Skip to main content

Miniaturised Antipodal Vivaldi Antenna and Its Application for Detection of Void Inside Concrete Specimens

  • Chapter
  • First Online:
Antipodal Vivaldi Antennas for Microwave Imaging of Construction Materials and Structures

Abstract

A miniaturised antipodal Vivaldi antenna (AVA) with a minimum operating frequency of 1 GHz and wide operating frequency band from 1 to 30 GHz is presented in this chapter. It includes bending technique on inner edges of radiators to lower operating frequency band to 1 GHz. Regular slits have been employed in edges of radiators to enhance gain at low frequencies. The half-elliptical shaped dielectric lens as an extension of substrate has been used to further enhance antenna gain. The proposed antenna has been applied for microwave imaging of high-loss materials such as concrete. The capability of the proposed antenna for UWB imaging has been demonstrated for the detection of voids inside concrete.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbosh, A. M. (2009). Miniaturized microstrip-fed tapered-slot antenna with ultrawideband performance. IEEE Antennas and Wireless Propagation Letters, 8, 690–692.

    Article  Google Scholar 

  • Ashraf, M. A., Jamil, K., Sebak, A., Shoaib, M., Alhekail, Z., Alkanhal, M., & Alshebeili, S. (2015b). Modified antipodal Vivaldi antenna with shaped elliptical corrugation for 1–18 GHz UWB Application. Applied Computational Electromagnetics Society Journal, 30(1), 68–77.

    Google Scholar 

  • Bai, J., Shi, S., & Prather, D. W. (2011). Modified compact antipodal Vivaldi antenna for 4–50-GHz UWB application. IEEE Transactions on Microwave Theory and Techniques, 59, 1051–1057.

    Article  Google Scholar 

  • Cao, Y., Lei, J., Wei, Y., & Zhu, L. (2014). A compact BAVA design with corrugated edge. In 2014 3rd Asia-Pacific Conference on Antennas and Propagation (APCAP). IEEE, pp. 259–262.

    Google Scholar 

  • Chamaani, S., Mirtaheri, S. A., & Abrishamian, M. S. (2011). Improvement of time and frequency domain performance of antipodal Vivaldi antenna using multi-objective particle swarm optimization. IEEE Transactions on Antennas and Propagation, 59, 1738–1742.

    Article  Google Scholar 

  • Chu, H. B., Shirai, H., & Dao, C. N. (2015). Effect of curvature of antipodal structure on Vivaldi antennas. In 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. IEEE, pp. 2331–2332.

    Google Scholar 

  • De Oliveira, A. M., Perotoni, M. B., Kofuji, S. T., & Justo, J. F. (2015). A palm tree antipodal Vivaldi antenna with exponential slot edge for improved radiation pattern. IEEE Antennas and Wireless Propagation Letters, 14, 1334–1337.

    Article  Google Scholar 

  • Fei, P., Jiao, Y.-C., Hu, W., & Zhang, F.-S. (2011). A miniaturized antipodal Vivaldi antenna with improved radiation characteristics. IEEE Antennas and Wireless Propagation Letters, 10, 127–130.

    Article  Google Scholar 

  • Herzi, R., Gharbi, R., Zairi, H., & Gharsallah, A. (2013, March 18–21). A tuneable antipodal Vivaldi antenna for UWB application. In 2013 10th International Multi Conference on Systems, Signals & Devices (SSD), pp. 1–4.

    Google Scholar 

  • Huang, T.-J. & Hsu, H.-T. (2011). Antipodal dual exponentially tapered slot antennas Antipodal dual exponentially tapered slot antennas (DETSA) with corrugations for front-to-back ratio improvement. In 2011 IEEE International Workshop on Electromagnetics, Applications and Student Innovation (iWEM). IEEE, pp. 48–51.

    Google Scholar 

  • In, D. M., Lee, M. J., Kim, D., Oh, C. Y., & Kim, Y. S. (2012). Antipodal linearly tapered slot antenna using unequal half-circular defected sides for gain improvements. Microwave and Optical Technology Letters, 54, 1963–1965.

    Article  Google Scholar 

  • Karahan, M., & Armagan Sahinkaya, D. S. (2014). A reduced size antipodal Vivaldi antenna design for wideband applications. In 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI). IEEE, pp. 1588–1589.

    Google Scholar 

  • Lee, D.-H., Yang, H.-Y., & Cho, Y.-K. (2012). Tapered slot antenna with band-notched function for ultrawideband radios. IEEE Antennas and Wireless Propagation Letters, 11, 682–685.

    Article  Google Scholar 

  • Millard, S., Shaari, A., & Bungey, J. (2002). Field pattern characteristics of GPR antennas. NDT and E International, 35, 473–482.

    Article  Google Scholar 

  • Molaei, A., Kaboli, M., Mirtaheri, S. A., & Abrishamian, M. S. (2014). Dielectric lens balanced antipodal Vivaldi antenna with low cross-polarisation for ultra-wideband applications. IET Microwaves, Antennas and Propagation, 8, 1137–1142.

    Article  Google Scholar 

  • Moosazadeh, M., & Kharkovsky, S. (2015b). Development of the antipodal Vivaldi antenna for detection of cracks inside concrete members. Microwave and Optical Technology Letters, 57, 1573–1578.

    Article  Google Scholar 

  • Moosazadeh, M., & Kharkovsky, S. (2016). A compact high-gain and front-to-back ratio elliptically tapered antipodal Vivaldi antenna with trapezoid-shaped dielectric lens. IEEE Antennas and Wireless Propagation Letters, 15, 552–555.

    Article  Google Scholar 

  • Moosazadeh, M., Kharkovsky, S., & Case, J.T. (2016). Microwave and millimetre wave antipodal Vivaldi antenna with trapezoid-shaped dielectric lens for imaging of construction materials. IET Microwaves, Antennas and Propagation, 10(3), 301–309.

    Article  Google Scholar 

  • Nassar, I. T., & Weller, T. M. (2015). A novel method for improving antipodal Vivaldi antenna performance. IEEE Transactions on Antennas and Propagation, 63, 3321–3324.

    Article  Google Scholar 

  • Natarajan, R., George, J. V., Kanagasabai, M., & Shrivastav, A. K. (2015). A compact antipodal Vivaldi antenna for UWB applications. IEEE Antennas and Wireless Propagation Letters, 14, 1557–1560.

    Article  Google Scholar 

  • Pandey, G., Verma, H., & Meshram, M. (2015). Compact antipodal Vivaldi antenna for UWB applications. Electronics Letters, 51, 308–310.

    Article  Google Scholar 

  • Schaubert, D. H., Kollberg, E. L., Korzeniowski, T. L., Thungren, T., Johansson, J., & Yngvesson, K. S. (1985). Endfire tapered slot antennas on dielectric substrates. IEEE Transactions on Antennas and Propagation, 33, 1392–1400.

    Article  Google Scholar 

  • Teni, G., Zhang, N., Qiu, J., & Zhang, P. (2013). Research on a novel miniaturized antipodal Vivaldi antenna with improved radiation. IEEE Antennas and Wireless Propagation Letters, 12, 417–420.

    Article  Google Scholar 

  • Wang, P., Zhang, H., Wen, G., & Sun, Y. (2012). Design of modified 6-18 GHz balanced antipodal Vivaldi antenna. Progress in Electromagnetics Research C, 25, 271–285.

    Article  Google Scholar 

  • Wang, Z., Yin, Y., Wu, J., & Lian, R. (2016). A miniaturized CPW-fed antipodal Vivaldi antenna with enhanced radiation performance for wideband applications. IEEE Antennas and Wireless Propagation Letters, 15, 16–19.

    Google Scholar 

  • Wu, J., Zhao, Z., Nie, Z., & Liu, Q.-H. (2014). A printed UWB Vivaldi antenna using stepped connection structure between slot-line and tapered patches. IEEE Antennas and Wireless Propagation Letters, 13, 698–701.

    Article  Google Scholar 

  • Zhang, Q., Fu, L., Shi, S., Xu, J., & Wei, G. (2012). A miniaturized fermi TSA with improved radiation characteristics For UWB Application. In 2012 8th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP). IEEE, pp. 1–4.

    Google Scholar 

  • Zhu, F., Gao, S., Ho, A. T., Abd-Alhameed, R. A., See, C. H., Li, J., & Xu, J. (2012). Miniaturized tapered slot antenna with signal rejection in 5–6-GHz band using a balun. IEEE Antennas and Wireless Propagation Letters, 11, 507–510.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moosazadeh, M. (2019). Miniaturised Antipodal Vivaldi Antenna and Its Application for Detection of Void Inside Concrete Specimens. In: Antipodal Vivaldi Antennas for Microwave Imaging of Construction Materials and Structures. Springer, Cham. https://doi.org/10.1007/978-3-030-05566-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05566-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05565-3

  • Online ISBN: 978-3-030-05566-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics