Skip to main content

Current and Projected Sea Ice in the Arctic in the Twenty-First Century

  • Chapter
  • First Online:
Sea Ice in the Arctic

Part of the book series: Springer Polar Sciences ((SPPS))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander, M. A., Bhatt, U. S., Walsh, J. E., Timlin, M., & Miller, J. S. (2004). The atmospheric response to realistic Arctic sea ice anomalies in an AGCM during winter. Journal of Climate, 17, 890–905.

    Article  Google Scholar 

  • Bader, J., Michel, D. S. M., Hodges, K. I., Keenlyside, N., Østerhus, S., & Miles, M. (2011). A review on Northern Hemisphere sea-ice, storminess and the North Atlantic Oscillation: Observations and projected changes. Atmospheric Research, 101, 809–834.

    Article  Google Scholar 

  • Baidin, A. V., Meleshko, V. P., Pavlova, T. V., & Govorkova, V. A. (2016). Does Arctic amplification change when sea ice declines? MGO Proceedings, 582, 214–229.

    Google Scholar 

  • Barnes, E. A. (2013). Revisiting the evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophysical Research Letters, 40, 4734–4739. https://doi.org/10.1002/grl.50880.

    Article  Google Scholar 

  • Barnes, E. A., & Polvani, L. M. (2015). CMIP5 projections of Arctic amplification, of the North American/North Atlantic circulation, and of their relationship. Journal of Climate, 28, 5254–5271.

    Article  Google Scholar 

  • Bekryaev, R. V., Polyakov, I. V., & Alexeev, V. A. (2010). Role of polar amplification in long-term surface air temperature variation and modern arctic warming. Journal of Climate, 23, 3888–3906.

    Article  Google Scholar 

  • Bengtsson, L., Semenov, V., & Johannessen, O. M. (2004). The early twentieth-century warming in the Arctic – a possible mechanism. Journal of Climate, 17, 4045–4057.

    Article  Google Scholar 

  • Bitz, C. M., Ridley, J. K., Holland, M., & Cattle, H. (2012). Global climate models and 20th and 21st century Arctic climate change. In P. Lemke & H.-W. Jacobi (Eds.), Arctic climate change: The ACSYS decade and beyond (pp. 405–436). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Blackport, R., & Kushner, P. J. (2016). The transient and equilibrium climate response to rapid summertime sea ice loss in CCSM4. Journal of Climate, 29, 401–417.

    Article  Google Scholar 

  • Boé, J., Hall, A., & Qu, X. (2010). Sources of spread in simulations of Arctic sea ice loss over the twenty-first century. Climatic Change, 99, 637–645. https://doi.org/10.1007/s10584-010-9809-6.

    Article  Google Scholar 

  • Budikova, D. (2009). Role of Arctic sea ice in global atmospheric circulation: A review. Global and Planetary Change, 68, 149–163.

    Article  Google Scholar 

  • Cavalieri, D. J., Gloersen, P., & Campbell, W. J. (1984). Determination of Sea Ice Parameters with the NIMBUS-7 SMMR. Journal of Geophysical Research, 89(D4), 5355–5369.

    Article  Google Scholar 

  • Chen, H. W., Zhang, F., & Alley, R. B. (2016). The robustness of midlatitude weather pattern changes due to Arctic sea ice loss. Journal of Climate, 29, 7831–7849. https://doi.org/10.1175/JCLI-D-16-0167.1.

    Article  Google Scholar 

  • Cohen, J., Screen, J. A., Furtado, J. C., Barlow, M., Whittleston, D., Coumou, D., Francis, J., Dethloff, K., Entekhabi, D., Overland, J., & Jones, J. (2014). Recent Arctic amplification and extreme mid-latitude weather. Nature Geoscience, 7, 627–637.

    Article  Google Scholar 

  • Collins, W. J., Bellouin, N., Doutriaux-Boucher, M., Gedney, N., Halloran, P., Hinton, T., Hughes, J., Jones, C. D., Joshi, M., Liddicoat, S., Martin, G., O’Connor, F., Rae, J., Senior, C., Sitch, S., Totterdell, I., Wiltshire, A., & Woodward, S. (2011). Development and evaluation of an Earth-System model—HadGEM2. Geophysical Model Development, 4, 1051–1075. https://doi.org/10.5194/gmd-4-1051-2011.

    Article  Google Scholar 

  • Collins, M., Knutti, R., Arblaster, J., Dufresne, J.-L., Fichefet, T., Friedlingstein, P., Gao, X., Gutowski, W. J., Johns, T., Krinner, G., Shongwe, M., Tebaldi, C., Weaver, A. J., & Wehner, M. (2013). Long-term climate change: Projections, commitments and irreversibility. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Comiso, J. C. (1986). Characteristics of Arctic winter sea ice from satellite multispectral microwave observations. Journal of Geophysical Research, 91(C1), 975–994.

    Article  Google Scholar 

  • Comiso, J. C. (2012). Large decadal decline of the Arctic multiyear ice cover. Journal of Climate, 25, 1176–1193.

    Article  Google Scholar 

  • Comiso, J. C., & Nishio, F. (2008). Trends in the sea ice cover using enhanced and compatible AMSR-E, SSM/I, and SMMR data. Journal of Geophysical Research, 113, C02S07. https://doi.org/10.1029/2007JC004257.

    Article  Google Scholar 

  • Comiso, J., Parkinson, C., Gersten, R., & Stock, L. (2008). Accelerated decline in the Arctic sea ice cover. Geophysical Research Letters, 35, L01703. https://doi.org/10.1029/2007GL031972.

    Article  Google Scholar 

  • Crook, J. A., Forster, P. M., & Stuber, N. (2013). Spatial patterns of modeled climate feedback and contributions to temperature response and polar amplification. Journal of Climate, 24, 3575–3592.

    Article  Google Scholar 

  • Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J., Park, B., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J., & Vitart, F. (2011). The ERA-interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal Royal Meteorological Society, 137, 553–597. https://doi.org/10.1002/qj.828.

    Article  Google Scholar 

  • Deser, C., Magnusdottir, G., Saravanan, R., & Phillips, A. (2004). The effects of North Atlantic SST and sea-ice anomalies on the winter circulation in CCM3. Part II: Direct and indirect components of the response. Journal of Climate, 17, 877–889.

    Article  Google Scholar 

  • Deser, C., Tomas, R. A., Alexander, M., & Lawrence, D. (2010). The seasonal atmospheric response to projected Arctic sea-ice loss in the late 21st century. Journal of Climate, 23, 333–351.

    Article  Google Scholar 

  • Deser, C., Tomas, R. A., & Sun, L. (2015). The role of ocean–atmosphere coupling in the zonal-mean atmospheric response to Arctic sea ice loss. Journal of Climate, 28, 2168–2186.

    Article  Google Scholar 

  • Döscher, R., Vihma, V., & Maksimovich, E. (2014). Recent advances in understanding the Arctic climate system state and change from a sea ice perspective: A review. Atmospheric Chemistry and Physics, 14, 13571–13600.

    Article  Google Scholar 

  • Fetterer, F., Knowles, K., Meier, W., & Savoie, M. (2016). Sea ice index, version 2. [Monthly sea ice extent from 1980 to 2015, Northern Hemisphere]. Boulder: NSIDC: National Snow and Ice Data Center. https://doi.org/10.7265/N5736NV7.

    Book  Google Scholar 

  • Fischer, E. M., & Knutti, R. (2014). Heated debate on cold weather. Nature Climate Change, 4, 537–538.

    Article  Google Scholar 

  • Frajka-Williams, E., Beaulieu, C., & Duchez, A. (2017). Emerging negative Atlantic Multidecadal Oscillation index in spite of warm subtropics. Nature Scientific Reports, 7, 11224. https://doi.org/10.1038/s41598-017-11046-x.

    Article  Google Scholar 

  • Francis, J. A., & Vavrus, S. J. (2012). Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophysical Research Letters, 39, L06801.

    Article  Google Scholar 

  • Francis, J. A., & Vavrus, S. J. (2015). Evidence for a wavier jet stream in response to rapid Arctic warming. Environmental Research Letters, 10, 014005.

    Article  Google Scholar 

  • Gao, Y., Sun, J., Li, F., He, S., Sandven, S., Yan, Q., Zhang, Z., Lohmann, K., Keenlyside, N., Furevik, T., & Suo, L. (2015). Arctic sea ice and Eurasian climate: A review. Advances in Atmospheric Sciences, 32(1), 92–114. https://doi.org/10.1007/s00376-014-0009-6.

    Article  Google Scholar 

  • Gent, P. R., Danabasoglu, G., Donner, L. J., Holland, M. M., Hunke, E. C., Jayne, S. R., Lawrence, D. M., Neale, R. B., Rasch, P. J., Vertenstein, M., Worley, P. H., Yang, Z., & Zhang, M. (2011). The community climate system model version 4. Journal of Climate, 24, 4973–4991. https://doi.org/10.1175/2011JCLI4083.1.

    Article  Google Scholar 

  • Graversen, R. G., & Wang, M. (2009). Polar amplification in a coupled climate model with locked albedo. Climate Dynamics, 33, 629–643.

    Article  Google Scholar 

  • Graversen, R. G., Langen, P. L., & Mauritsen, T. (2014). Polar amplification in CCSM4: Contributions from the lapse rate and surface albedo feedbacks. Journal of Climate, 27, 4433–4450.

    Article  Google Scholar 

  • Hall, A. (2004). The role of surface albedo feedback in climate. Journal of Climate, 17, 1550–1568.

    Article  Google Scholar 

  • Holland, M. M., Bitz, C. M., Tremblay, L.-B., & Bailey, D. A. (2008). The role of natural versus forced change in future rapid summer Arctic ice loss. Arctic sea ice decline: Observations, projections, mechanisms, and implications (Geophys. Monogr) (Vol. 180, pp. 133–150). Washington, DC: Amer. Geophys. Union.

    Google Scholar 

  • Honda, M., Inoue, J., & Yamane, S. (2009). Influence of low Arctic sea-ice minima on anomalously cold Eurasian winters. Geophysical Research Letters, 36, L08707. https://doi.org/10.1029/2008GL037079.

    Article  Google Scholar 

  • Hurrel, J. W. (2003). The North Atlantic oscillation: Climatic significance and environmental impact. Washington, DC: American Geophysical Union. ISBN 9780875909943.

    Book  Google Scholar 

  • Inoue, J., Masatake, E. H., & Koutarou, T. (2012). The role of Barents Sea ice in the wintertime cyclone track and emergence of a warm-Arctic cold-Siberian anomaly. Journal of Climate, 25, 2561–2568.

    Article  Google Scholar 

  • IPCC. (2013). In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge, UK., 1535 p: Cambridge University Press. https://doi.org/10.1017/CBO9781107415324.

    Chapter  Google Scholar 

  • Jahn, A., Sterling, K., Holland, M. M., Kay, J. E., Maslanik, J. A., Bitz, C. M., Bailey, D. A., Stroeve, J., Hunke, E. C., Lipscomb, W. H., & Pollak, D. A. (2012). Late-twentieth-century simulation of Arctic sea ice and ocean properties in the CCSM4. Journal of Climate, 25, 1431–1452. https://doi.org/10.1175/JCLI-D-11-00201.1.

    Article  Google Scholar 

  • Johannessen, O. M. (2008). Decreasing Arctic sea ice mirrors increasing CO2 on decadal time scale. Atmospheric and Oceanic Science Letters, 1, 51–56.

    Article  Google Scholar 

  • Johannessen, O. M., Bengtsson, L., Miles, M. W., Kuzmina, S. I., Semenov, V. A., Alekseev, G. V., Nagurnyi, A. P., Zakharov, V. F., Bobylev, L. P., Pettersson, L. H., Hasselmann, K., & Cattle, H. P. (2004). Arctic climate change: Observed and modelled temperature and sea-ice variability. Tellus A, 56, 328–341. https://doi.org/10.1111/j.1600-0870.2004.00060.x.

    Article  Google Scholar 

  • Johannessen, O. M., Kuzmina, S. I., Bobylev, L. P., & Miles, M. W. (2016). Surface air temperature variability and trends in the Arctic: New amplification assessment and regionalization. Tellus A, 68, 28234. https://doi.org/10.3402/tellusa.v68.28234.

    Article  Google Scholar 

  • Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R., & Joseph, D. (1996). The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society, 77, 437–472. https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    Article  Google Scholar 

  • Kattsov, V., Ryabinin, V., Overland, J., Serreze, M., Visbeck, M., Walsh, J., Meier, W., & Zhang, X. (2010). Arctic sea ice change: A grand challenge of climate science. Journal of Glaciology, 56(200), 1115–1121. https://doi.org/10.3189/002214311796406176.

    Article  Google Scholar 

  • Kay, J. E., Holland, M. M., & Jahn, A. (2011). Inter-annual to multidecadal Arctic sea ice extent trends in a warming world. Geophysical Research Letters, 38, L15708. https://doi.org/10.1029/2011GL048008.

    Article  Google Scholar 

  • Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi, K., Kamahori, H., Kobayashi, C., Endo, H., Miyaoka, K., & Takahashi, K. (2015). The JRA-55 reanalysis: General specifications and basic characteristics. Journal of Meteorological Society Japan, 93, 5–48.

    Article  Google Scholar 

  • Koenigk, T., Caian, M., Nikulin, G., & Schimanke, S. (2016). Regional Arctic sea ice variations as predictor for winter climate conditions. Climate Dynamics, 46(1–2), 317–337.

    Article  Google Scholar 

  • Kug, J.-S., Jeong, J.-H., Jang, Y.-S., Kim, B.-M., Folland, C. K., Min, S.-K., & Son, S.-W. (2015). Two distinct influences of Arctic warming on cold winters over North America and East Asia. Nature Geoscience, 8, 759–762. https://doi.org/10.1038/ngeo2517.

    Article  Google Scholar 

  • Kumar, A., Perlwitz, J., Eischeid, J., Quan, X., Xu, T., Zhang, T., Hoerling, M., Jha, B., & Wang, W. (2010). Contribution of sea ice loss to Arctic amplification. Geophysical Research Letters, 37(21), L21701. https://doi.org/10.1029/2010GL045022.

    Article  Google Scholar 

  • Kuzmina, S., Johannessen, O. M., Bengtsson, L., Aniskina, O., & Bobylev, L. (2008). High northern latitude surface air temperature: Comparison of existing data and creation of a new gridded data set 1900–2000. Tellus A, 60, 289–304.

    Article  Google Scholar 

  • Kwok, R., & Untersteiner, N. (2011). The thinning of Arctic sea ice. Physics Today, 64, 36–41. https://doi.org/10.1063/1.3580491.

    Article  Google Scholar 

  • Laine, A., Yoshimory, M., & Abe-Ouchi, A. (2016). Surface Arctic amplification factors in CMIP5 models: Land and oceanic surfaces and seasonality. Journal of Climate, 28, 3297–3316.

    Article  Google Scholar 

  • Laliberté, F., Howell, S. E. L., & Kushner, P. J. (2016). Regional variability of a projected sea ice-free Arctic during the summer months. Geophysical Research Letters, 43, 256–263. https://doi.org/10.1002/2015GL066855.

    Article  Google Scholar 

  • Li, D., Zhang, R., & Knutson, T. R. (2017). On the discrepancy between observed and CMIP5 multi-model simulated Barents Sea winter sea ice decline. Nature Communications, 8, 14991. https://doi.org/10.1038/ncomms14991.

    Article  Google Scholar 

  • Liu, J., Curry, J. A., Wang, H., Song, M., & Horton, R. M. (2012). Impact of declining Arctic sea ice on winter snowfall. Proceedings of the National Academy Science, 109(11), 4074–4079.

    Article  Google Scholar 

  • Magnusdottir, G., Deser, C., & Saravanan, R. (2004). The effect of North Atlantic SST and sea ice anomalies on the winter circulation in CCM3. Part I: Main features of the response. Journal of Climate, 17, 857–876.

    Article  Google Scholar 

  • Mahajan, S., Zhang, R., & Delworth, T. L. (2011). Impact of the Atlantic meridional overturning circulation (AMOC) on Arctic surface air temperature and sea ice variability. Journal of Climate, 24, 6573–6581. (2011).

    Article  Google Scholar 

  • Manabe, S., & Wetherald, R. (1975). The effects of doubling the CO2 concentration on the climate of a general circulation model. Journal of the Atmospheric Sciences, 32, 3–15.

    Article  Google Scholar 

  • Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M., & Francis, R. C. (1997). A Pacific interdecadal climate oscillation with impacts on salmon production. Bulletin of the American Meteorological Society, 78, 1069–1079.

    Article  Google Scholar 

  • Markus, T., Stroeve, J. C., & Miller, J. (2009). Recent changes in Arctic sea ice melt onset, freezeup, and melt season length. Journal of Geophysical Research, 114, C12024. https://doi.org/10.1029/2009JC005436.

    Article  Google Scholar 

  • Maslowski, W., Kinney, J. C., Higgins, M., & Roberts, A. (2012). The future of Arctic sea ice. Annual Review of Earth and Planetary Sciences, 40, 625–654.

    Article  Google Scholar 

  • Massonnet, F., Fichefet, T., Goosse, H., Bitz, C. M., Philippon-Berthier, G., Holland, M. M., & Barriat, P.-Y. (2012). Constraining projections of summer Arctic sea ice. The Cryosphere, 6, 1383–1394. https://doi.org/10.5194/tc-6-1383-2012.

    Article  Google Scholar 

  • McCusker, K. E., Fyfe, J. C., & Sigmond, M. (2016). Twenty-five winters of unexpected Eurasian cooling unlikely due to Arctic sea ice loss. Nature Geoscience, 9, 838–842. https://doi.org/10.1038/ngeo2820.

    Article  Google Scholar 

  • Meehl, G. A., Washington, W. M., Santer, B. D., Collins, W. D., Arblaster, J. M., Hu, A., Lawrence, D. M., Teng, H., Buja, L. E., & Strand, W. G. (2006). Climate change projections for the twenty-first century and climate change commitment in the CCSM3. Journal of Climate, 19, 2597–2616. https://doi.org/10.1175/JCLI3746.1.

    Article  Google Scholar 

  • Meehl, G. A., Washington, W. M., Arblaster, J. M., Hu, A., Teng, H., Tebaldi, C., Sanderson, B. N., Lamarque, J., Conley, A., Strand, W. G., & White, J. B. (2012). Climate system response to external forcing and climate change projections in CCSM4. Journal of Climate, 25, 3661–3683. https://doi.org/10.1175/JCLI-D-11-00240.1.

    Article  Google Scholar 

  • Meier, W., Stroeve, J., & Fetterer, F. (2007). Whither Arctic sea ice? A clear signal of decline regionally, seasonally, and extending beyond the satellite record. Annals of Glaciology, 46, 428–434.

    Article  Google Scholar 

  • Meier, W., Fetterer, F., Savoie, M., Mallory, S., Duerr, R., & Stroeve, J. (2017). NOAA/NSIDC climate data record of passive microwave sea ice concentration, version 3 (Monthly time series). Boulder: NSIDC: National Snow and Ice Data Center. https://doi.org/10.7265/N59P2ZTG.

    Book  Google Scholar 

  • Meleshko, V. P., Matyugin, V. A., Sporyshev, P. V., Pavlova, T. V., Govorkova, V. A., Shkolnik, I. M., & Baidin, A. V. (2014). General circulation model of the atmosphere (version MGO-03 T63L25). MGO Proceedings, 571, 5–87. (in Russian).

    Google Scholar 

  • Meleshko, V. P., Johannessen, O. M., Baidin, A. V., Pavlova, T. V., & Govorkova, V. A. (2016). Arctic amplification: Does it impact the polar jet stream? Tellus A, 68, 32330. https://doi.org/10.3402/tellusa.v68.32330.

    Article  Google Scholar 

  • Miles, M. W., Divine, D. V., Furevik, T., Jansen, E., Moros, M., & Ogilvie, A. E. J. (2014). A signal of persistent Atlantic multidecadal variability in Arctic sea ice. Geophysical Research Letters, 41, 463–469. https://doi.org/10.1002/2013GL058084.

    Article  Google Scholar 

  • Mori, M., Watanabe, M., Shiogama, V., Inoue, J., & Kimoto, M. (2014). Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades. Nature Geoscience, 7, 869–873. https://doi.org/10.1038/ngeo2277.

    Article  Google Scholar 

  • Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., van Vuuren, D. P., Carter, T. R., Emori, S., Kainuma, M., Kram, T., Meehl, G. A., Mitchell, J. F., Nakicenovic, N., Riahi, K., Smith, S. J., Stouffer, R. J., Thomson, A. M., Weyant, J. P., & Wilbanks, T. J. (2010). The next generation of scenarios for climate change research and assessment. Nature, 463, 747–756. https://doi.org/10.1038/nature08823.

    Article  Google Scholar 

  • Nakicenovic, N., Alcamo, J., Davis, G., de Vries, B., Fenhann, J. V., Gaffin, S., Gregory, K., Grübler, A., Jung, T. Y., Kram, T., La Rovere, E. L., Michaelis, L., Mori, S., Morita, T., Pepper, W., Pitcher, H., Price, L., Riahi, K., Roehrl, A., Rogner, H.-H., Sankovski, A., Schlesinger, M., Shukla, P., Smith, S., Swart, R., van Rooijen, S., Victor, N., & Dadi, Z. (2000). Special report on emissions scenarios (Special report of Working Group III of the Intergovernmental Panel on Climate Change). Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Neale, R. B., Chen, C. C., Gettelman, A., Lauritzen, P. H., Park, S., Williamson, D. L., Conley, A. J., Garcia, R., Kinnison, D., Lamarque, J. F., Marsh, D., Mills, M., Smith, A. K., Tilmes, S., Vitt, F., Morrison, H., Cameron-Smith, P., Collins, W. D., Iacono, M. J., Easter, R. C., Ghan, S. J., Liu, X. H., Rasch, P. J., Taylor, M. A. (2012). Description of the NCAR Community Atmosphere Model (CAM5). National Center for Atmospheric Research Tech. Rep. NCAR/TN-4861STR, 268 p.

    Google Scholar 

  • Notz, D., & Marotzke, J. (2012). Observations reveal external driver for Arctic sea-ice retreat. Geophysical Research Letters, 39, L08502. https://doi.org/10.1029/2012GL051094.

    Article  Google Scholar 

  • Notz, D., Haumann, F. A., Haak, H., Jungclaus, J. H., & Marotzke, J. (2013). Arctic sea-ice evolution as modeled by Max Planck Institute for meteorology’s Earth system model. Journal of Advances in Modeling Earth Systems, 5, 173–194. https://doi.org/10.1002/jame.20016.

    Article  Google Scholar 

  • Ogawa, F., Keenlyside, N., Gao, Y., Koenigk, T., Yang, S., Suo, L., Wang, T., Gastineau, G., Nakamura, T., Cheung, H.-N., Omrani, N.-E., Ukita, J., & Semenov, V. (2018). Evaluating impacts of recent Arctic sea ice loss on the northern hemisphere winter climate change. Geophysical Research Letters, 45. https://doi.org/10.1002/2017GL076502.

    Article  Google Scholar 

  • Onarheim, I. H., & Årthun, M. (2017). Toward an ice-free Barents Sea. Geophysical Research Letters, 44, 8387–8395. https://doi.org/10.1002/2017GL074304.

    Article  Google Scholar 

  • Onarheim, I. H., Eldevik, T., Smedsrud, L. H., & Stroeve, J. C. (2018). Seasonal and regional manifestation of Arctic sea ice loss. Journal Climate. https://doi.org/10.1175/JCLI-D-17-0427.1. in press.

    Article  Google Scholar 

  • Overland, J. E., & Wang, M. (2007). Future regional Arctic sea ice declines. Geophysical Research Letters, 34, L17705. https://doi.org/10.1029/2007GL030808.

    Article  Google Scholar 

  • Overland, J. E., & Wang, M. (2013). When will the summer Arctic be nearly sea ice free? Geophysical Research Letters, 40, 2097–2101. https://doi.org/10.1002/grl.50316.

    Article  Google Scholar 

  • Overland, J. E., Wood, K. R., & Wang, M. (2011a). Warm Arctic—cold continents: Climate impacts of the newly open Arctic Sea. Polar Research, 30, 15787. https://doi.org/10.3402/polar.v30i0.15787.

    Article  Google Scholar 

  • Overland, J., Wang, M., Bond, N., Walsh, J., Kattsov, V., & Chapman, W. (2011b). Considerations in the selection of global climate models for regional climate projections: The Arctic as a case study. Journal of Climate, 24, 1583–1597. https://doi.org/10.1175/2010JCLI3462.

    Article  Google Scholar 

  • Overland, J., Francis, J. A., Hall, R., Hanna, E., Kim, S., & Vihma, T. (2015). The melting Arctic and mid-latitude weather patterns: Are they connected? Journal Climate, 28, 7917–7932.

    Article  Google Scholar 

  • Palmer, T. (2014). Record-breaking winters and global climate change. Science, 344, 803.

    Article  Google Scholar 

  • Pavlova, T. V., & Kattsov, V. M. (2013). World ocean ice cover as simulated with CMIP5 models. MGO Proceedings, 568, 7–25. (in Russian).

    Google Scholar 

  • Pavlova, T. V., Kattsov, V. M., & Govorkova, V. A. (2011). Sea ice in CMIP5 models: Closer to reality? MGO Proceedings, 564, 7–18. (in Russian).

    Google Scholar 

  • Peings, Y., & Magnusdottir, G. (2014). Response of the wintertime Northern Hemisphere atmospheric circulation to current and projected Arctic sea ice decline: A numerical study with CAM5. Journal of Climate, 27, 244–264.

    Article  Google Scholar 

  • Peng, G., Meier, W., Scott, D., & Savoie, M. (2013). A long-term and reproducible passive microwave sea ice concentration data record for climate studies and monitoring. Earth System Science Data, 5, 311–318. https://doi.org/10.5194/essd-5-311-2013.

    Article  Google Scholar 

  • Petoukhov, V., & Semenov, V. A. (2010). A link between reduced Barents-Kara sea ice and cold winter extremes over northern continents. Journal of Geophysical Research, 115, D21111. https://doi.org/10.1029/2009JD013568.

    Article  Google Scholar 

  • Pithan, F., & Mauritsen, T. (2014). Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nature Geoscience, 7, 181–184.

    Article  Google Scholar 

  • Polyakov, I. V., Bekryaev, R. V., Alekseev, G. V., Bhatt, U. S., Colony, R. L., Johnson, M. A., Maskshtas, A. P., & Walsh, J. (2003). Variability and trends of air temperature and pressure in the maritime Arctic, 1875–2000. Journal of Climate, 16, 2067–2077. https://doi.org/10.1175/1520-0442(2003)016<2067:VATOAT>2.0.CO;2.

    Article  Google Scholar 

  • Polyakov, I. V., Timokhov, L. A., Alexeev, V. A., Bacon, S., Dmitrenko, I. A., Fortier, L., Frolov, I. E., Gascard, J., Hansen, E., Ivanov, V. V., Laxon, S., Mauritzen, C., Perovich, D., Shimada, K., Simmons, H. L., Sokolov, V. T., Steele, M., & Toole, J. (2010). Arctic ocean warming contributes to reduced polar ice cap. Journal of Physical Oceanography, 40, 2743–2756.

    Article  Google Scholar 

  • Polyakov, I. V., Pnyushkov, A. V., Alkire, M. B., Ashik, I. M., Baumann, T. M., Carmack, E. C., Goszczko, I., Guthrie, J., Ivanov, V. V., Kanzow, T., Krishfield, R., Kwok, R., Sundfjord, A., Morison, J., Rember, R., & Yulin, A. (2017). Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean. Science, 356, 285–291.

    Article  Google Scholar 

  • Rayner, N. A., Parkler, D. E., Horton, E. B., Folland, C. K., Alexander, L. V., Rowell, D. P., Kent, E. C., & Kaplan, A. (2003). Global analyses of sea surface temperature, sea ice, and night marine air temperatures since the late nineteenth century. Journal of Geophysical Research, 108(D14), 4407. https://doi.org/10.1029/2002JD002670.

    Article  Google Scholar 

  • Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J., Liu, E., Bosilovich, M. G., Schubert, S. D., Takacs, L., Kim, G., Bloom, S., Chen, J., Collins, D., Conaty, A., da Silva, A., Gu, W., Joiner, J., Koster, R. D., Lucchesi, R., Molod, A., Owens, T., Pawson, S., Pegion, P., Redder, C. R., Reichle, R., Robertson, F. R., Ruddick, A. G., Sienkiewicz, M., & Woollen, J. (2011). MERRA: NASA’s modern-era retrospective analysis for research and applications. Journal of Climate, 24, 3624–3648. https://doi.org/10.1175/JCLI-D-11-00015.1.

    Article  Google Scholar 

  • Rogers, T. S., Walsh, J. E., Rupp, T. S., Brigham, L. W., & Sfraga, M. (2013). Future Arctic marine access: Analysis and evaluation of observations, models, and projections of sea ice. The Cryosphere, 7, 321–332. https://doi.org/10.5194/tc-7-321-2013.

    Article  Google Scholar 

  • Sakamoto, T. T., Komuro, Y., Nishimura, T., Ishii, M., Tatebe, H., Shiogama, H., Hasegawa, A., Toyoda, T., Mori, M., Suzuki, T., Imada, Y., Nozawa, T., Takata, K., Mochizuki, T., Ogochi, K., Emori, S., Hasumi, H., & Kimoto, M. (2012). MIROC4h. A new high-resolution atmosphere-ocean coupled general circulation model. Journal of the Meteorological Society Japan, 90, 325–359.

    Article  Google Scholar 

  • Sato, K., Inoue, J., & Watanabe, M. (2014). Influence of the Gulf Stream on the Barents Sea ice retreat and Eurasian coldness during early winter. Environmental Research Letters, 9, 084009.

    Article  Google Scholar 

  • Screen, J. A. (2014). Arctic amplification decreases temperature variance in northern mid- to high-latitudes. Nature Climate Change, 4, 577–582.

    Article  Google Scholar 

  • Screen, J. A. (2017). Simulated atmospheric response to regional and Pan-Arctic sea ice loss. Journal of Climate, 30, 3945–3962.

    Article  Google Scholar 

  • Screen, J. A., & Francis, J. A. (2016). Contribution of sea-ice loss to Arctic amplification is regulated by Pacific Ocean decadal variability. Nature Climate Change, 6, 856–860. https://doi.org/10.1038/nclimate3011.

    Article  Google Scholar 

  • Screen, J. A., & Simmonds, I. (2010). The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 464, 1334–1337.

    Article  Google Scholar 

  • Screen, J. A., & Simmonds, I. (2013). Exploring links between Arctic amplification and mid-latitude weather. Geophysical Research Letters, 40, 959–964. https://doi.org/10.1002/grl.50174.

    Article  Google Scholar 

  • Screen, J. A., Deser, C., & Simmonds, I. (2012). Local and remote controls on observed Arctic warming. Geophysical Research Letters, 39, L10709.

    Article  Google Scholar 

  • Screen, J. A., Deser, C., Simmonds, I., & Tomas, R. (2014). Atmospheric impacts of Arctic sea-ice loss, 1979–2009: Separating forced change from atmospheric internal variability. Climate Dynamics, 43, 333–344. https://doi.org/10.1007/s00382-013-1830-9.

    Article  Google Scholar 

  • Screen, J. A., Deser, C., & Sun, L. (2015). Reduced risk of North American cold extremes due to continued Arctic sea ice loss. Bulletin of the American Meteorological Society, 96, 1489–1503. https://doi.org/10.1175/BAMS-D-14-00185.1.

    Article  Google Scholar 

  • Screen, J. A., Deser, C., Smith, D. M., Zhang, X., Blackport, R., Kushner, P. J., Oudar, T., McCusker, K. E., & Sun, L. (2018). Consistency and discrepancy in the atmospheric response to Arctic sea-ice loss across climate models. Nature Geoscience, 11, 155–163. https://doi.org/10.1038/s41561-018-0059-y.

    Article  Google Scholar 

  • Seierstad, I. A., & Bader, J. (2008). Impact of a projected future Arctic sea ice reduction on extratropical storminess and the NAO. Climate Dynamics, 33, 937. https://doi.org/10.1007/s00382-008-0463-x.

    Article  Google Scholar 

  • Semenov, V. A., & Bengtsson, L. (2003). Modes of the wintertime Arctic temperature variability. Geophysical Research Letters, 30, 1781.

    Article  Google Scholar 

  • Serreze, M. C., & Barry, R. G. (2011). Processes and impacts of Arctic amplification: A research synthesis. Global and Planetary Change, 77, 85–96.

    Article  Google Scholar 

  • Serreze, M. C., Barrett, A. P., Slater, A. G., Steele, V., Zhang, J., & Trenberth, K. E. (2007). The large-scale energy budget of the Arctic. Journal of Geophysical Research, 112, D11122. https://doi.org/10.1029/2006JD008230.

    Article  Google Scholar 

  • Serreze, M. C., Barrett, A. P., Kindig, D. N., & Holland, M. M. (2009). The emergence of surface-based Arctic amplification. The Cryosphere, 3, 11–19. https://doi.org/10.5194/tc-3-11-2009.

    Article  Google Scholar 

  • Shalina, E. V. (2015). Ice retreat in the seas of the Russian Arctic and increased availability of the Northern Sea route from satellite passive microwave observations. Earth Observation from Space, 4, 67–78. (in Russian).

    Google Scholar 

  • Simmonds, I., & Murray, R. J. (1999). Southern extratropical cyclone behavior in ECMWF analyses during the FROST special observing periods. Weather Forecasting, 14, 878–891.

    Article  Google Scholar 

  • Stephenson, S. R., & Smith, L. C. (2015). Influence of climate model variability on projected Arctic shipping futures. Earth’s Future, 3, 331–343. https://doi.org/10.1002/2015EF000317.

    Article  Google Scholar 

  • Stroeve, J., Holland, M. M., Meier, W., Scambos, T., & Serreze, M. (2007). Arctic sea ice decline: Faster than forecast. Geophysical Research Letters, 34, L09501. https://doi.org/10.1029/2007GL029703.

    Article  Google Scholar 

  • Stroeve, J. C., Kattsov, V., Barrett, A., Serreze, M., Pavlova, T., Holland, M., & Meier, W. N. (2012a). Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophysical Research Letters, 39, L16502. https://doi.org/10.1029/2012GL052676.

    Article  Google Scholar 

  • Stroeve, J. C., Serreze, M. C., Kay, J. E., Holland, M. M., Meier, W. N., & Barrett, A. P. (2012b). The Arctic’s rapidly shrinking sea ice cover: A research synthesis. Climatic Change, 110, 1005–1027. https://doi.org/10.1007/s10584-011-0101-1.

    Article  Google Scholar 

  • Sun, L., Perlwitz, J., & Hoerling, M. (2016). What caused the recent “warm Arctic, cold continents” trend pattern in winter temperatures? Geophysical Research Letters, 43, 5345–5352. https://doi.org/10.1002/2016GL069024.

    Article  Google Scholar 

  • Suo, L., Otterå, O. H., Bentsen, M., Gao, Y., & Johannessen, O. M. (2013). External forcing of the early 20th century Arctic warming. Tellus A, 65, 20578. https://doi.org/10.3402/tellusa.v65i0.20578.

    Article  Google Scholar 

  • Swart, N. C., Fyfe, J. C., Hawkins, E., Kay, J. E., & Jahn, A. (2015). Influence of internal variability on Arctic sea-ice trends. Nature Climate Change, 5, 86–89.

    Article  Google Scholar 

  • Takaya, K., & Nakamura, H. (2005). Geographical dependence of upper-level blocking formation associated with intraseasonal amplification of the Siberian high. Journal of the Atmospheric Sciences, 62, 4441–4449.

    Article  Google Scholar 

  • Tang, Q., Zhang, X., Yang, X., & Francis, J. A. (2013). Cold winter extremes in northern continents linked to Arctic sea ice loss. Environmental Research Letters, 8, 014036. https://doi.org/10.1088/1748-9326/8/1/014036.

    Article  Google Scholar 

  • Taylor, K. E., Stouffer, R. J., & Meehl, G. A. (2012). An overview of CMIP5 and the experiment design. Bulletin American Meteorological Society, 93, 485–498. https://doi.org/10.1175/BAMS-D-11-00094.1.

    Article  Google Scholar 

  • Taylor, P. C., Cai, M., Hu, A., Meehl, J., Washington, W., & Zhang, G. J. (2013). A decomposition of feedback contributions to polar warming amplification. Journal of Climate, 26, 7023–7043.

    Article  Google Scholar 

  • Vihma, T. (2014). Effects of arctic sea ice decline on weather and climate: A review. Surveys in Geophysics, 35, 1175–1214.

    Article  Google Scholar 

  • Wallace, J. M., Held, I. M., Thompson, D. W. J., Trenberth, K. E., & Walsh, J. E. (2014). Global warming and winter weather. Science, 343, 729–730.

    Article  Google Scholar 

  • Walsh, J. E. (2014). Intensified warming of the Arctic: Causes and impacts on middle latitudes. Global and Planetary Change, 117, 52–63.

    Article  Google Scholar 

  • Wang, M., & Overland, J. E. (2009). A sea ice free summer Arctic within 30 years? Geophysical Research Letters, 36, L07502. https://doi.org/10.1029/2009GL037820.

    Article  Google Scholar 

  • Wang, M., & Overland, J. E. (2012). A sea ice free summer Arctic within 30 years – an update from CMIP5 models. Geophysical Research Letters, 39, L18501. https://doi.org/10.1029/2012GL052868.

    Article  Google Scholar 

  • Wettstein, J. J., & Deser, C. (2014). Internal variability in projections of twenty-first-century Arctic sea ice loss: Role of the large-scale atmospheric circulation. Journal of Climate, 27, 527–550.

    Article  Google Scholar 

  • Winton, M. (2006). Amplified Arctic climate change: What does surface albedo feedback have to do with it? Geophysical Research Letters, 33, L037.

    Google Scholar 

  • Winton, M. (2008). Sea ice-albedo feedback and nonlinear Arctic climate change. Arctic sea ice decline: Observations, projections, mechanisms, and implications (Geophys. Monogr. 180) (pp. 111–131). Washington, DC: Amer. Geophys. Union.

    Google Scholar 

  • Winton, M. (2011). Do climate models underestimate the sensitivity of Northern Hemisphere sea ice cover? Journal Climate, 24, 3924–3934. https://doi.org/10.1175/2011JCLI4146.1.

    Article  Google Scholar 

  • Wu, Y., Latif, M., & Park, W. (2016). Multiyear predictability of Northern Hemisphere surface air temperature in the Kiel Climate Model. Climate Dynamics, 46, 112. https://doi.org/10.1007/s00382-015-2871-z.

    Article  Google Scholar 

  • Yang, S., & Christensen, J. H. (2012). Arctic sea ice reduction and European cold winters in CMIP5 climate change experiments. Geophysical Research Letters, 39, L20707. https://doi.org/10.1029/2012GL053338.

    Article  Google Scholar 

  • Zhang, R. (2015). Mechanisms for low-frequency variability of summer Arctic Sea ice extent. Proceedings National Academy Science, 112, 4570–4575.

    Article  Google Scholar 

  • Zhang, R., & Knutson, T. R. (2013). The role of global climate change in the extreme low summer Arctic sea ice extent in 2012. In: “Explaining extreme events of 2012 from a climate perspective”. Bulletin of the American Meteorological Society, 94, S1–S74.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentin P. Meleshko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Meleshko, V.P., Pavlova, T., Bobylev, L.P., Golubkin, P. (2020). Current and Projected Sea Ice in the Arctic in the Twenty-First Century. In: Johannessen, O., Bobylev, L., Shalina, E., Sandven, S. (eds) Sea Ice in the Arctic. Springer Polar Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-21301-5_10

Download citation

Publish with us

Policies and ethics