Skip to main content

Theory of Extratropical Cyclones

  • Chapter
Extratropical Cyclones

Abstract

There is no unique framework for understanding the growth and decay of extratropical cyclones. A number of useful approaches have been pursued in the huge body of literature on the subject during the past fifty years; these are reviewed also by Reed in Chapter 3 of this volume. Studies of the energetics or angular momentum budgets for a box surrounding a developing storm (Section 12.3.4) can, because of their integral nature, provide only a partial description of the processes occurring in the region. Another partial, but interesting, view is obtained by considering the work done by a parcel of air displaced in an otherwise undisturbed environment. Such a discussion ignoring pressure forces and the continuous nature of the medium, cannot be complete but it is in accord with the spirit of synoptic descriptions in terms of the movement of conveyor belts of air, treated by Browning in Chapter 8.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  • Bennetts, D. A., and B. J. Hoskins, 1979: Conditional symmetric instability — a possible explanation for frontal rainbands. Quart. J. Roy. Meteor. Soc., 105, 945–962.

    Article  Google Scholar 

  • Berrisford, P., 1988: Potential vorticity in extratropical cyclones. Ph.D. Thesis, Univ. of Reading, 168 pp.

    Google Scholar 

  • Bretherton, F. P., 1966: Critical layer instability in baroclinic flows. Quart. J. Roy. Meteor. Soc., 92, 325–334.

    Article  Google Scholar 

  • Charney, J. G., 1947: The dynamics of long waves in a baroclinic westerly current. J. Meteor., 4, 135–162.

    Article  Google Scholar 

  • Charney, J. G., and M. E. Stern, 1962: On the stability of internal baroclinic jets in a rotating atmosphere. J. Atmos. Sci., 19, 159–172.

    Article  Google Scholar 

  • Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1, No. 3, 33–52.

    Article  Google Scholar 

  • Eliassen, A., 1948: The quasi-static equations of motion. Geofys. Publ., 17, No. 3, 1–44.

    Google Scholar 

  • ——, 1957: Adiabatic and frictionless motions. Stability properties and the theory of small-amplitude oscillations and waves. Chap. II in Dynamic Meteorology by A. Eliassen and E. Kleinschmidt. Handbuch der Physik, 48, S. Flügge, Ed. Springer-Verlag, 45–90.

    Google Scholar 

  • Emanuel, K., 1988: Observational evidence of slantwise convective adjustment. Mon. Wea. Rev., 116, 1805–1816.

    Article  Google Scholar 

  • ——, M. Fantini and A. J. Thorpe, 1987: Baroclinic instability in an environment of small stability to slantwise moist convection. Part I: Two-dimensional models. J. Atmos. Sci., 44, 1559–1573.

    Article  Google Scholar 

  • Ertel, H., 1942: Ein Neuer hydrodynamischer Wirbelsatz. Meteor. Zeits., 59, 271–281.

    Google Scholar 

  • Farrell, B., 1985: Transient growth of damped baroclinic waves. J. Atmos. Sci., 42, 2718–2727.

    Article  Google Scholar 

  • Gall, R., 1976: A comparison of linear baroclinic instability theory with the eddy statistics of a general circulation model. J. Atmos. Sci., 33, 349–373.

    Article  Google Scholar 

  • ——, and R. Blakeslee, 1977: Comments on “A note on the wavelength of maximum growth rate for baroclinic instability.” J. Atmos. Sci., 34, 1479–1480.

    Article  Google Scholar 

  • Green, J. S. A., 1960: A problem in baroclinic instability. Quart. J. Roy. Meteor. Soc., 86, 237–251.

    Article  Google Scholar 

  • Held, I. M., 1983: Stationary and quasi-stationary eddies in the extratropical troposphere: Theory. Large-Scale Dynamical Processes in the Atmosphere, B. J. Hoskins and R. P. Pearce, Eds. Academic Press, 127–168.

    Google Scholar 

  • Helmholtz, H. v., 1888: Über atmosphärische Bewegungen. Sitz-Ber. Akad. Wiss. Berlin, 647–663. English translation in Abbe, C., 1893: The Mechanics of the Earth’s Atmosphere, Smithsonian Institution, 78–93.

    Google Scholar 

  • Hoskins, B. J., 1974: The role of potential vorticity in symmetric stability and instability. Quart. J. Roy. Meteor. Soc., 100, 480–482.

    Article  Google Scholar 

  • ——, 1975: The geostrophic momentum approximation and the semigeostrophic equations. J. Atmos. Sci., 32, 233–242.

    Article  Google Scholar 

  • ——, 1983: Dynamical processes in the atmosphere and the use of models. Quart. J. Roy. Meteor. Soc., 109, 1–21.

    Article  Google Scholar 

  • ——, and N. V. West, 1979: Baroclinic waves and frontogenesis. Part II: Uniform potential vorticity jet flows — cold and warm fronts. J. Atmos. Sci., 36, 1663–1680.

    Article  Google Scholar 

  • ——, and W. A. Heckley, 1981: Cold and warm fronts in baroclinic waves. Quart. J. Roy. Meteor. Soc., 107, 79–90.

    Article  Google Scholar 

  • ——, and M. J. Revell, 1981: The most unstable long wavelength baroclinic instability modes. J. Atmos. Sci., 38, 1498–1503.

    Article  Google Scholar 

  • ——, and P. Berrisford, 1988: A potential vorticity perspective of the storm of 15–16 October 1987. Weather, 43, 122–129.

    Article  Google Scholar 

  • ——, and F:F. Jin, 1990: The initial value problem for tropical perturbations to a baroclinic atmosphere. Quart. J. Roy. Meteor. Soc., submitted.

    Google Scholar 

  • ——, I. Draghici and H. C. Davies, 1978: A new look at the arequation. Quart. J. Roy. Meteor. Soc., 104, 31–38.

    Article  Google Scholar 

  • ——, M. E. McIntyre and A. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877–946. (See also 113, 401–404, comments by J. S. A. Green and reply by authors.)

    Article  Google Scholar 

  • James, I. N., 1987: Suppression of baroclinic instability in horizontally sheared flows. J. Atmos. Sci., 44, 3710–3720.

    Article  Google Scholar 

  • Joly, A., and A. J. Thorpe, 1988: The stability of two-dimensional fronts modified by latent heat release. Preprints, Palmen Memorial Symposium on Extratropical Cyclones, Helsinki. Amer. Meteor. Soc., 94–97.

    Google Scholar 

  • Juckes, M. N., and M. E. McIntyre, 1987: A high resolution onelayer model of breaking planetary waves in the stratosphere. Nature, 328, 590–596.

    Article  Google Scholar 

  • Kleinschmidt, E., Jr., 1957: Cyclones and anticyclones. Chap. IV in Dynamic Meteorology by A. Eliassen and E. Kleinschmidt. Handbuch der Physik, 48, S. Flügge, Ed. Springer-Verlag, 112–154.

    Google Scholar 

  • Lindzen, R. S., and B. Farrell, 1980: A simple approximate result for the maximum growth rate of baroclinic instability. J. Atmos. Sci., 37, 1648–1654.

    Article  Google Scholar 

  • Moore, G. W. K., and W. R. Peltier, 1987: Cyclogenesis in frontal zones. J. Atmos. Sci., 44, 384–409.

    Article  Google Scholar 

  • Orlanski, I., 1968: Instability of frontal waves. J. Atmos. Sci., 25, 178–200.

    Article  Google Scholar 

  • Petterssen, S., 1956: Weather Analysis and Forecasting, 2nd ed., Vol. 1. McGraw-Hill, 428 pp.

    Google Scholar 

  • Rossby, C.-G., 1940: Planetary flow patterns in the atmosphere. Quart. J. Roy. Meteor. Soc., 66, Suppl., 68–87.

    Google Scholar 

  • Schär, C., and H. C. Davies, 1990: An instability of mature cold fronts J. Atmos. Sci., in press.

    Google Scholar 

  • Simmons, A. J., and B. J. Hoskins, 1976: Baroclinic instability on the sphere — normal modes of the primitive and quasigeostrophic equations. J. Atmos. Sci., 33, 1454–1477.

    Article  Google Scholar 

  • ——, and ——, 1977a: Baroclinic instability on the sphere: solutions with a more realistic tropopause. J. Atmos. Sci., 34, 581–588.

    Article  Google Scholar 

  • ——, and ——, 1977b: A note on the wavelength of maximum growth rate for baroclinic instability. J. Atmos. Sci., 34, 1477–1478.

    Article  Google Scholar 

  • ——, and ——, 1979: The downstream and upstream development of unstable baroclinic waves. J. Atmos. Sci., 36, 1239–1254.

    Article  Google Scholar 

  • ——, and ——, 1980: Barotropic influences on the growth and decay of nonlinear baroclinic waves. J. Atmos. Sci., 37, 1679–1684.

    Article  Google Scholar 

  • Sutcliffe, R. C., 1947: A contribution to the problem of development. Quart. J. Roy. Meteor. Soc., 73, 370–383.

    Article  Google Scholar 

  • Thorncroft, C., 1988: Frontal cyclogenesis. Ph.D. Thesis, Univ. of Reading, 216 pp.

    Google Scholar 

  • Thorpe, A. J., and K. Emanuel, 1985: Frontogenesis in the presence of small stability to slantwise convection. J. Atmos. Sci., 42, 1809–1824.

    Article  Google Scholar 

  • ——, B. J. Hoskins and V. Innocentini, 1989: On the applicability of the parcel method. J. Atmos. Sci., 46, 1274–1284.

    Article  Google Scholar 

  • Trenberth, K. E., 1978: On the interpretation of the diagnostic quasigeostrophic omega equation. Mon. Wea. Rev., 106, 131–137.

    Article  Google Scholar 

  • Valdes, P. J., and B. J. Hoskins, 1988: Baroclinic instability of the zonally averaged flow with boundary layer damping. J. Atmos. Sci., 45, 1584–1593.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 American Meteorological Society

About this chapter

Cite this chapter

Hoskins, B.J. (1990). Theory of Extratropical Cyclones. In: Newton, C.W., Holopainen, E.O. (eds) Extratropical Cyclones. American Meteorological Society, Boston, MA. https://doi.org/10.1007/978-1-944970-33-8_5

Download citation

Publish with us

Policies and ethics