Skip to main content

Abstract

Lars Leksell’s conception of stereotactic radiosurgery and the invention of the Gamma Knife as a means to realize his idea was the result of his integration of a many parallel developments in neurosurgery and radiology. Throughout its history, Gamma Knife radiosurgery has continued to evolve in order to take advantage of new imaging modalities, improving computer and hardware technology, and advances in our understanding of high-dose radiobiology. This chapter summarizes the technique of Gamma Knife stereotactic radiosurgery (GKSRS) from both a historical and technical point of view and in the process tries to show how integration of new developments promises a prominent role for GKSRS in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Leksell L. The stereotaxic method and radiosurgery of the brain. Acta Chir Scand. 1951;102(4):316–9.

    CAS  PubMed  Google Scholar 

  2. Ganz JC. Chapter 13 – Changing the gamma knife. In: Ganz JC, editor. Progress in Brain Research, vol. 215. Amsterdam: Elsevier; 2014. p. 117–25.

    Google Scholar 

  3. Leksell L. Cerebral radiosurgery. I. Gammathalanotomy in two cases of intractable pain. Acta Chir Scand. 1968;134(8):585–95.

    CAS  PubMed  Google Scholar 

  4. Leksell L. [Clinical research; a comment]. Svenska lakartidningen. 1954;51(48):3078–83. Klinisk forskning: ett diskussionsinlagg.

    Google Scholar 

  5. Leksell L, Larsson B, Andersson B, Rexed B, Sourander P, Mair W. Research on “localized radio-lesions”. VI. Restricted radio-lesions in the depth of the brain produced by a beam of high energy protons. AFOSR TN United States Air Force Off Sci Res. 1960;60–1406:1–13.

    PubMed  Google Scholar 

  6. Larsson B, Liden K, Sarby B. Irradiation of small structures through the intact skull. Acta Radiol Ther Phys Biol. 1974;13(6):512–34.

    Article  CAS  PubMed  Google Scholar 

  7. Sarby B. Cerebral radiation surgery with narrow gamma beams; physical experiments. Acta Radiol Ther Phys Biol. 1974;13(5):425–45.

    Article  CAS  PubMed  Google Scholar 

  8. Leksell L. Stereotactic radiosurgery. J Neurol Neurosurg Psychiatry. 1983;46(9):797–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Leksell L. Stereotaxic radiosurgery in trigeminal neuralgia. Acta Chir Scand. 1971;137(4):311–4.

    CAS  PubMed  Google Scholar 

  10. Leksell L. A note on the treatment of acoustic tumours. Acta Chir Scand. 1971;137(8):763–5.

    CAS  PubMed  Google Scholar 

  11. Steiner L, Leksell L, Greitz T, Forster DM, Backlund EO. Stereotaxic radiosurgery for cerebral arteriovenous malformations. Report of a case. Acta Chir Scand. 1972;138(5):459–64.

    CAS  PubMed  Google Scholar 

  12. Goetsch SJ. Gamma Knife. In: Benedict SH, Schlesinger DJ, Goetsch SJ, Kavanagh BD, editors. Stereotactic radiosurgery and stereotactic body radiation therapy. Boca Raton, FL: CRC Press; 2014. p. 39–53.

    Google Scholar 

  13. Lunsford LD, Flickinger J, Lindner G, Maitz A. Stereotactic radiosurgery of the brain using the first United States 201 cobalt-60 source gamma knife. Neurosurgery. 1989;24(2):151–9.

    Article  CAS  PubMed  Google Scholar 

  14. Wu A, Lindner G, Maitz A, Kalend A, Lunsford L, Flickinger J, et al. Physics of gamma knife approach on convergent beams in stereotactic radiosurgery. Int J Radiat Oncol Biol Phys. 1990;18(4):941–9.

    Article  CAS  PubMed  Google Scholar 

  15. Soanes T, Hampshire A, Vaughan P, Brownett C, Rowe J, Radatz M, et al. The commissioning and quality assurance of the Automatic Positioning System on the Leksell gamma knife. J Neurosurg. 2002;97(5 Suppl):574–8.

    Article  PubMed  Google Scholar 

  16. Kondziolka D, Maitz AH, Niranjan A, Flickinger JC. An evaluation of the Model C gamma knife with automatic patient positioning. Neurosurgery. 2002;50(2):429–32.

    PubMed  Google Scholar 

  17. Kuo JS, Yu C, Giannotta SL, Petrovich Z, Apuzzo ML. The Leksell gamma knife Model U versus Model C: a quantitative comparison of radiosurgical treatment parameters. Neurosurgery. 2004;55(1):168–73.

    Article  PubMed  Google Scholar 

  18. Lindquist C, Paddick I. The Leksell Gamma Knife Perfexion and comparisons with its predecessors. Oper Neurosurg. 2007;61(suppl_3):ONS-130–ONS-41.

    Article  Google Scholar 

  19. Novotny J Jr, Bhatnagar JP, Niranjan A, Quader MA, Huq MS, Bednarz G, et al. Dosimetric comparison of the Leksell Gamma Knife perfexion and 4C. J Neurosurg. 2008;109(Suppl):8–14.

    Article  PubMed  Google Scholar 

  20. Régis J, Tamura M, Guillot C, Yomo S, Muraciolle X, Nagaje M, et al. Radiosurgery with the world’s first fully robotized Leksell Gamma Knife PerfeXion in clinical use: a 200-patient prospective, randomized, controlled comparison with the Gamma Knife 4C. Neurosurgery. 2009;64(2):346–56.

    Article  PubMed  Google Scholar 

  21. Elekta Instrument A. Leksell Gamma Knife® Perfexion™ installation manual. Stockholm: Elekta Instrument, AB; 2013. Contract No: 1022537 Rev. 02.

    Google Scholar 

  22. Campbell E, Walter E. Dandy-surgeon, 1886-1946. J Neurosurg. 1951;8(3):249–62.

    Article  CAS  PubMed  Google Scholar 

  23. Kilgore EJ, Elster AD. Walter Dandy and the history of ventriculography. Radiology. 1995;194(3):657–60.

    Article  CAS  PubMed  Google Scholar 

  24. Arndt J. Early Gamma Knife Development: A Physicist’s personal memories. http://www.calameo.com/books/000768098b32993dd76b5.

  25. Lewander R, Bergström M, Boethius J, Collins V, Edner G, Greitz T, et al. Stereotactic computer tomography for biopsy of gliomas. Acta Radiol Diagn. 1978;19(6):867–88.

    Article  CAS  Google Scholar 

  26. Larner JM, Berk HW, Agarwal SK, Steiner L. The dosimetric consequences of weighted fields using the same isocenter in radiosurgery. Stereotact Funct Neurosurg. 1993;61(Suppl. 1):142–50.

    Article  PubMed  Google Scholar 

  27. Leksell L, Leksell D, Schwebel J. Stereotaxis and nuclear magnetic resonance. J Neurol Neurosurg Psychiatry. 1985;48(1):14–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sampath S. The history of MRI. IEEE Eng Med Biol Mag. 2000;19(1):26. PubMed

    PubMed  Google Scholar 

  29. Stuckey SL, Harris AJ, Mannolini SM. Detection of acoustic schwannoma: use of constructive interference in the steady state three-dimensional MR. AJNR Am J Neuroradiol. 1996;17(7):1219–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Wetzel SG, Johnson G, Tan AG, Cha S, Knopp EA, Lee VS, et al. Three-dimensional, T1-weighted gradient-echo imaging of the brain with a volumetric interpolated examination. AJNR Am J Neuroradiol. 2002;23(6):995–1002.

    PubMed  PubMed Central  Google Scholar 

  31. Sudhyadhom A, Haq IU, Foote KD, Okun MS, Bova FJ. A high resolution and high contrast MRI for differentiation of subcortical structures for DBS targeting: the Fast Gray Matter Acquisition T1 Inversion Recovery (FGATIR). NeuroImage. 2009;47(Suppl 2):T44–52.

    Article  PubMed  Google Scholar 

  32. Barajas RF, Chang JS, Sneed PK, Segal MR, McDermott MW, Cha S. Distinguishing recurrent intra-axial metastatic tumor from radiation necrosis following gamma knife radiosurgery using dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. AJNR Am J Neuroradiol. 2009;30(2):367–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chang Z, Kirkpatrick JP, Wang Z, Cai J, Adamson J, Yin FF. Evaluating radiation-induced white matter changes in patients treated with stereotactic radiosurgery using diffusion tensor imaging: a pilot study. Technol Cancer Res Treat. 2014;13(1):21–8.

    Article  PubMed  Google Scholar 

  34. Lee CC, Wintermark M, Xu Z, Yen CP, Schlesinger D, Sheehan JP. Application of diffusion-weighted magnetic resonance imaging to predict the intracranial metastatic tumor response to gamma knife radiosurgery. J Neuro-Oncol. 2014;118(2):351–61.

    Article  Google Scholar 

  35. Kirkpatrick JP, Soltys SG, Lo SS, Beal K, Shrieve DC, Brown PD. The radiosurgery fractionation quandary: single fraction or hypofractionation? Neuro Oncol. 2017;19(suppl_2):ii38–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rosenthal DI, Glatstein E. We’ve got a treatment, but what’s the disease? Or a brief history of hypofractionation and its relationship to stereotactic radiosurgery. Oncologist. 1996;1(1 & 2):1–7.

    CAS  PubMed  Google Scholar 

  37. Sayer FT, Sherman JH, Yen CP, Schlesinger DJ, Kersh R, Sheehan JP. Initial experience with the eXtend System: a relocatable frame system for multiple-session gamma knife radiosurgery. World Neurosurg. 2011;75(5–6):665–72.

    Article  PubMed  Google Scholar 

  38. Reiner B, Bownes P, Buckley DL, Thwaites DI. Quantifying the trigger level of the vacuum surveillance system of the Gamma-Knife eXtend™ positioning system and evaluating the potential impact on dose delivery. J Radiosurg SBRT. 2016;4(1):31.

    PubMed  PubMed Central  Google Scholar 

  39. Schlesinger D, Xu Z, Taylor F, Yen CP, Sheehan J. Interfraction and intrafraction performance of the Gamma Knife Extend system for patient positioning and immobilization. J Neurosurg. 2012;117(Suppl):217–24.

    Article  PubMed  Google Scholar 

  40. Zeverino M, Jaccard M, Patin D, Ryckx N, Marguet M, Tuleasca C, et al. Commissioning of the Leksell Gamma Knife® Icon™. Med Phys. 2017;44(2):355–63.

    Article  CAS  PubMed  Google Scholar 

  41. AlDahlawi I, Prasad D, Podgorsak MB. Evaluation of stability of stereotactic space defined by cone-beam CT for the Leksell Gamma Knife Icon. J Appl Clin Med Phys. 2017;18(3):67–72.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Elekta Instrument A. Design and performance characteristics of a Cone Beam CT system for Leksell Gamma Knife® Icon™. Stockholm: Elekta Instrument, AB; 2015. Contract No: 1509394.

    Google Scholar 

  43. Elekta Instrument A. Geometric quality assurance for Leksell Gamma Knife® Icon™. Stockholm: Elekta Instrument, AB; 2015. Contract No: 1518146.

    Google Scholar 

  44. Wright G, Harrold N, Hatfield P, Bownes P. Validity of the use of nose tip motion as a surrogate for intracranial motion in mask-fixated frameless Gamma Knife® Icon™ therapy. J Radiosurg SBRT. 2017;4(4):289.

    PubMed  PubMed Central  Google Scholar 

  45. Elekta Instrument A. Leksell Gamma Knife Icon instructions for use. Stockholm: Elekta Instrument, AB; 2015. Contract No: 1505194.

    Google Scholar 

  46. Tonetti D, Bhatnagar J, Lunsford LD. Quantitative analysis of movement of a cervical target during stereotactic radiosurgery using the Leksell Gamma Knife Perfexion. J Neurosurg. 2012;117(Suppl):211–6.

    Article  PubMed  Google Scholar 

  47. Ma L, Nichol A, Hossain S, Wang B, Petti P, Vellani R, et al. Variable dose interplay effects across radiosurgical apparatus in treating multiple brain metastases. Int J Comput Assist Radiol Surg. 2014;9(6):1079–86.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Thomas EM, Popple RA, Wu X, Clark GM, Markert JM, Guthrie BL, et al. Comparison of plan quality and delivery time between volumetric arc therapy (RapidArc) and Gamma Knife radiosurgery for multiple cranial metastases. Neurosurgery. 2014;75(4):409–17. discussion 17-8

    Article  PubMed  Google Scholar 

  49. Klein EE, Hanley J, Bayouth J, Yin FF, Simon W, Dresser S, et al. Task Group 142 report: quality assurance of medical accelerators. Med Phys. 2009;36(9):4197–212.

    Article  PubMed  Google Scholar 

  50. Liu H, Andrews DW, Evans JJ, Werner-Wasik M, Yu Y, Dicker AP, et al. Plan quality and treatment efficiency for radiosurgery to multiple brain metastases: non-coplanar RapidArc vs. Gamma Knife. Front Oncol. 2016;6:26.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. McDonald D, Schuler J, Takacs I, Peng J, Jenrette J, Vanek K. Comparison of radiation dose spillage from the Gamma Knife Perfexion with that from volumetric modulated arc radiosurgery during treatment of multiple brain metastases in a single fraction. J Neurosurg. 2014;121(Suppl):51–9.

    Article  PubMed  Google Scholar 

  52. Roper J, Chanyavanich V, Betzel G, Switchenko J, Dhabaan A. Single-Isocenter multiple-target stereotactic radiosurgery: risk of compromised coverage. Int J Radiat Oncol Biol Phys. 2015;93(3):540–6.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Fiorentino A, Levra N, Mazzola R, Fersino S, Ricchetti F, Alongi F. Correspondence: Volumetric Arc Therapy (RapidArc) vs Gamma Knife Radiosurgery for Multiple Brain Metastases: Not Only a Dosimetric Issue. Neurosurgery. 2015;77(2):310.

    Article  Google Scholar 

  54. Niranjan A, Gobbel G, Novotny J Jr, Bhatnagar J, Fellows W, Lunsford LD. Impact of decaying dose rate in gamma knife radiosurgery: in vitro study on 9L rat gliosarcoma cells. J Radiosurg SBRT. 2012;1(4):257–64.

    PubMed  PubMed Central  Google Scholar 

  55. Balamucki CJ, Stieber VW, Ellis TL, Tatter SB, Deguzman AF, McMullen KP, et al. Does dose rate affect efficacy? The outcomes of 256 gamma knife surgery procedures for trigeminal neuralgia and other types of facial pain as they relate to the half-life of cobalt. J Neurosurg. 2006;105(5):730–5.

    Article  PubMed  Google Scholar 

  56. Lee JY, Sandhu S, Miller D, Solberg T, Dorsey JF, Alonso-Basanta M. Higher dose rate Gamma Knife radiosurgery may provide earlier and longer-lasting pain relief for patients with trigeminal neuralgia. J Neurosurg. 2015;123(4):961–8.

    Article  CAS  PubMed  Google Scholar 

  57. Stieber VW, Bourland JD, Tome WA, Mehta MP. Gentlemen (and ladies), choose your weapons: Gamma knife vs. linear accelerator radiosurgery. Technol Cancer Res Treat. 2003;2(2):79–86.

    Article  PubMed  Google Scholar 

  58. Ishiyama H, Teh BS, Ren H, Chiang S, Tann A, Blanco AI, et al. Spontaneous regression of thoracic metastases while progression of brain metastases after stereotactic radiosurgery and stereotactic body radiotherapy for metastatic renal cell carcinoma: abscopal effect prevented by the blood-brain barrier? Clin Genitourin Cancer. 2012;10(3):196–8.

    Article  PubMed  Google Scholar 

  59. Vaupel P. Tumor microenvironmental physiology and its implications for radiation oncology. Semin Radiat Oncol. 2004;14(3):198–206.

    Article  PubMed  Google Scholar 

  60. Szeifert GT, Salmon I, Rorive S, Massager N, Devriendt D, Simon S, et al. Does gamma knife surgery stimulate cellular immune response to metastatic brain tumors? A histopathological and immunohistochemical study. Journal of neurosurgery. 2005;102(s_supplement):180–4.

    Article  PubMed  Google Scholar 

  61. Hynynen K, Clement G. Clinical applications of focused ultrasound-the brain. Int J Hypertens. 2007;23(2):193–202.

    CAS  Google Scholar 

  62. Schlesinger D, Benedict S, Diederich C, Gedroyc W, Klibanov A, Larner J. MR-guided focused ultrasound surgery, present and future. Med Phys. 2013;40(8):080901.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Rahmathulla G, Recinos PF, Kamian K, Mohammadi AM, Ahluwalia MS, Barnett GH. MRI-guided laser interstitial thermal therapy in neuro-oncology: a review of its current clinical applications. Oncology. 2014;87(2):67–82.

    Article  PubMed  Google Scholar 

  64. Rieke V, Butts PK. MR thermometry. J Magn Reson Imaging. 2008;27(2):376–90.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Burke CW, Klibanov AL, Sheehan JP, Price RJ. Inhibition of glioma growth by microbubble activation in a subcutaneous model using low duty cycle ultrasound without significant heating. J Neurosurg. 2011;114(6):1654–61.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Timbie KF, Mead BP, Price RJ. Drug and gene delivery across the blood-brain barrier with focused ultrasound. J Control Release. 2015;219:61–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. de Greef M, Crezee J, van Eijk JC, Pool R, Bel A. Accelerated ray tracing for radiotherapy dose calculations on a GPU. Med Phys. 2009;36(9):4095–102.

    Article  PubMed  Google Scholar 

  68. Poole CM, Cornelius I, Trapp JV, Langton CM. Radiotherapy Monte Carlo simulation using cloud computing technology. Australas Phys Eng Sci Med. 2012;35(4):497–502.

    Article  CAS  PubMed  Google Scholar 

  69. Kotrotsou A, Zinn PO, Colen RR. Radiomics in brain tumors: an emerging technique for characterization of tumor environment. Magn Reson Imaging Clin N Am. 2016;24(4):719–29.

    Article  PubMed  Google Scholar 

  70. Ortiz-Ramon R, Larroza A, Arana E, Moratal D. A radiomics evaluation of 2D and 3D MRI texture features to classify brain metastases from lung cancer and melanoma. Conf Proc IEEE Eng Med Biol Soc. 2017;2017:493–6.

    Google Scholar 

  71. Zhou M, Scott J, Chaudhury B, Hall L, Goldgof D, Yeom KW, et al. Radiomics in brain tumor: image assessment, quantitative feature descriptors, and machine-learning approaches. AJNR Am J Neuroradiol. 2018;39(2):208–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ng TS, Bading JR, Park R, Sohi H, Procissi D, Colcher D, et al. Quantitative, simultaneous PET/MRI for intratumoral imaging with an MRI-compatible PET scanner. J Nucl Med. 2012;53(7):1102–9.

    Article  CAS  PubMed  Google Scholar 

  73. Wang LV, Yao J. A practical guide to photoacoustic tomography in the life sciences. Nat Methods. 2016;13(8):627–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhang P, Li L, Lin L, Hu P, Shi J, He Y, et al. High-resolution deep functional imaging of the whole mouse brain by photoacoustic computed tomography in vivo. J Biophotonics. 2018;11(1):e201700024.

    Article  Google Scholar 

  75. Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Commun ACM. 2017;60(6):84–90.

    Article  Google Scholar 

  76. Oermann EK, Rubinsteyn A, Ding D, Mascitelli J, Starke RM, Bederson JB, et al. Using a machine learning approach to predict outcomes after radiosurgery for cerebral arteriovenous malformations. Sci Rep. 2016;6:21161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Solberg TD, Balter JM, Benedict SH, Fraass BA, Kavanagh B, Miyamoto C, et al. Quality and safety considerations in stereotactic radiosurgery and stereotactic body radiation therapy: executive summary. Practical radiation oncology. 2012;2(1):2–9.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Schlesinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cordeiro, D.P., Schlesinger, D.J. (2019). Leksell Gamma Knife Radiosurgery. In: Trifiletti, D., Chao, S., Sahgal, A., Sheehan, J. (eds) Stereotactic Radiosurgery and Stereotactic Body Radiation Therapy. Springer, Cham. https://doi.org/10.1007/978-3-030-16924-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16924-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16923-7

  • Online ISBN: 978-3-030-16924-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics