org/10.1016/j.jembe.2011.02.029.

    Article  Google Scholar 

  • Kortsch, S., Primicerio, R., Fossheim, M., Dolgov, A. V., & Aschan, M. (2015). Climate change alters the structure of Arctic marine food webs due to poleward shifts of Boreal generalists. Proceedings of the Royal Society B: Biological Sciences, 282, 1814–20151546. https://doi.org/10.1098/rspb.2015.1546. 

    Article  Google Scholar 

  • Kovacs, K. M., Lydersen, C., Overland, J. E., & Moore, S. E. (2010). Impacts of changing sea-ice conditions on Arctic marine mammals. Marine Biodiversity, 41(1), 181–194. https://doi.org/10.1007/s12526-010-0061-0.

    Article  Google Scholar 

  • Kroeker, K. J., Kordas, R. L., & Crim, R. (2013). Impacts of ocean acidification on marine organisms: Quantifying sensitivities and interaction with warming. Global Change Biology, 19, 1884–1896. https://doi.org/10.1111/gcb.12179.

    Article  Google Scholar 

  • Landa, C. S., Ottersen, G., Sundby, S., Dingsør, G. E., & Stiansen, J. E. (2014). Recruitment, distribution boundary and habitat temperature of an Arcto-boreal gadoid in a climatically changing environment: A case study on Northeast Arctic Haddock (Melanogrammus Aeglefinus). Fisheries Oceanography, 23(6), 506–520. https://doi.org/10.1111/fog.12085.

    Article  Google Scholar 

  • Langangen, Ø., Färber, L., Stige, L. C., Diekert, F. K., Barth, J. M. I., Matschiner, M., Berg, P. R., et al. (2019). Ticket to spawn: Combining economic and genetic data to evaluate the effect of climate and demographic structure on spawning distribution in Atlantic Cod. Global Change Biology, 25(1), 134–143. https://doi.org/10.1111/gcb.14474.

    Article  Google Scholar 

  • Le Quéré, C, & Metzl, N. (2004). Natural processes regulating the ocean uptake of CO2. In: Field, CB & Raupach, M.R. (eds.): Towards CO2 stabilization: Issues, Strategies, and Consequences Publisher. Island Press, Wahsington DC.

    Google Scholar 

  • Le Quesne, W. J. F., & Pinnegar, J. K. (2012). The potential impacts of ocean acidification: Scaling from physiology to fisheries. Fish and Fisheries, 13(3), 333–344. https://doi.org/10.1111/j.1467-2979.2011.00423.x.

    Article  Google Scholar 

  • Lind, S., Ingvaldsen, R. B., & Furevik, T. (2018). Arctic warming hotspot in the northern Barents Sea linked to declining Sea-Ice import. Nature Climate Change, 8(7), 634–639. https://doi.org/10.1038/s41558-018-0205-y.

    Article  Google Scholar 

  • Loeng, H., & Drinkwater, K. (2007). An overview of the ecosystems of the Barents and Norwegian Seas and their response to climate variability. Deep Sea Research Part II, 54, 2478–2500. https://doi.org/10.1016/j.dsr2.2007.08.013.

    Article  Google Scholar 

  • Long, R. D., Charles, A., & Stephenson, R. L. (2015, July). Key principles of Marine ecosystem-based management. Marine Policy, 57, 53–60. https://doi.org/10.1016/j.marpol.2015.01.013.

    Article  Google Scholar 

  • Mangel, M., & Levin, P. S. (2005). Regime, phase and paradigm shifts: Making community ecology the basic science for fisheries. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 360(1453), 95–105. https://doi.org/10.1098/rstb.2004.1571.

    Article  Google Scholar 

  • Manizza, M., Follows, M. J., Dutkiewicz, S., Menemenlis, D., Hill, C. N., & Key, R. M. (2013, November). Changes in the Arctic ocean CO2 sink (1996–2007): A regional model analysis. Global Biogeochemical Cycles, 27, 1108–1118. https://doi.org/10.1002/2012GB004491

    Article  CAS  Google Scholar 

  • McNicholl, D. G., Walkusz, W., Davoren, G. K., Majewski, A. R., & Reist, J. D. (2015). Dietary characteristics of co-occurring polar Cod (Boreogadus Saida) and capelin (Mallotus Villosus) in the Canadian Arctic, Darnley Bay. Polar Biology, 39(6), 1099–1108. https://doi.org/10.1007/s00300-015-1834-5. 

    Article  Google Scholar 

  • Metcalfe, J. D., Le Quesne, W. J. F., Cheung, W. W. L., & a Righton, D. (2012). Conservation physiology for applied management of marine fish: An overview with perspectives on the role and value of telemetry. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 367(1596), 1746–1756. https://doi.org/10.1098/rstb.2012.0017.

    Article  CAS  Google Scholar 

  • Michalsen, K., Dalpadado, P., Eriksen, E., Gjøsæter, H., Ingvaldsen, R. B., Johannesen, E., Jørgensen, L. L., Knutsen, T., Prozorkevich, D., & Skern-Mauritzen, M. (2013). Marine living resources of the Barents Sea–Ecosystem understanding and monitoring in a climate change perspective. Marine Biology Research, 9(9), 932–947. https://doi.org/10.1080/17451000.2013.775459.

    Article  Google Scholar 

  • Mikalsen, K. H., & Jentoft, S. (2001). From user-groups to stakeholders? The public interest in fisheries management. Marine Policy, 25(4), 281–292. https://doi.org/10.1016/S0308-597X(01)00015-X.

    Article  Google Scholar 

  • Myksvoll, M. S., Jung, K. M., Albretsen, J., & Sundby, S. (2013). Modelling dispersal of eggs and quantifying connectivity among Norwegian coastal cod subpopulations. ICES Journal of Marine Science, February, 71, 957–969. https://doi.org/10.1093/icesjms/fst022.

    Article  Google Scholar 

  • Nakken, O. (1998). Past, present and future exploitation and management of Marine resources in the Barents Sea and adjacent areas. Fisheries Research, 37(1–3), 23–35. https://doi.org/10.1016/S0165-7836(98)00124-6.

    Article  Google Scholar 

  • NMTI. (2012). Destination Norway. Norwegian Ministry of Trade and Industry. https://www.regjeringen.no/contentassets/1ce1d6cdcbac47739b3320a66817a2dd/lenke_til_strategien-engelsk.pdf

    Google Scholar 

  • Nøttestad, L., Sivle, L. D., Krafft, B. A., LangÃ¥rd, L., Anthonypillai, V., Bernasconi, M., Langøy, H., & Axelsen, B. E. (2013). Ecological aspects of fin whale and humpback whale distribution during summer in the Norwegian Sea. Marine Ecology, 35(2), 221–232. https://doi.org/10.1111/maec.12075.

    Article  Google Scholar 

  • ØigÃ¥rd, T. A., Lindstrøm, U., Haug, T., Nilssen, K. T., & Smout, S. (2013). Functional relationship between harp seal body condition and available prey in the Barents Sea. Marine Ecology Progress Series, 484, 287–301. https://doi.org/10.3354/meps10272.

    Article  Google Scholar 

  • Olsen, E., Aanes, S., Mehl, S., Holst, J. C., Aglen, A., & Gjøsæter, H. (2010). Cod, Haddock, Saithe, Herring, and Capelin in the Barents Sea and adjacent waters: A review of the biological value of the area. ICES Journal of Marine Science, 67(1), 87–101. https://doi.org/10.1093/icesjms/fsp229. 

    Article  Google Scholar 

  • Onarheim, I. H., Smedsrud, L. H., Ingvaldsen, R. B., & Nilsen, F. (2014, June). Loss of sea ice during winter North of Svalbard. Tellus A: Dynamic Meteorology and Oceanography, 66(1), 23933. https://doi.org/10.3402/tellusa.v66.23933. 

    Article  Google Scholar 

  • Orlova, E. L., Boitsov, V. D., & Dolgov, A. V. (2005). The relationship between plankton, Capelin, and Cod under different temperature conditions. ICES Journal of Marine Science, 62, 1281–1292.

    Article  Google Scholar 

  • Ottersen, G., & Stenseth, N. C. (2001). Atlantic climate governs oceanographic and ecological variability in the Barents Sea. Limnology and Oceanography, 46(7), 1774–1780. https://doi.org/10.4319/lo.2001.46.7.1774.

    Article  Google Scholar 

  • Pepin, P. (2016). Reconsidering the impossible – Linking environmental drivers to growth, mortality, and recruitment of fish. Canadian Journal of Fisheries and Aquatic Sciences, 73(2), 205–215. https://doi.org/10.1139/cjfas-2015-0091.

    Article  Google Scholar 

  • Perry, R. I., Barange, M., & Ommer, R. E. (2010). Global changes in marine systems: A social–ecological approach. Progress in Oceanography, 87(1–4), 331–337. https://doi.org/10.1016/j.pocean.2010.09.010.

    Article  Google Scholar 

  • Perry, R. I., Ommer, R. E., Barange, M., Jentoft, S., Neis, B., & Sumaila, U. R. (2011). Marine social-ecological responses to environmental change and the impacts of globalization. Fish and Fisheries, 12(4), 427–450. https://doi.org/10.1111/j.1467-2979.2010.00402.x.

    Article  Google Scholar 

  • Pershing, A. J., Alexander, M. A., Hernandez, C. M., Kerr, L. A., Le Bris, A., Mills, K. E., Nye, J. A., et al. (2015). Slow adaptation in the face of rapid warming leads to collapse of the Gulf of Maine Cod fishery. Science, 350(6262), 809–812. https://doi.org/10.1126/science.aac9819.

    Article  CAS  Google Scholar 

  • Pinsky, M. L., Reygondeau, G., Caddell, R., Palacios-Abrantes, J., Spijkers, J., & Cheung, W. W. L. (2018). Preparing ocean governance for species on the move. Science, 360(6394), 1189–1191. https://doi.org/10.1126/science.aat2360.

    Article  CAS  Google Scholar 

  • Plaganyi, E. E. (2007). Models for an ecosystem approach to fisheries (FAO Fisheries Technical Paper. No. 477). Food and Agriculture Organization of the United Nations, Rome.

    Google Scholar 

  • Poloczanska, E. S., Brown, C. J., Sydeman, W. J., Kiessling, W., Schoeman, D. S., Moore, P. J., Brander, K., et al. (2013). Global imprint of climate change on marine life. Nature Climate Change, 3, 919–925. https://doi.org/10.1038/nclimate1958.

    Article  Google Scholar 

  • Pörtner, H.-O., & Peck, M. A. (2010). Climate change effects on fishes and fisheries: Towards a cause-and-effect understanding. Journal of Fish Biology, 77(8), 1745–1779. https://doi.org/10.1111/j.1095-8649.2010.02783.x.

    Article  Google Scholar 

  • Pörtner, H.-O., Karl, D. M., Boyd, P. W., Cheung, W. W. L., Lluch-Cota, S. E., Nojiri, Y., Schmidt, D. N., & Zavialov, P. O. (2014). Ocean systems. In C. B. Field, V. R. Barros, D. J. Dokken, K. J. Mach, M. D. Mastrandrea, T. E. Bilir, M. Chatterjee, et al. (Eds.), Climate change 2014: Impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 411–484). Cambridge/New York: Cambridge University Press.

    Google Scholar 

  • Renaud, P. E., Berge, J., Varpe, Ø., Lønne, O. J., Nahrgang, J., Ottesen, C., & Hallanger, I. (2011). Is the poleward expansion by Atlantic Cod and Haddock threatening native polar Cod, Boreogadus Saida? Polar Biology, 35, 1–12. https://doi.org/10.1007/s00300-011-1085-z. 

    Article  Google Scholar 

  • Rice, J., Jennings, S., & Charles, A. (2014a). Scientific foundation: Towards integration. In Governance of Marine fisheries and biodiversity conservation (Vol. 5, pp. 124–136). Chichester: Wiley. https://doi.org/10.1002/9781118392607.ch9.

    Chapter  Google Scholar 

  • Rice, J., Howard, I., & Browman. (2014b). Where has all the recruitment research gone, long time passing? ICES Journal of Marine Science, 71(8), 2293–2299. https://doi.org/10.1093/icesjms/fsu158. 

    Article  Google Scholar 

  • Riebesell, U., & Gattuso, J.-p. (2015). Lessons learned from ocean acidification research. Nature Climate Change, 5(1), 12–14. https://doi.org/10.1038/nclimate2456.

    Article  CAS  Google Scholar 

  • Rijnsdorp, A. D., Peck, M. A., Engelhard, G. H., Mollmann, C., & Pinnegar, J. K. (2009). Resolving the effect of climate change on fish populations. ICES Journal of Marine Science, 66(7), 1570–1583. https://doi.org/10.1093/icesjms/fsp056.

    Article  Google Scholar 

  • Roberts, J. M. (2006). Reefs of the deep: The biology and geology of cold-water coral ecosystems. Science, 312(5773), 543–547. https://doi.org/10.1126/science.1119861.

    Article  CAS  Google Scholar 

  • Sakshaug, E., Bjørge, A., Gulliksen, B., Loeng, H., & Mehlum, F. (1994). Structure, biomass distribution, and energetics of the Pelagic ecosystem in the Barents Sea: A synopsis. Polar Biology, 14(6), 405–411. https://doi.org/10.1007/BF00240261.

    Article  Google Scholar 

  • Sandvik, H., Erikstad, K. E., Barrett, R. T., & Yoccoz, N. G. (2005). The effect of climate on adult survival in five species of North Atlantic Seabirds. Journal of Animal Ecology, 74(5), 817–831. https://doi.org/10.1111/j.1365-2656.2005.00981.x. 

    Article  Google Scholar 

  • Simmonds, M. P., & Isaac, S. J. (2007). The impacts of climate change on Marine Mammals: Early signs of significant problems. Oryx, 41, 19–26.

    Article  Google Scholar 

  • Skern-Mauritzen, M., Olsen, E., & Huse, G. (2018). Opportunities for advancing ecosystem-based management in a rapidly changing, high latitude ecosystem. ICES Journal of Marine Science, 75(7), 2425–2433. https://doi.org/10.1093/icesjms/fsy150.

    Article  Google Scholar 

  • Skogen, M. D., Olsen, A., Børsheim, K. Y., Sandø, A. B., & Skjelvan, I.. (2014, March). Modelling ocean acidification in the Nordic and Barents Seas in present and future climate. Journal of Marine Systems, 131, 10–20. https://doi.org/10.1016/j.jmarsys.2013.10.005.

    Article  Google Scholar 

  • Slagstad, D., Ellingsen, I. H., & Wassmann, P. (2011). Evaluating primary and secondary production in an Arctic ocean void of summer sea ice: An experimental simulation approach. Progress in Oceanography, 90(1–4), 117–131. https://doi.org/10.1016/j.pocean.2011.02.009.

    Article  Google Scholar 

  • Sswat, M., Stiasny, M. H., Taucher, J., Algueró-Muñiz, M., Bach, L. T., Jutfelt, F., Riebesell, U., & Clemmesen, C. (2018). Food web changes under ocean acidification promote herring larvae survival. Nature Ecology & Evolution, 2(5), 836–840. https://doi.org/10.1038/s41559-018-0514-6. 

    Article  Google Scholar 

  • Stenevik, E. K., & Sundby, S. (2007). Impacts of climate change on commercial fish stocks in Norwegian waters. Marine Policy, 31(1), 19–31. https://doi.org/10.1016/j.marpol.2006.05.001.

    Article  Google Scholar 

  • Stiasny, M. H., Mittermayer, F. H., Sswat, M., Voss, R., Jutfelt, F., Chierici, M., Puvanendran, V., Mortensen, A., Reusch, T. B. H., & Clemmesen, C. (2016). Ocean acidification effects on Atlantic Cod larval survival and recruitment to the fished population. PLoS One, 11(8), e0155448. https://doi.org/10.1371/journal.pone.0155448. 

    Article  CAS  Google Scholar 

  • Stige, L. C., Ottersen, G., Brander, K., & Chan, K. S. (2006). Cod and climate: Effect of the North Atlantic oscillation on recruitment in the North Atlantic. Marine Ecology, 325, 227–241.

    Article  Google Scholar 

  • Sundby, S., & Nakken, O. (2008). Spatial shifts in spawning habitats of Arcto-Norwegian Cod related to multidecadal climate oscillations and climate change. ICES Journal of Marine Science, 65(6), 953–962. https://doi.org/10.1093/icesjms/fsn085.

    Article  Google Scholar 

  • Sundby, S., Drinkwater, K. F., & Kjesbu, O. S. (2016). The North Atlantic spring-bloom system—Where the changing climate meets the winter dark. Frontiers in Marine Science, 3, 14. https://doi.org/10.3389/fmars.2016.00028.

    Article  Google Scholar 

  • Sutton, R. T., & Hodson, D. L. R. (2005). Atlantic ocean forcing of North American and European summer climate. Science, 309(5731), 115–118. https://doi.org/10.1126/science.1109496.

    Article  CAS  Google Scholar 

  • Sydeman, W. J., Poloczanska, E., Reed, T. E., & Thompson, S. A. (2015). Climate change and Marine Vertebrates. Science, 350(6262), 772–777. https://doi.org/10.1126/science.aac9874. 

    Article  CAS  Google Scholar 

  • The Royal Society. (2005). Ocean acidification due to increasing atmospheric carbon dioxide. London: Royal Society. https://royalsociety.org/~/media/Royal_Society_Content/policy/publications/2005/9634.pdf

  • Tiller, R, De Kok, J. L., Vermeiren, K., Richards, R., Van Ardelan, M., & Bailey, J. (2016, December). Stakeholder perceptions of links between environmental changes to their Socio-ecological system and their adaptive capacity in the region of Troms, Norway. Frontiers in Marine Science, 3, 444. https://doi.org/10.3389/fmars.2016.00267. Frontiers.

  • Turley, C. M., Roberts, J. M., & Guinotte, J. M. (2007). Corals in deep-water: Will the unseen hand of ocean acidification destroy cold-water ecosystems? Coral Reefs, 26(3), 445–448. https://doi.org/10.1007/s00338-007-0247-5.

    Article  Google Scholar 

  • Wassmann, P., & Reigstad, M. (2011). Future Arctic ocean seasonal ice zones and implications for Pelagic-Benthic coupling. Oceanography, 24(3), 220–231. https://doi.org/10.5670/oceanog.2011.74.

    Article  Google Scholar 

  • Wassmann, P., Reigstad, M., Haug, T., Rudels, B., Carroll, M. L., Hop, H., Gabrielsen, G. W., et al. (2006). Food webs and carbon flux in the Barents Sea. Progress in Oceanography, 71(2–4), 232–287. https://doi.org/10.1016/j.pocean.2006.10.003.

    Article  Google Scholar 

  • West, J. J., & Hovelsrud, G. K. (2010). Cross-scale adaptation challenges in the coastal fisheries: Findings from Lebesby, Northern Norway. Arctic, 63(3), 338–354. https://doi.org/10.2307/20799601.

    Article  Google Scholar 

  • Wittmann, A. C., & Pörtner, H.-O. (2013). Sensitivities of extant animal taxa to ocean acidification. Nature Climate Change, 3, 995–1001. https://doi.org/10.1038/nclimate1982.

    Article  CAS  Google Scholar 

  • Yaragina, N. A., & Dolgov, A. V. (2009). Ecosystem structure and resilience—a comparison between the Norwegian and the Barents Sea. Deep-Sea Research Part II, 56(21–22), 2141–2153. https://doi.org/10.1016/j.dsr2.2008.11.025.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Koenigstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Koenigstein, S. (2020). Arctic Marine Ecosystems, Climate Change Impacts, and Governance Responses: An Integrated Perspective from the Barents Sea. In: Pongrácz, E., Pavlov, V., Hänninen, N. (eds) Arctic Marine Sustainability. Springer Polar Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-28404-6_3

Download citation

Publish with us

Policies and ethics