Skip to main content

Steps Towards a Sustainable Hydrogen Production from Sunlight and Water

  • Chapter
  • First Online:
Testing Novel Water Oxidation Catalysts for Solar Fuels Production

Part of the book series: PoliTO Springer Series ((PTSS))

  • 399 Accesses

Abstract

This chapter focuses on some aspects concerning the realization of an actually sustainable H2 production, and especially the need for earth abundant, environmental friendly, solar driven heterogeneous catalysis for the Water Oxidation reaction: the catalyst shall be thermodynamically and mechanically stable to allow cyclic long-term operations. The focus will be mainly on Mn- and Co-compounds, though reference will be made to other compounds, when appropriate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hunter BM, Gray HB, Müller AM (2016) Earth-abundant heterogeneous water oxidation catalysts. Chem Rev 116(22):14120–14136

    Article  CAS  Google Scholar 

  2. Singh A, Spiccia L (2013) Water oxidation catalysts based on abundant 1st row transition metals. Coord Chem Rev 257(17–18):2607–2622

    Article  CAS  Google Scholar 

  3. Najafpour MM et al (2012) Nano-sized manganese oxides as biomimetic catalysts for water oxidation in artificial photosynthesis: a review. J R Soc Interface 9(75):2383–2395

    Article  CAS  Google Scholar 

  4. Wells AF (2012) Structural inorganic chemistry. Oxford University Press, Oxford

    Google Scholar 

  5. Robinson DM et al (2013) Photochemical water oxidation by crystalline polymorphs of manganese oxides: structural requirements for catalysis. J Am Chem Soc 135(9):3494–3501

    Article  CAS  Google Scholar 

  6. Xu M-W, Bao S-J (2011) Nanostructured MnO2 for electrochemical capacitor. In: Carbone R (ed) Energy storage in the emerging era of smart grids. Intech

    Google Scholar 

  7. Chabre Y, Pannetier J (1995) Structural and electrochemical properties of the proton/γ-MnO2 system. Prog Solid State Chem 23(1):1–130

    Article  CAS  Google Scholar 

  8. Najafpour MM, Sedigh DJ (2013) Water oxidation by manganese oxides, a new step towards a complete picture: simplicity is the ultimate sophistication. Dalton Trans 42(34):12173–12178

    Article  CAS  Google Scholar 

  9. Brimblecombe R et al (2010) Solar driven water oxidation by a bioinspired manganese molecular catalyst. J Am Chem Soc 132(9):2892–2894

    Article  CAS  Google Scholar 

  10. Harriman A et al (1988) Metal oxides as heterogeneous catalysts for oxygen evolution under photochemical conditions. J Chem Soc, Faraday Trans 1 Phys Chem Condens Phases 84(8):2795–2806

    Article  CAS  Google Scholar 

  11. Jiao F, Frei H (2010) Nanostructured cobalt and manganese oxide clusters as efficient water oxidation catalysts. Energy Environ Sci 3(8):1018–1027

    Article  CAS  Google Scholar 

  12. Iyer A et al (2012) Water oxidation catalysis using amorphous manganese oxides, octahedral molecular sieves (OMS-2), and octahedral layered (OL-1) manganese oxide structures. J Phys Chem C 116(10):6474–6483

    Article  CAS  Google Scholar 

  13. Bergmann A et al (2013) Electrochemical water splitting by layered and 3D cross-linked manganese oxides: correlating structural motifs and catalytic activity. Energy Environ Sci 6(9):2745–2755

    Article  CAS  Google Scholar 

  14. Zaharieva I et al (2012) Electrosynthesis, functional, and structural characterization of a water-oxidizing manganese oxide. Energy Environ Sci 5(5):7081–7089

    Article  CAS  Google Scholar 

  15. Jiao F, Frei H (2009) Nanostructured cobalt oxide clusters in mesoporous silica as efficient oxygen-evolving catalysts. Angew Chem Int Ed 48(10):1841–1844

    Article  CAS  Google Scholar 

  16. Kanan MW, Nocera DG (2008) In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321(5892):1072–1075

    Article  CAS  Google Scholar 

  17. Kanan MW, Surendranath Y, Nocera DG (2009) Cobalt-phosphate oxygen-evolving compound. Chem Soc Rev 38(1):109–114

    Article  CAS  Google Scholar 

  18. Wang Y et al (2012) Cobalt phosphate–ZnO composite photocatalysts for oxygen evolution from photocatalytic water oxidation. Ind Eng Chem Res 51(30):9945–9951

    Article  CAS  Google Scholar 

  19. Lee R-L et al (2013) Assembling graphitic-carbon-nitride with cobalt-oxide-phosphate to construct an efficient hybrid photocatalyst for water splitting application. Catal Sci Technol 3(7):1694–1698

    Article  CAS  Google Scholar 

  20. Liu L et al (2013) In situ loading transition metal oxide clusters on TiO2 nanosheets as co-catalysts for exceptional high photoactivity. ACS Catal 3(9):2052–2061

    Article  CAS  Google Scholar 

  21. Zhang F et al (2012) Cobalt-modified porous single-crystalline LaTiO2N for highly efficient water oxidation under visible light. J Am Chem Soc 134(20):8348–8351

    Article  CAS  Google Scholar 

  22. Kamata K et al (2009) Synthesis and photocatalytic activity of gallium–zinc–indium mixed oxynitride for hydrogen and oxygen evolution under visible light. Chem Phys Lett 470(1–3):90–94

    Article  CAS  Google Scholar 

  23. Zhang J et al (2012) Photocatalytic oxidation of water by polymeric carbon nitride nanohybrids made of sustainable elements. Chem Sci 3(2):443–446

    Article  CAS  Google Scholar 

  24. Pope MT, Müller A (1991) Polyoxometalate chemistry: an old field with new dimensions in several disciplines. Angew Chem, Int Ed Engl 30(1):34–48

    Article  Google Scholar 

  25. Yamase T, Pope MT (2002) Polyoxometalate chemistry for nano-composite design. Springer, Berlin

    Google Scholar 

  26. Howells AR, Sankarraj A, Shannon C (2004) A diruthenium-substituted polyoxometalate as an electrocatalyst for oxygen generation. J Am Chem Soc 126(39):12258–12259

    Article  CAS  Google Scholar 

  27. Geletii YV et al (2009) Structural, physicochemical, and reactivity properties of an all-inorganic, highly active tetraruthenium homogeneous catalyst for water oxidation. J Am Chem Soc 131(47):17360–17370

    Article  CAS  Google Scholar 

  28. Sartorel A et al (2009) Water oxidation at a tetraruthenate core stabilized by polyoxometalate ligands: experimental and computational evidence to trace the competent intermediates. J Am Chem Soc 131(44):16051–16053

    Article  CAS  Google Scholar 

  29. Toma FM et al (2010) Efficient water oxidation at carbon nanotube–polyoxometalate electrocatalytic interfaces. Nat Chem 2(10):826–831

    Article  CAS  Google Scholar 

  30. Yin Q et al (2010) A fast soluble carbon-free molecular water oxidation catalyst based on abundant metals. Science 328(5976):342–345

    Article  CAS  Google Scholar 

  31. Steinmiller EMP, Choi KS (2009) Photochemical deposition of cobalt-based oxygen evolving catalyst on a semiconductor photoanode for solar oxygen production. Proc Natl Acad Sci 106(49):20633–20636

    Article  CAS  Google Scholar 

  32. Zhu G et al (2012) Water oxidation catalyzed by a new tetracobalt-substituted polyoxometalate complex: [{Co4(µ-OH)(H2O)3}(Si2W19O70)]11. Dalton Trans 41(7):2084–2090

    Article  CAS  Google Scholar 

  33. Izgorodin A, Winther-Jensen O, MacFarlane DR (2012) On the stability of water oxidation catalysts: challenges and prospects. Aust J Chem 65(6):638–642

    Article  CAS  Google Scholar 

  34. Beer H (1980) The invention and industrial development of metal anodes. J Electrochem Soc 127(8):303C–307C

    Article  CAS  Google Scholar 

  35. Trasatti S (2000) Electrocatalysis: understanding the success of DSA®. Electrochim Acta 45(15):2377–2385

    Article  CAS  Google Scholar 

  36. Najafpour MM et al (2015) Damage management in water-oxidizing catalysts: from photosystem II to nanosized metal oxides. ACS Catal 5(3):1499–1512

    Article  CAS  Google Scholar 

  37. Amendola V, Meneghetti M (2009) Self-healing at the nanoscale. Nanoscale 1(1):74–88

    Article  CAS  Google Scholar 

  38. Najafpour MM et al (2015) Self-healing for nanolayered manganese oxides in the presence of cerium(IV) ammonium nitrate: new findings. New J Chem 39(4):2547–2550

    Article  CAS  Google Scholar 

  39. Gerken JB et al (2011) Electrochemical water oxidation with cobalt-based electrocatalysts from pH 0–14: the thermodynamic basis for catalyst structure, stability, and activity. J Am Chem Soc 133(36):14431–14442

    Article  CAS  Google Scholar 

  40. Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38(1):253–278

    Article  CAS  Google Scholar 

  41. Reece SY et al (2011) Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts. Science 334(6056):645–648

    Article  CAS  Google Scholar 

  42. Sivula K, Formal FL, Grätzel M (2011) Solar water splitting: progress using hematite (α-Fe2O3) photoelectrodes. Chemsuschem 4(4):432–449

    Article  CAS  Google Scholar 

  43. Trasatti S (1984) Electrocatalysis in the anodic evolution of oxygen and chlorine. Electrochim Acta 29(11):1503–1512

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carminna Ottone .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ottone, C., Hernández, S., Armandi, M., Bonelli, B. (2019). Steps Towards a Sustainable Hydrogen Production from Sunlight and Water. In: Testing Novel Water Oxidation Catalysts for Solar Fuels Production. PoliTO Springer Series. Springer, Cham. https://doi.org/10.1007/978-3-030-12712-1_2

Download citation

Publish with us

Policies and ethics